
Computer Science II, D-BAUG FS 2015 Assignment 5

Departement of Computer Science Out: 11th of March 2015
ETH Zurich Due: 18th of March 2015

1 FIFO List

In this exercise we extend the Stack implementation which was presented during class with the
functionality of a First-in-First-out List. This means we insert elements at one end, while removing
them from the other end. You can �nd the skeleton of the assignment here: http://lec.inf.

ethz.ch/baug/informatik2/2015/ex/ex05/Main.java

As shown in class, the list consists of two classes.

public class ListElement

{ public int data;

public ListElement next;

... // Constructors + Access methods + toString

}

represents a single element of the list and its data.

The class FifoList uses objects of ListElement, in order to store a list of int-numbers. It has
the following structure:

public class FifoList

{

private ListElement first; // reference of the first element

private ListElement last; // reference of the last element

public FifoList () // constructor

public String toString () // human readable form

public void Insert(int data) // insert an element

public int Remove () // get "oldest" element and delete it from List

}

Your �rst task is to implement the two methods toString and Insert. Before you start coding
have a look at the following �gure

�rst last

null

and think about the following: Given that you can only reach an element by following the directed
arrows starting from either �rst or last

� which side is the easiest to enter a new element?

� which side is the easiest to delete an element?

Keep in mind that for both operations you might also need to change arrows of predecessors in the

http://lec.inf.ethz.ch/baug/informatik2/2015
http://lec.inf.ethz.ch/baug/informatik2/2015/ex/ex05/Main.java
http://lec.inf.ethz.ch/baug/informatik2/2015/ex/ex05/Main.java


Figure 1: di�erent states a FiFo list can be in (from left to right)

1. an empty FiFo list - �rst and last are both null

2. an FiFo list with only a single element - �rst and last are equal

3. a FiFo list with at least two or more elements

chain. (There should be a clear preferred side to insert, and the opposite side should clearly be the
better to delete)

1.1 Insert

//pre: the list with m elements ,

// where m can be any positive integer including 0 (empty list)

//post: the list with m+1 elements , with one element added by you

// (ListElement with data "n")

public void insert(int n)

Take care that you cover all cases of states the list can be in as sketched in 1, such that inserting an
element works for each of those cases. Also note that inserting

� in state 1 should bring you to state 2

� in state 2 should bring you to state 3

� in state 3 should keep you in state 3 but with one more element

1.2 Converting the list into a printable string

Your next task is to �ll the method:

//pre: -

//post: return a string that is simply the concatenation of calling

// the toString method of all list elements.

// make sure that you print in "oldest" to "youngest" order

public String toString ()

To implement this method you will have to traverse the list. You start by creating an empty string
and then, while traversing the list, call the toString method of each element. After each call you
concatenate the string with your result so far. Pay attention that you print your list "oldest" element
to "youngest". (depending in which side you decided to insert / remove this might not be the
traversal order)
You can validate your solution of toString and Insert here: https://judge.inf.ethz.ch/team/
websubmit.php?cid=60&problem=IB1513

https://judge.inf.ethz.ch/team/websubmit.php?cid=60&problem=IB1513
https://judge.inf.ethz.ch/team/websubmit.php?cid=60&problem=IB1513


1.3 Remove (removing oldest element)

Your �nal task is to implement the routine Remove which will remove the oldest element.

//pre: the list with m elements ,

// where m can be any positive integer including 0 (empty list)

//post: if the list is empty return 0 and leave the list empty ,

// otherwise return the "data" value of the oldest element

// and remove it from the list

public int remove ()

Your Remove routine has to remove on the opposite end of where your Insert method inserts elements.
Also in this case make sure that you cover each case your list can be in. Make sure that you re-adjust
the pointers �rst/last accordingly after removing an element.
You can check your compete implementation (insert, toString and remove in combination) here:
https://judge.inf.ethz.ch/team/websubmit.php?cid=60&problem=IB1514

https://judge.inf.ethz.ch/team/websubmit.php?cid=60&problem=IB1514

	FIFO List
	Insert
	Converting the list into a printable string
	Remove (removing oldest element)


