ETH zürich

Assignment 6

Felix Friedrich, Lars Widmer, Urs Müller, Severin Wischmann TA lecture, Informatics II D-BAUG March 27, 2014

"Präsenzstunden" Today

In the same room as last week (standard)

- HIL E 15.2
- 15:00 18:00
- Timon Gehr (arriving 15:45)

We proudly present ...

TA lectures in Italian

- Thursdays
- 12:45-13:30
- HIT F 31.1
- Raffaele Lauro

... Buon divertimento!

Outline

- Mow How
 - Type Parameters
 - Generics Example
- Prediscussion Assignment 6
 - Introduction
- Postdiscussion Assignment 5
 - Fibonacci Implementation
 - Linked List Implementation

"Type Parameters"

 Generics allow a type or method to operate on objects of various types.

"Type Parameters"

- Generics allow a type or method to operate on objects of various types.
- You can see generics as a parameter to hand a type to a class when instantiating objects of this class.

"Type Parameters"

- Generics allow a type or method to operate on objects of various types.
- You can see generics as a parameter to hand a type to a class when instantiating objects of this class.
- In the class there's just place holder where in the object the type must be known (i. e. the place holder has been replaced by a type).

Building Houses

In the example of classes being a **construction plan** for a house while the houses are the objects built after the plan. The "generic" could e.g. be the color of the walls in the bathroom

Building Houses

In the example of classes being a **construction plan** for a house while the houses are the objects built after the plan. The "generic" could e. g. be the color of the walls in the bathroom.

You can use the **same construction plan** and just "**replace**" the bathroom color from e. g. white to light-green.

"Type Parameters"

 Thanks to generics there are many helpful data structures (implemented as classes) which you can aggreagte and while doing so, set the according data type.

March 27, 2014 *Informatics II, D-BAUG* **7** / 27

"Type Parameters"

 Thanks to generics there are many helpful data structures (implemented as classes) which you can aggreagte and while doing so, set the according data type.

• Examples are ArrayList, Vector and LinkedList.

ETH zürich

Outline

- Market Market
 - Type Parameters
 - Generics Example
- Prediscussion Assignment 6
 - Introduction
- Postdiscussion Assignment 5
 - Fibonacci Implementation
 - Linked List Implementation

```
public class Example
      private String bla;
3
       public Example(String def)
4
           bla = def:
5
6
7
       public String get()
8
           return bla;
9
       public void set(String str)
11
           bla = str;
13
14
```

Place Holder Wanted

The aim of generics, is to replace e.g. the type "String" by a placeholder "★".

ETH zürich

Place Holder "★"

Basically ...

• From: private String bla;

Basically ...

• From: private String bla;

To: private ★ bla;

Basically ...

- From: private String bla;
- To: private ★ bla;
- From: public String get()

Basically ...

- From: private String bla;
- To: private ★ bla;
- From: public String get()
- To: public ★ get()

March 27, 2014 *Informatics II, D-BAUG* **10** / 27

Basically ...

- From: private String bla;
- To: private ★ bla;
- From: public String get()
- To: public ★ get()
- From: public void set(String str)

Basically ...

- From: private String bla;
- To: private ★ bla;
- From: public String get()
- To: public ★ get()
- From: public void set(String str)
- To: public void set(★ str)

March 27, 2014 *Informatics II, D-BAUG* **10** / 27

Side by Side

```
1 public class Example
2 { private String bla;
3
4  public Example(String def)
5  { bla = def;
6  }
7
8  public String get()
9  { return bla;
10  }
11
12  public void set(String str)
13  { bla = str;
14  }
15 }
```

```
1 public class Example<T>
2 {  private T bla;
3
4  public Example(T def)
5  {  bla = def;
6  }
7
8  public T get()
9  {  return bla;
10  }
11
12  public void set(T str)
13  {  bla = str;
14  }
15 }
```

Question

Who can see the five differences?

Example as a Generic

```
public class Example<T>
       private T bla;
3
       public Example(T def)
4
           bla = def:
5
6
7
       public T get()
8
           return bla;
9
       public void set(T str)
11
           bla = str;
13
14 }
```

With Generics

"T" is the place holder.

Example as a Generic

```
public class Example<T>
      private T bla;
3
      public Example(T def)
           bla = def:
5
7
      public T get()
           return bla;
9
      public void set(T str)
           bla = str;
13
14
```

With Generics

"T" is the **place holder**. When an object is built according to class Example, also the class place holder "T" has to be replaced by an object of an actual class.

Using a Generic Class

Instantiation

Test2, Line 3: "String" is inserted as the actual type for "T".

Outline

- Market Market
 - Type Parameters
 - Generics Example
- Prediscussion Assignment 6
 - Introduction
- Postdiscussion Assignment 5
 - Fibonacci Implementation
 - Linked List Implementation

March 27, 2014 Informatics II, D-BAUG 14 / 2

ETH zürich

Let's have an easy Assignment

Simplify your Highscore using a LinkedList. Shorter code is better code!

March 27, 2014 *Informatics II, D-BAUG* **15** / 27

Simplify your Highscore using a LinkedList. Shorter code is better code!

Calculate the complexity of two different ways to insert a new score. No programming needed for this question.

Simplify your Highscore using a LinkedList. Shorter code is better code!

Calculate the complexity of two different ways to insert a new score. No programming needed for this question.

For those who like and enjoy:

- Simplify your Highscore using a LinkedList. Shorter code is better code!
- Calculate the complexity of two different ways to insert a new score. No programming needed for this question.
- For those who like and enjoy:
 - Make your LinkedList a generic.

- Simplify your Highscore using a LinkedList. Shorter code is better code!
- Calculate the complexity of two different ways to insert a new score. No programming needed for this question.
- For those who like and enjoy:
 - Make your LinkedList a generic.
 - Make your GrowingArray a generic (tricky, non-standard).

ETH zürich

Outline

- Market Market
 - Type Parameters
 - Generics Example
- Prediscussion Assignment 6
 - Introduction
- Postdiscussion Assignment 5
 - Fibonacci Implementation
 - Linked List Implementation

Fibonacci in Java

Implementation

The aim is to put the following formula into code such that f_3 and the following 24 Fibonacci numbers are printed.

$$f_1 = f_2 = 1$$
 (1)

$$f_n = f_{n-1} + f_{n-2} (2)$$

Fibonacci Code

```
public class PrintFibonacci
      public static void main(String[] args)
          int x, y, z;
3
          x = 1: // start condition
4
          v = 1; // start condition
5
           for (int i=0; i<25; ++i)
6
               z = x+y; // calculation
7
               System.out.println(z);
8
               x = y; // move the numbers
9
               V = Z;
10
11
12
13 }
```

Who understands this Code?

```
1 public class PrintFibonacci
      public static int addPrint(int a, int b, int n)
         int c = a + b;
3
           System.out.println(c);
4
           if (n > 1)
5
               addPrint(b, c, n-1);
6
7
           return c:
8
      public static void main(String[] args)
11
           addPrint(1, 1, 25);
12
13
14 }
```

Recursive Implementation

Recursive Fibonacci Implementation

You can achieve the same goals using **recursive** and **iterative** programming. Often recursive code is smaller but a "bit more difficult to understand".

Biggest Integer-Fibonacci-Number

Highest Fibonacci Number below MAX_VALUE

It's 2147483647, but this can't be calculated using the recursive solution (stack-overflow). Recursive solutions make the stack **exceed its limits** because of the repeated method invocations.

ETH zürich

Outline

- Market Market
 - Type Parameters
 - Generics Example
- Prediscussion Assignment 6
 - Introduction
- Postdiscussion Assignment 5
 - Fibonacci Implementation
 - Linked List Implementation

Example Solution: insert

```
public void insert(int pos, int dat)

ListElement le = new ListElement(dat);

ListElement bef = locate(pos-1);

ListElement aft = bef.next;

bef.next = le;

le.next = aft;

if (aft == null)

{ last = le;
}
}
```


Example Solution: delete

Example Solution: sort

```
private void sort()
      boolean done = false;
      while (!done)
          done = true:
           ListElement le = first.next;
5
           while (le.next != null)
6
               if (le.data < le.next.data)</pre>
                 int tmp = le.data; // swap values
8
                   le.data = le.next.data:
                   le.next.data = tmp;
10
                   done = false:
11
               le = le.next:
13
14 }
          } // saving space on the slide :-)
```

Questions from your side?

Please

- Feedback?
- Additions?
- Remarks?
- Wishes?
- •

All the Best!

