
INFORMATIK II

am D-BAUG

Kurzzusammenfassung zur Vorlesung 252-0846-00

Fr�uhjahrssemster 2014, ETH Z�urich

Felix Friedrich



2

Chapter 1: Introduction

We saw an overview over the planned topics of the course: object oriented programming,
data structures and algorithms, data bases. I pointed out that the focus of the course
is on solving problems and not primarily on learning a programming language. This is
underpinned by the discussion of case studies per learned concepts in the course.

We shortly recapitulated the concept of computers and programming.

We treated the programming language for this course, Java, as an imperative language
�rst by comparing it with Pascal. We learned how basic expressions and statements are
translated from Pascal to Java and already looked at the major di�erences: existence of
classes (constituting reference typed) and methods as opposed to (value typed) records
and procedures. We learned that Java does not provide reference parameters. We learned
what the simplest Java program looks like ("hello world").

public class Hello {

public static void main(String [] args)

{

System.out.println("Hello World.");

}

}

Case study: Ancient Egyptian Multiplication

We learned the algorithm of ancient Egyptian multiplication: a method to multiply two
numbers by only using multiplications and divisions by 2 and additions. Starting from a
formal recursive formulation of the algorithm, we discussed an implementation in Java.
We gave an inductive proof of the correctness of the algorithm. This was followed by a
discussion about the limits of applicability of such theoretical result to programs.

We introduced the concept of exception handling and learned that it breaks the
normal control ow in order to react on an exceptional situation, such as the overow of
a stack when the algorithm did not terminate. Recall that a program can either correctly
terminate, return an incorrect result (including ungraceful termination) or not terminate
at all.

try {

// statements

}

catch (errtype1) {

// handling of this error type

}

By elementary transformations of the code we formulated the algorithm in a tail-
recursive and an iterative form. We identi�ed invariants, an important tool for reason-
ing about the correctness of code.



3

Chapter 2. Java

Compilation units in Java consist of classes that can be contained in packages. We dis-
cussed the role of import with respect to name spaces and quali�ed identi�ers in Java.
Static methods play the role of procedures in Pascal. A self-contained program provides
a class containing a method of the form public static void main(String args[])

Java is strongly typed and therefore assignments between symbols of di�erent type
require type conversions. When converting to a type with larger domain an implicit
conversion takes place. The compiler detects static incompatibilities while the runtime
can detect dynamic incompatibilities.

Arrays are dynamic objects in Java that can be (re-)allocated during runtime. As a
consequence of reference semantics in Java, an assignment of variables of type array does
not imply a data copy but only a copy of the reference to the data.

int [] x = new int [10];

int [] y;

y = x; // copies the reference , not the array data

y[3] = 10; // modifies y and consequently also x !

Array bounds are checked at runtime. As an example of arrays we learned how to access
the arguments args of a java program. Input, output and error Streams can be used in
order to write to or read from the console. Using the symbols < , > and |, in- and output
of a program can be redirected to �les or piped between java programs.

Case Study: Random Surfer, Page Rank Algorithm

A random surfer starts at an arbitrary page on the internet and continues iteratively
choosing outgoing links with equal probabilities. We modeled the behavior of the random
surfer as a Markov Chain with transition matrix P := (Pij)0�i,j�n. Entries Pij stand for
the probabilities to continue on page j when having started on page i.

Most importantly, we developed a way to simulate a �nite random variable V 2
{0, ..., n− 1} with given distribution pi = P(V = i).

public static int Simulate(double [] p)

{

int res=0;

double r = Math.random ();

double sum = 0.0;

for (int j = 0; j < p.length; j++) {

sum += p[j];

if (r < sum) {res = j; break;}

}

return res;

}

This procedure was iteratively applied taking respective rows of the transition matrix P
in order to simulate the behavior of the random surfer. We computed the page rank as
visiting frequency for each page.



4

Chapter 3. Classes

Classes in Java contain data and code. Classes have reference semantics, i.e. they have
to be allocated with new. Deallocation is not necessary as Java comes with a Garbage
collector.

We learned about the syntax and semantics of the new statement. A class can provide
several constructors with di�erent signature. A constructor is called when new(...) is
executed according to its parameters, following the principle of method overloading.

class Rational {..

public Rational(int num , int denom){ ... }

public Rational (){ ... } ...

}

Encapsulation is an important concept which helps to give guarantees regarding
invariants. By hiding implementation details behind a de�ned interface it permits to
provide a su�cient level of abstraction.

Methods have access to the data (variables) of their containing class via the implicit
this parameter. If this is not speci�ed in a reference, it is implicitly added provided
that the symbol refers to the class variables.

Passing a variable of class type as parameter means passing a reference to an object.

Case Study: Online Statistics

Wanted: object providing values such as mean or variance without costly computation.

The circular bu�er is a concept to store a limited amount of data. Using this concept
mean and variance can be computed in linear time. Using the concept of a dynamic
(growing) array, the amount of stored data can be derestricted.

For online computation of mean and variance, the provisional means algorithm is
much better. It updates the mean according to the formula µn+1 = µn +

xn+1−µn
n+1

. The
median is a selection problem that requires a more complicated treatment.

The Statistics class is a good example of how getters and setters are used in Object
Oriented Programming in order to hide implementation details.

public class Statistics {

int n = 0; double mean = 0; double ssq = 0;

public void Put(double value){

n++; double oldMean = mean;

mean = oldMean + (value - oldMean) / n;

ssq = ssq + (ssq - oldMean) * (value - mean);

}

public double Mean (){ return mean; }

public double Variance () { if (n==0) return 0; return ssq}

}



5

Chapter 4. Complexity

Algorithms use resources such as computing time, memory and energy. We consider
problems with problem size n. When computing time consumption of an algorithm,
constant sizes should be abstracted away.

We often distinguish scenarios: "best case", "average case" and "worst case". More-
over, often the algorithm behavior is considered for the case n → ∞. For small n an
algorithm with worse asymptotic complexity can be actually better.

The big-O notation helps to prescind from constants that do not contribute to the
"nature" of the problem or its solution. Formally we say an algorithm is O(g) (of Order
g) if

9c > 0, n0 2 N : f(n) � c � g(n) 8n � n0
We categorized into

constant O(1)
logarithmic O(logn)
linear O(n)
quadratic O(n2)
polynomial O(nk)
exponential O(cn).

and realized that the growth for an algorithm with exponential complexity is extreme
and renders it in most cases completely unrealistic.

We made the observation that if we can solve a problem of size N within a certain
time, then with a new, ten times faster, machine we can solve within the same time
depending on the complexity of the algorithm:

f(n) old size → new size
O(logn) N→ N10

O(n) N→ 10 �N
O(n logn) N→ (nearly)10 �N
O(n2) N→ p

10 �N
O(nk) N→ N1/3 �N
O(cn) N→ N+ log2 10

We computed the complexity of the mergesort algorithm in a constructive and a
recursive way. It is n+ n logn



6

Chapter 5. Dynamic Data Structures I

We motivated dynamic data structures with the observation that for arrays it is compu-
tationally expensive to insert or remove elements "in the middle". Linked lists provide a
solution where elements are stored anywhere in memory (and not consecutively as arrays
do it). In addition to the key (or value), each list element also stores a pointer to its
successor:

12 99 37

For the implementation of a singly linked list, we introduced a dynamic data structure

class Node

{

double value;

Node next;

Node (double v, Node nxt){

value=v; next = nxt;

}

}

and used it in order to implement stack and queue. We learned that insert and remove
operations require a careful treatment of special cases such as "empty list". Moreover,
we learned how to use a "running pointer" in order to traverse a list. Sorted insertion
requires keeping a reference to the previous element when searching for the insertion
position.

Case Study: Point-In-Polygon Algorithm

The Jordan curve theorem implies: in order to identify if a point p is in the inner of a
polygon, it is su�cient to count intersections of the polygon with an arbitrary half-line l
starting in p. The main di�culty with implementations arise at the special cases where
l cuts the polygon on its vertices.

We implemented a polygon as a singly linked list of vertices. The PointInPolygon
algorithm was implemented �rstly such that it operated on horizontal lines taking into
account the mentioned special cases. It used oating point arithmetics.

Motivated by potential ambiguities, lacking computing e�ciency and by the require-
ment to draw the polygon, we discussed line drawing on a pixel grid as an interesting
discretization task. The Bresenham algorithm can be employed to draw an arbitrary
discretized line on a pixel grid. It works without oating point arithmetic. The Bresen-
ham algorithm keeps the absolute value of err = dx(d − y0) − dy(x − x0) small when
advancing in horizontal or vertical direction.

The last task of this case study was drawing and �lling the polygon. In order to
achieve this, the polygon is represented as an array of linked lists containing intersection
coordinates. The lists are �lled with the Bresenham algorithm.



7

Chapter 6. Object Oriented Programming

Motivation: build a graphics library for drawing geometric �gures. A solution with
the procedural approach was sketched and problems were identi�ed: waste of memory
resources, administrative overhead, hindered "non-invasive" code extension.

One key to the solution of such problems is the concept of inheritance: common
properties of �gures can stay in a base class ("generalisation") and distinguishing prop-
erties can be expressed in the inheriting classes ("specialisation"). Inheritance implies
possibility of code reuse operating on common properties. We introduced the notions
base class, inheriting class.

The compatibility rules state that an extended object can be used whenever a base
object is required. During runtime an object can be of extended type relative to its static
type. Therefore we introduced type guards and type checks.

Figure figure = new Rectangle (0,0,10,10);

Rectangle r = (Rectangle)figure;

if (figure instanceof Rectangle)

System.out.println("figure is rectangle");

else

System.out.println("figure is not rectangle");

In order to take the dynamic type of an object into account, the concept of poly-
morphism was introduced. When a method with same type and signature as in the
base class is de�ned in the inheriting class then the method to be executed is chosen at
runtime. Object Orientation requires encapsulation, inheritance and polymorphism.

Case Study: Numerical Integration

Objective was the development of a generic software framework for numerical integration
of an arbitrary real valued function. We introduced abstract classes

public abstract class Function {

public abstract double Evaluate(double x);

}

public abstract class Integrator {

int n;

public void SetNumberPieces(int pieces) {

n = pieces;

}

public abstract double Integrate(Function f, double x0 , double x1);

}

and experimented with di�erent functions and integrators by specializing. In the course
we considered the parabola f(x) = x2 and the density of the normal distribution and
applied Rectangle rule, Trapezoidal rule, Simpson rule and aMonte Carlo integrator.
We derived Simpsons's rule and experimentally veri�ed the error terms of O(∆3) for
Rectangle/Trapezoidal rule and and O(∆5) for Simpson Rule.



8

Chapter 7: Dynamic Data Structures II

Trees are a natural generalization of lists: nodes have more than one successor. A binary
search tree is a tree of order two with keyx.left < keyx < keyx.right for each node x

public class SearchNode {

int key;

SearchNode left;

SearchNode right;

...

}

key left right

key left right key left right

Insertion in a binary search tree requires tree traversal according to the key order
until an empty child node is found. For node removal several cases have to be considered.
If the node has two non-empty children then it has to be replaced by a symmetric
successor, e.g. the leftmost node in its right subtree.

Search trees can degenerate to linked lists which implies a worst case complexity
O(n). To guarantee O(logn) in worst case, update operations require additional balanc-
ing. AVL Trees are trees with height di�erence between left and right subtrees bounded
by 1. Update operations become slightly more complex. At the very heart of balancing
are so called rotations, code that shifts a node from one subtree to the other.

A Min-Heap is a binary tree with the Min-Heap property: the key of a child node
is always greater than the key of the parent node. A heap is thus a data structure for
fast retreival of the minimum of a data set. The heap data structure can be easily stored
in an array with indices parent(i) = b(i − 1)/2c and children(i) = {2i + 1, 2i + 2}. In
order to insert an element in a heap, the element is inserted at the �rst free position and
the heap property is ensured by "raising" the element to its proper position. In order to
retreive and delete the minimum element, the root is replaced by the last node and it is
"lowered" until the heap property is reasserted.

The median of a data set can be kept up to date with a worst case update complexity
O(logn) by employing a min- and a max-heap around the median.

Case Study: Dijkstra’s Shortest Path

Given a directed graph provided with positive weights at the edges, objective is �nding
a path with lowest accumulated weights leading from starting point S to end point E.

In order to formulate the iterative algorithm of Dijkstra, we considered
three sets of nodes. M: nodes that are part of a shortest path, initially
M = {S}. R: all nodes not inM that can be reached via one edge from
M and U: all other remaining nodes.

At each update step a node n from R is chosen with minimal path length amongst all
nodes in R. Node n is added to M. Then the neighbours of n are added to R and all
path lengths of elements in R are updated. In the implementation we used a Min-Heap
to store R in order to quickly identify the minimum.



9

Chapter 8. Tables and Hashing

Motivated by the ine�ciency of the "DecreaseKey" operation in our implementation of
Dijkstra's algorithm and by the general need to store data sets in a table, the objective
was to �nd a method to store data sets such that an element can be quickly found by
key. Data structures considered so far are of limited applicability:

Search by key Update (Insert, Delete)

array O(n) (unsorted) O(n)
O(logn) (sorted)
O(1) (if key = index)

linked list O(n) O(1) (unsorted)
O(n) (sorted)

search tree O(logn) (on average) O(logn) (on average)
O(n) (worst case) O(n) (worst case)

avl tree O(logn) (worst case) O(logn) (worst case)

We found that even in the case where the key is an integer, indexing by key in an
array is only possible in exceptional cases where the domain of possible key values is
very limited.

A hash function is a mapping from the set of possible key values to the set of possible
indices in an array. A hash table is a data structure where references to the data are
stored in an array together with a hash function that delivers array indices from key
values.

A very simple and often su�cient hash function from the set of integers to the domain
of an array with length n is the modulus function

h : N→ {0, . . . , n− 1}, k 7→ kmodn.

Collisions occur for a hash function h when h(k1) = h(k2) for two distinct used key
values k1, k2. We discussed two possible ways to deal with collisions:

1. Adopt an array of linked lists such that each index i refers to a list of all data sets
j with h(keyj) = i.

2. Open addressing: if entry i is occupied with a data set of di�ering key value a next
possible entry is chosen according to a probing procedure. Linear probing: choose
next element in array adopting wrap-around semantics. For element deletion, a
special symbol is provided in order to not break the lookup algorithm.

A good hash function for strings was identi�ed to be the weighted sum of unicode
values

h(s) = s0 � b+ s1 � b2 + s2 � b3 + ...+ sl � bl
for some integer constant c > 0 followed by a modulus operation to restrict to the array
domain:

index(s) = h(s)modn.

Dynamically growing hash tables can be adopted in order to limit the occupancy
rate and thus the collision probability in the hash table (analogy to birthday paradoxon).



10

9. Databases: Entity-Relationship Model

The Entity-Relationship Model provides a means to conceptually model a part of the
world for a database in a graphical way.

It consists of entities and relationships which both can be characterized with at-
tributes. Entities can provide a key attribute that models a unique identi�er of an
identity. Relationships can play roles with respect to entities.

An additional tool in modeling relationships is the speci�cation of how many items
may stand in relation to how many other items. Such functionalities are provided in
the form "1:1", "1:N", "N:M" for binary relations, and "1:N:M:..." for n-ary relations. A
functionality containing a "1" somewhere provides the information that the relationship
can be written as a partial function with codomain of the entity type at the "1".

If, for eample, entities e1, e2 and e3 are related as "1:N:1", then their relation is
a subset R � E of the cartesian product of their domains E = E1 � E2 � E3 and can
be understood as both partial function fR : E2 � E3 9 E1 and as partial function gR :
E1 � E2 9 E3. This often helps with the interpretation of relationships.

supervise: professors � students 9 topics
supervise: topics � students 9 professors

We introduced weak relationships where the weak entity, marked by double lines,
cannot exist without the strong entity and can only be identi�ed uniquely with its
associated strong entity. Functionality is always 1 : N or 1 : 1.



11

10. Databases: Relational Model

Using the relational model a database is described as a collection of relations (tables)
R � D1 � � � � �Dn over domains Di of attributes. A tuple t 2 R constitutes an element
of a relation, i.e. a row in a table. Schemas of such tables are described in the form

{[A1, . . . , An]}

where attributes Ai are usually described in a name:domain form. A key is a minimal
set of attributes that uniquely identi�es a tuple in a relation.

When translating from an ER-Model to a relational model, entity attributes translate
to relation attributes. Key attribute translate to primary keys of relations. When
translating from a relationship, the attributes of all entities together with the attribute
of the relationship form the attributes of the relation

{[A11, . . . , A1n1
, A21, . . . , A2n2

, . . . , Am1, . . . , Amnm , A
R
1 , . . . , A

R
nr
]}

The key of the relation is then formed by all keys of all attributes plus the keys of the
relationship. A renaming of attributes may be necessary.

After entities and relationships have been translated into relations, (only) relations
with the same key can be merged. This implies that relations from N :M relationships
cannot be merged.

Professor f[PersNr, Name]g, Vorlesung f[Titel, VorlNr]g, lesen f[PersNr, VorlNr, Raum]g⇒ Professor f[PersNr, Name]g, Vorlesung f[Titel, VorlNr], gelesenVon, Raumg,

We discussed the following operations from relational algebra:

1. Selection operation σp(R) selects tuples (rows) from a relation (table) R that ful�l
the selection predicate p.

2. Projection operation πa(R) projects to the named attributes (columns) a of a
relation (table) R

3. Cartesian product operation R1 � R2 yields all possible pairs r1r2 of tuples of R1
and R2

4. Renaming operation ρS(R) assigns a new name S to a relation R, renaming ρA1→B1(R)
renames an attribute (column) of a relation (table).

5. The Join operation R on S selects tuples from R � S that have equal values on all
attributes with the same names and merges attributes with same names.

6. The Theta-Join operation R onθ S coincides with σθ(R� S).



12

11. Databases: SQL

SQL (Structured Query Language) is a language used in order to de�ne, manipulate and
formulate queries on data bases. In terms of querying it provides a mapping of relational
algebra to a formalized natural language.

SQL de�nes various data types for typical database entries such as characters, num-
bers, dates, raw data. As Data De�nition Language (DDL), SQL provides statements
such as create table, drop table, alter table. As Data Manipulation Language(DML),
SQL provides statements such as insert into, delete and update.

A typical simple query in SQL looks like

select s.Name , v.Titel

from Studenten s, hoeren h, Vorlesungen v

where s. Legi= h.Legi and h.VorlNr = v.VorlNr

A select statement in SQL corresponds to projection, the from part speci�es (cartesian
product of) participating tables and the where clause provides a selection predicate.

Aggregate functions can be used in order to compute aggregate values over columns
of a table, returning a single value per column. If aggregation is used together with
grouping, it returns a tuple for each group.

select v.gelesenVon , p.Name , sum(v.KP)

from Vorlesungen v, Professoren p

where v.gelesenVon = p.PersNr and p.Rang = ’FP’

group by v.gelesenVon , p.Name

having avg(v.KP) >= 3

For nested statements and grouping, it is important to understand possible execution
orders. The previous query is executed as

1. from Vorlesungen, Professoren where gelesenVon = PersNr and Rang = FP

2. group by gelesenVon, Name

3. having avg (KP) >= 3

4. select gelesenVon, Name, sum (KP)

It is possible to use queries in a nested way, i.e. the result of a query can serve as
table within a query. This can provide correlations between nested and enclosing queries,
potentially leading to computationally expensive operations. Constructs such as exists
or in can be used in order to reason about query results within an other query.

select s.*

from Studenten s

where exists

(select p.*

from Professoren

where p.GebDatum > s.GebDatum );



13

12. Databases: Programming Interface

JDBC provides a means of accessing data bases from within Java.
Opening a connection requires that a JDBC driver is installed for the respective data

base type (such as MySQL). Access to the database is then established with a connection
method under the provision of database url, name and password.

try{ Class.forName("com.mysql.jdbc.Driver"); }

catch (ClassNotFoundException e) {... }

Connection conn = null;

try{ conn = DriverManager.getConnection(url , username , password ); }

catch (SQLException ex) { ... }

SQL statements are executed as strings, i.e. the compiler does not check syntactic or
even semantic correctness of SQL statements. Such checking is taking place only during
runtime. Therefore data base access code is usually very much "polluted" with exception
handling.

Another important di�erence in comparison to using SQL "natively" is that a general
purpose programming language such as Java provides only a sequential way to access
data in a table. Therefore the obvious concept of a cursor (ResultSet) is provided as
interface to the set of data.

...

try{

stmt = conn.createStatement ();

ResultSet result = stmt.executeQuery("select name from professoren");

if (result != null)

while (result.next ())

System.out.println(result.getString (1));

}

catch (SQLException ex) {

System.out.println("SQLException: " + ex.getMessage ());

System.out.println("SQLState: " + ex.getSQLState ());

System.out.println("VendorError: " + ex.getErrorCode ());

}

finally {

... result.close (); ... stmt.close ();

}

Prepared statements provide a way to parameterize queries: they can be used when
a query is executed more than once with di�erent arguments.

PreparedStatement s =

conn.prepareStatement("SELECT name FROM professoren WHERE rang = ?");

ResultSet r;

s.setString (1, "AP");

r = s.executeQuery ();

while (r.next ()) ...


