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Presence Hours

The second set of presence hours (Präsenzstunden) will take
place today.

Guided Programming

Day: Every Thursday
Room: HIL E 15.2
Time: 15:00-18:00
Assistant: Timon Gehr

The room changes over the
semester.
You find the list of rooms on
the course website.

In the e-mail (sent out to all students) the dates of Mondays have been
mentioned. That was wrong! Apologies, it’s always on Thursdays!
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Classes vs. Objects

Question
What’s the difference between classes and objects?
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Classes vs. Objects

What’s the difference between classes and objects?
The programmer writes classes not objects.

The class represents a construction plan e. g. printing plate
for a book.
An object represents such a book.
There can be multiple books printed with the same plate.
The programmer can request objects of a class. The
construction is done by the computer.
The convention suggests class-names to start with an
uppercase letter and object-names to start with a
lowercase letter.
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Repetition: If you’re a Processor

Question:
Where are objects located and where are the references?
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Repetition: If you’re a Processor

As an analogy you may think of your room being a computer
while you as a processor are doing your homework which is
the program:

Your stack is a pile of sheets of paper on your desk.

An object could be a book.
If you pile 100 books on your desk, you can’t work anymore.
Therefore only single sheets of papers go to your stack.
Books you place in your bookshelf.
So to speak, your bookshelf is your heap memory.
You may place a note on a piece of paper about which book
your using for what purpose. This note is a reference. The
reference is kept in the stack, but it points to the heap.
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Class Ingredients

Question
Please name the parts a class consists of.
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Class Ingredients: Basic List

1 Access modifier

2 Name
3 Constants (similar to a variable but immutable)
4 Variables (called fields or properties)
5 Methods (replacing procedures and functions in other

languages)
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Class Ingredients

Question
There is a special method which always bears the same name
as the class itself. This method is automatically executed, when
a new object of the class is created. What’s that method?
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Class Ingredient: Constructor

Always has the same name as the class

Is automatically executed when an object of the class is
created
The constructor returns the reference to a new object of the
class. Since this is always the case, java is doing this behind
the scenes. You even don’t have to give a return type.
The main usage of the constructor is to initialize the fields
(variables) of the class.
The constructor can use parameters. This often comes in
very handy.
If you don’t specify a constructor, java uses an empty default
constructor.
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Classes are “between” Methods & Programs

It’s like a Matrjoschka*

1 A method contains code.
2 A class contains methods.
3 A program contains classes.

code ∈ method ∈ class ∈ program
*Matrjoschkas are wrongly

named as Babuschkas.
Babuschka actually means

grandmother.
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How much do you already know?

Question?
What is encapsulation?
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What is Encapsulation

The process of packing data and the according methods
in one class (“construction plan”)

A class therefore represents an individual piece of
functionality
It will be used to separate the HiLo-game from the
highscore-handling
Thus: Separation of concerns
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Encapsulation Example

We have an example-program, which “invents” good
passwords.

1 svYiS
2 W. avY .
3 ∗Fr $Hp
4 EHscumjW
5 QKCsmlQqi

March 11, 2014 Informatics II, D-BAUG 17 / 39



The program has the following methods

initDefaultChars()
Adds the normal letters uppercase and lowercase into a
LinkedList.

addChar(char ch)
Adds a user defined special character to the list (e. g. ’*’)
getNewPassword(int length)
Returns a new password of the requested length. By
randomly selecting characters from the LinkedList.
main(String[] args)
Uses getNewPassword(int length) in a loop to print 5
random passwords with 5 different lengths.
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Example Code, just if you’re interested

1 p u b l i c s t a t i c S t r i n g getNewPassword ( i n t leng th )
2 { S t r i n g pw = ” ” ;
3 f o r ( i n t i =0; i<l eng th ; ++ i )
4 { pw += buchstaben . get (
5 rand . n e x t I n t ( buchstaben . s ize ( ) ) ) ;
6 }
7 r e t u r n pw ;
8 }
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Main-Program

1 p u b l i c s t a t i c vo id main ( S t r i n g [ ] args )
2 { i n i t D e f a u l t C h a r s ( ) ;
3 addChar ( ’ ∗ ’ ) ;
4 addChar ( ’ / ’ ) ;
5 addChar ( ’ $ ’ ) ;
6 addChar ( ’ . ’ ) ;
7 addChar ( ’− ’ ) ;
8 addChar ( ’ ’ ) ;
9 f o r ( i n t i =0; i <5; ++ i )

10 { System . out . p r i n t l n ( getNewPassword(5+ i ) ) ;
11 }
12 }
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Wrap the functionality

1 Class RandomPasswords
initDefaultChars()→ Constructor
addChar(char ch)
getNewPassword(int length)→ getNew(int length)

2 main(String[] args)
Creates an object e. g. rps of class RandomPasswords and
uses the functionality through this object.
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New Class Structure

1 p u b l i c c lass RandomPasswords
2 { p u b l i c RandomPasswords ( ) { . . . } / / Const ruc tor
3 p u b l i c vo id addChar ( char ch ) { . . . }
4 p u b l i c S t r i n g getNew ( i n t leng th ) { . . . }
5 }

No more static keywords in the new class. There are no more
substitutes for Pascal like procedures. We now have truly
object-oriented methods which are encapsulated in a class.
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New Main-Program

1 p u b l i c s t a t i c vo id main ( S t r i n g [ ] args )
2 { RandomPasswords rps = new RandomPasswords ( ) ;
3 rps . addChar ( ’ ∗ ’ ) ; / / adding some
4 rps . addChar ( ’ / ’ ) ; / / spec ia l charac te rs
5 rps . addChar ( ’− ’ ) ; / / f o r g e t t i n g
6 rps . addChar ( ’ ’ ) ; / / sa fe r passwords
7 rps . addChar ( ’ . ’ ) ; / / . . .
8 rps . addChar ( ’ $ ’ ) ; / / . . .
9 f o r ( i n t i =0; i <5; ++ i )

10 { System . out . p r i n t l n ( rps . getNew ( i + 5 ) ) ;
11 }
12 }
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Designing Classes

source: www.f5systems.in

Forming classes is not
only important when
refactoring existing
code. Also when
planning a fresh
program from scratch,
we structure it into
classes.
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Multiply Code

1 Ensure that vector length is equal to matrix height

2 Prepare empty result vector
3 For every row of the matrix . . .

1 Set initial value 0 in the output vector at the current position
2 For every element of the vector . . .

1 Add the product of the according vector and matrix values to the
current element in the result vector
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Method Multiply

1 p u b l i c s t a t i c double [ ] m u l t i p l y (
2 double [ ] v , double [ ] [ ] m) {
3 asser t ( v . leng th == m. leng th ) ;
4 double [ ] res = new double [m. leng th ] ;
5 f o r ( i n t j =0; j < m[ 0 ] . leng th ; ++ j ) {
6 res [ j ] = 0 ; / / i n i t i a l value
7 f o r ( i n t i =0; i<v . leng th ; ++ i )
8 res [ j ] += m[ i ] [ j ] ∗ v [ i ] ;
9 }

10 r e t u r n res ;
11 }
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Resulting Vector

The given vector converges to the following numbers:

1 0.32520325203252043
2 0.2274121797821752
3 0.12540266912103087
4 0.14365700260776196
5 0.17832489645651178
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Values bigger than 1

With a Value bigger than one . . .

There is no convergence anymore. The vector “explodes”. The
numbers get higher and higher until they reach the error state
“naN” (not a Number).
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A line of 0s

With a line of zeros . . .
There is no convergence as well. All the vector values drop and
finally stay at zero.
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Why no convergence

Question?
Why de we lose convergence?
What’s the reason?
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What’s the Reason?

Explanation

The values in the matrix are defined to be probabilities.
A probability has to be a value between zero and one:
0 ≤ p ≤ 1
If a line contains only zeros, it means that the probabilities are
zero. Which means the surfer never leaves the page.
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Fields & Constructor

1 p r i v a t e i n t [ ] h ighscore ;
2 p r i v a t e i n t s ize ;
3

4 p u b l i c Highscore ( i n t s ) {
5 s ize = s ;
6 highscore = new i n t [ s i ze ] ;
7 }

As it should be, the constructor initializes the fields of the class.
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Method showHighscore

1 p u b l i c s t a t i c vo id showHighscore ( )
2 { System . out . p r i n t l n ( ” ∗∗∗ HIGHSCORE ∗∗∗ ” ) ;
3 f o r ( i n t i =0; i<s ize ; ++ i )
4 { System . out . p r i n t l n ( h ighscore [ i ] ) ;
5 }
6 }

Simple, isn’t it?
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HowTo insertScore?

1 Check if the score is good enough for the highscore

2 Locate position in highscore (while loop)
3 Move the lower scores one slot down
4 Insert the new score

Algorithms like that are not easy to implement. There’s a lot of
potential for mistakes which produces errors under certain
conditions. To be honest, writing something like that takes a
good mixture of smart thinking and testing. Only one of them,
usually is not enough.
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Method insertScore

1 p u b l i c s t a t i c vo id inse r tScore ( i n t score )
2 { / / i f good enough f o r a highscore :
3 i f ( score > highscore [ s ize −1]) / / 9
4 { i n t pos = 0;
5 whi le ( score < highscore [ pos ] )
6 { ++pos ;
7 }
8 f o r ( i n t i =size −2; i >=pos ; −− i )
9 { highscore [ i +1] = highscore [ i ] ;

10 }
11 highscore [ pos ] = score ;
12 }
13 }
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Questions?

Please

Questions?
Feedback?
Wishes?
Remarks?
. . .
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We Wish You Success!
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