
Computer Science II, D-BAUG FS 2015 Assignment 3

Departement of Computer Science Out: 2th of March 2015

ETH Zurich Due: 11th of March 2015

3 Random Surfer - Markov Chain Monte Carlo

This exercise largely corresponds to the �Random Surfer� slides from the lectures.

Your task is to complement the skeleton code from http://lec.inf.ethz.ch/baug/informatik2/

2015/ex/ex03/skeleton/Main.java, eventually implementing the random surfer through both si-

mulation and iterative computation. Note that the code compiles even without �lling any gaps. You

can test individual parts separately and submit partial solutions to the judge to get the individual

parts evaluated. Note that there may be dependencies: please process the tasks in the provided order.

We provide sample input data to the test program Main at the end of the source code. Use them in

order to test your code locally before submitting to the judge. The judge uses di�erent input data

for evaluating your code.

3.1 Matrix Output

Implement method

// pre: non -empty matrix m

// post: matrix printout on System.out

public static void printMatrix(double [][] m)

for the output of a matrix. The output should provide the number of rows r and columns c as two
whitespace separated integers followed by r ·c �oating point matrix entries. Insert a new-line character

for each �nished row. Example output for a 2× 3 matrix:

2 3

0.10000 0.20000 0.30000

1.10000 1.20000 1.30000

Use the following instruction for output of each matrix entry of type double:

System.out.printf("%7.5f ", e); // replace "e" by matrix entry

Validate your solution here: https://judge.inf.ethz.ch/team/websubmit.php?cid=60&problem=

IB1505

3.2 Matrix Input

Implement method

// pre: matrix data provided via scanner

// post: returns matrix data

public static double [][] readMatrix(java.util.Scanner scanner)

in order to read a matrix from input via scanner. The format of the input data corresponds to matrix

output from above: the number r of rows followed by the number c of columns, both integers, followed

by a sequence of r · c doubles. Numbers are separated by whitespaces.

http://lec.inf.ethz.ch/baug/informatik2/2015
http://lec.inf.ethz.ch/baug/informatik2/2015/ex/ex03/skeleton/Main.java
http://lec.inf.ethz.ch/baug/informatik2/2015/ex/ex03/skeleton/Main.java
https://judge.inf.ethz.ch/team/websubmit.php?cid=60&problem=IB1505
https://judge.inf.ethz.ch/team/websubmit.php?cid=60&problem=IB1505


Validate your solution here: https://judge.inf.ethz.ch/team/websubmit.php?cid=60&problem=

IB1506

3.3 Vector-Matrix-Multiplication

Implement the method

// pre: non -empty input vector of length N, matrix of size N times M

// post: return vector -matrix product v * m in a vector of size M

public static double [] multiplyVectorMatrix(double [] v, double [][] m)

computing the product of a vector of length N and a matrix of size N ×M , N,M > 0. Return a

new vector with the result. Do not modify input data.

Validate your solution here: https://judge.inf.ethz.ch/team/websubmit.php?cid=60&problem=

IB1507

3.4 Checking Convergence

The stationary distribution µ of a Markov chain with transition matrix P ful�ls µP = µ. In order to

check if a vector v is su�ciently close to µ, we check if vP ≈ v by comparing vP element-wise with

v. Implement method

// non -empty vector v and probability matrix m, precision > 0

// returns if v * m is close at v

public static boolean checkConvergence(double [] v, double [][] P, double precision)

returning if absolute values of all entries of vP − v are smaller than precision.

Validate your solution here: https://judge.inf.ethz.ch/team/websubmit.php?cid=60&problem=

IB1508

3.5 Simulation

Implement method

// pre: non -empty probability matrix P

// post: return relative frequencies of visits in each point

// after MCMC simulation until convergence reached

public static double [] simulate(double [][] P, double precision)

simulating the behavior of the random surfer. The random surfer starts in state 0 and makes steps

according to the transition matrix P . For simulation steps the already existing method simulateLine

should be used, just as we did in the lectures. But in contrast to the version provided in class you

should not do a �xed number of iterations but loop until either one of the following two conditions

is met:

1. The stationary point is su�ciently well approximated (using the convergence check from above)

2. 10000000 iterations have passed.

Validate your solution here: https://judge.inf.ethz.ch/team/websubmit.php?cid=60&problem=

IB1509

https://judge.inf.ethz.ch/team/websubmit.php?cid=60&problem=IB1506
https://judge.inf.ethz.ch/team/websubmit.php?cid=60&problem=IB1506
https://judge.inf.ethz.ch/team/websubmit.php?cid=60&problem=IB1507
https://judge.inf.ethz.ch/team/websubmit.php?cid=60&problem=IB1507
https://judge.inf.ethz.ch/team/websubmit.php?cid=60&problem=IB1508
https://judge.inf.ethz.ch/team/websubmit.php?cid=60&problem=IB1508
https://judge.inf.ethz.ch/team/websubmit.php?cid=60&problem=IB1509
https://judge.inf.ethz.ch/team/websubmit.php?cid=60&problem=IB1509


3.6 Direct calculation without simulation

Implement method

// pre: non -empty vector v and n times n probability matrix

// post: vector v close at stationary distribution of m

// returns number of vector -matrix multiplications required

public static int calculateDirect(double [] v, double [][] m,

double precision)

using formula vn+1 = vn · P as presented in the course. As in the previous task you should perform

this operation until the convergence criterion is met, or 10000000 iterations have passed.

Note the di�erence to previous exercises: here it is explicitly required that input parameter v changes

its values.

Validate your solution here: https://judge.inf.ethz.ch/team/websubmit.php?cid=60&problem=

IB1510

Run the main routine of the RandomSurfer routine and observe the di�erent run times of the two

approaches. As a little theoretical exercise, compute and compare the number of multiplications

required for the di�erent approaches. What is your conclusion?

https://judge.inf.ethz.ch/team/websubmit.php?cid=60&problem=IB1510
https://judge.inf.ethz.ch/team/websubmit.php?cid=60&problem=IB1510

	Random Surfer - Markov Chain Monte Carlo
	Matrix Output
	Matrix Input
	Vector-Matrix-Multiplication
	Checking Convergence
	Simulation
	Direct calculation without simulation


