
Assignment 3
Felix Friedrich, Fabian Stutz, Lars Widmer
TA lecture, Informatics II D-BAUG

March 11, 2014

Presence Hours

The second set of presence hours (Präsenzstunden) will take
place today.

Guided Programming

Day: Every Thursday
Room: HIL E 15.2
Time: 15:00-18:00
Assistant: Timon Gehr

The room changes over the
semester.
You find the list of rooms on
the course website.

In the e-mail (sent out to all students) the dates of Mondays have been
mentioned. That was wrong! Apologies, it’s always on Thursdays!

March 11, 2014 Informatics II, D-BAUG 2 / 39

Outline

1 Know How
Classes vs. Objects
Objects & their References
Classes

2 Prediscussion Assignment 3
Encapsulation
Example

3 Postdiscussion Assignment 2
Matrix-Vector-Multiplication
Highscore

March 11, 2014 Informatics II, D-BAUG 3 / 39

Classes vs. Objects

Question
What’s the difference between classes and objects?

March 11, 2014 Informatics II, D-BAUG 4 / 39

Classes vs. Objects

What’s the difference between classes and objects?
The programmer writes classes not objects.

The class represents a construction plan e. g. printing plate
for a book.
An object represents such a book.
There can be multiple books printed with the same plate.
The programmer can request objects of a class. The
construction is done by the computer.
The convention suggests class-names to start with an
uppercase letter and object-names to start with a
lowercase letter.

March 11, 2014 Informatics II, D-BAUG 5 / 39

Classes vs. Objects

What’s the difference between classes and objects?
The programmer writes classes not objects.
The class represents a construction plan e. g. printing plate
for a book.

An object represents such a book.
There can be multiple books printed with the same plate.
The programmer can request objects of a class. The
construction is done by the computer.
The convention suggests class-names to start with an
uppercase letter and object-names to start with a
lowercase letter.

March 11, 2014 Informatics II, D-BAUG 5 / 39

Classes vs. Objects

What’s the difference between classes and objects?
The programmer writes classes not objects.
The class represents a construction plan e. g. printing plate
for a book.
An object represents such a book.

There can be multiple books printed with the same plate.
The programmer can request objects of a class. The
construction is done by the computer.
The convention suggests class-names to start with an
uppercase letter and object-names to start with a
lowercase letter.

March 11, 2014 Informatics II, D-BAUG 5 / 39

Classes vs. Objects

What’s the difference between classes and objects?
The programmer writes classes not objects.
The class represents a construction plan e. g. printing plate
for a book.
An object represents such a book.
There can be multiple books printed with the same plate.

The programmer can request objects of a class. The
construction is done by the computer.
The convention suggests class-names to start with an
uppercase letter and object-names to start with a
lowercase letter.

March 11, 2014 Informatics II, D-BAUG 5 / 39

Classes vs. Objects

What’s the difference between classes and objects?
The programmer writes classes not objects.
The class represents a construction plan e. g. printing plate
for a book.
An object represents such a book.
There can be multiple books printed with the same plate.
The programmer can request objects of a class. The
construction is done by the computer.

The convention suggests class-names to start with an
uppercase letter and object-names to start with a
lowercase letter.

March 11, 2014 Informatics II, D-BAUG 5 / 39

Classes vs. Objects

What’s the difference between classes and objects?
The programmer writes classes not objects.
The class represents a construction plan e. g. printing plate
for a book.
An object represents such a book.
There can be multiple books printed with the same plate.
The programmer can request objects of a class. The
construction is done by the computer.
The convention suggests class-names to start with an
uppercase letter and object-names to start with a
lowercase letter.

March 11, 2014 Informatics II, D-BAUG 5 / 39

Outline

1 Know How
Classes vs. Objects
Objects & their References
Classes

2 Prediscussion Assignment 3
Encapsulation
Example

3 Postdiscussion Assignment 2
Matrix-Vector-Multiplication
Highscore

March 11, 2014 Informatics II, D-BAUG 6 / 39

Repetition: If you’re a Processor

Question:
Where are objects located and where are the references?

March 11, 2014 Informatics II, D-BAUG 7 / 39

Repetition: If you’re a Processor

As an analogy you may think of your room being a computer
while you as a processor are doing your homework which is
the program:

Your stack is a pile of sheets of paper on your desk.

An object could be a book.
If you pile 100 books on your desk, you can’t work anymore.
Therefore only single sheets of papers go to your stack.
Books you place in your bookshelf.
So to speak, your bookshelf is your heap memory.
You may place a note on a piece of paper about which book
your using for what purpose. This note is a reference. The
reference is kept in the stack, but it points to the heap.

March 11, 2014 Informatics II, D-BAUG 8 / 39

Repetition: If you’re a Processor

As an analogy you may think of your room being a computer
while you as a processor are doing your homework which is
the program:

Your stack is a pile of sheets of paper on your desk.
An object could be a book.

If you pile 100 books on your desk, you can’t work anymore.
Therefore only single sheets of papers go to your stack.
Books you place in your bookshelf.
So to speak, your bookshelf is your heap memory.
You may place a note on a piece of paper about which book
your using for what purpose. This note is a reference. The
reference is kept in the stack, but it points to the heap.

March 11, 2014 Informatics II, D-BAUG 8 / 39

Repetition: If you’re a Processor

As an analogy you may think of your room being a computer
while you as a processor are doing your homework which is
the program:

Your stack is a pile of sheets of paper on your desk.
An object could be a book.
If you pile 100 books on your desk, you can’t work anymore.

Therefore only single sheets of papers go to your stack.
Books you place in your bookshelf.
So to speak, your bookshelf is your heap memory.
You may place a note on a piece of paper about which book
your using for what purpose. This note is a reference. The
reference is kept in the stack, but it points to the heap.

March 11, 2014 Informatics II, D-BAUG 8 / 39

Repetition: If you’re a Processor

As an analogy you may think of your room being a computer
while you as a processor are doing your homework which is
the program:

Your stack is a pile of sheets of paper on your desk.
An object could be a book.
If you pile 100 books on your desk, you can’t work anymore.
Therefore only single sheets of papers go to your stack.

Books you place in your bookshelf.
So to speak, your bookshelf is your heap memory.
You may place a note on a piece of paper about which book
your using for what purpose. This note is a reference. The
reference is kept in the stack, but it points to the heap.

March 11, 2014 Informatics II, D-BAUG 8 / 39

Repetition: If you’re a Processor

As an analogy you may think of your room being a computer
while you as a processor are doing your homework which is
the program:

Your stack is a pile of sheets of paper on your desk.
An object could be a book.
If you pile 100 books on your desk, you can’t work anymore.
Therefore only single sheets of papers go to your stack.
Books you place in your bookshelf.

So to speak, your bookshelf is your heap memory.
You may place a note on a piece of paper about which book
your using for what purpose. This note is a reference. The
reference is kept in the stack, but it points to the heap.

March 11, 2014 Informatics II, D-BAUG 8 / 39

Repetition: If you’re a Processor

As an analogy you may think of your room being a computer
while you as a processor are doing your homework which is
the program:

Your stack is a pile of sheets of paper on your desk.
An object could be a book.
If you pile 100 books on your desk, you can’t work anymore.
Therefore only single sheets of papers go to your stack.
Books you place in your bookshelf.
So to speak, your bookshelf is your heap memory.

You may place a note on a piece of paper about which book
your using for what purpose. This note is a reference. The
reference is kept in the stack, but it points to the heap.

March 11, 2014 Informatics II, D-BAUG 8 / 39

Repetition: If you’re a Processor

As an analogy you may think of your room being a computer
while you as a processor are doing your homework which is
the program:

Your stack is a pile of sheets of paper on your desk.
An object could be a book.
If you pile 100 books on your desk, you can’t work anymore.
Therefore only single sheets of papers go to your stack.
Books you place in your bookshelf.
So to speak, your bookshelf is your heap memory.
You may place a note on a piece of paper about which book
your using for what purpose. This note is a reference. The
reference is kept in the stack, but it points to the heap.

March 11, 2014 Informatics II, D-BAUG 8 / 39

Class Ingredients

Question
Please name the parts a class consists of.

March 11, 2014 Informatics II, D-BAUG 9 / 39

Class Ingredients: Basic List

1 Access modifier

2 Name
3 Constants (similar to a variable but immutable)
4 Variables (called fields or properties)
5 Methods (replacing procedures and functions in other

languages)

March 11, 2014 Informatics II, D-BAUG 10 / 39

Class Ingredients: Basic List

1 Access modifier
2 Name

3 Constants (similar to a variable but immutable)
4 Variables (called fields or properties)
5 Methods (replacing procedures and functions in other

languages)

March 11, 2014 Informatics II, D-BAUG 10 / 39

Class Ingredients: Basic List

1 Access modifier
2 Name
3 Constants (similar to a variable but immutable)

4 Variables (called fields or properties)
5 Methods (replacing procedures and functions in other

languages)

March 11, 2014 Informatics II, D-BAUG 10 / 39

Class Ingredients: Basic List

1 Access modifier
2 Name
3 Constants (similar to a variable but immutable)
4 Variables (called fields or properties)

5 Methods (replacing procedures and functions in other
languages)

March 11, 2014 Informatics II, D-BAUG 10 / 39

Class Ingredients: Basic List

1 Access modifier
2 Name
3 Constants (similar to a variable but immutable)
4 Variables (called fields or properties)
5 Methods (replacing procedures and functions in other

languages)

March 11, 2014 Informatics II, D-BAUG 10 / 39

Class Ingredients

Question
There is a special method which always bears the same name
as the class itself. This method is automatically executed, when
a new object of the class is created. What’s that method?

March 11, 2014 Informatics II, D-BAUG 11 / 39

Class Ingredient: Constructor

Always has the same name as the class

Is automatically executed when an object of the class is
created
The constructor returns the reference to a new object of the
class. Since this is always the case, java is doing this behind
the scenes. You even don’t have to give a return type.
The main usage of the constructor is to initialize the fields
(variables) of the class.
The constructor can use parameters. This often comes in
very handy.
If you don’t specify a constructor, java uses an empty default
constructor.

March 11, 2014 Informatics II, D-BAUG 12 / 39

Class Ingredient: Constructor

Always has the same name as the class
Is automatically executed when an object of the class is
created

The constructor returns the reference to a new object of the
class. Since this is always the case, java is doing this behind
the scenes. You even don’t have to give a return type.
The main usage of the constructor is to initialize the fields
(variables) of the class.
The constructor can use parameters. This often comes in
very handy.
If you don’t specify a constructor, java uses an empty default
constructor.

March 11, 2014 Informatics II, D-BAUG 12 / 39

Class Ingredient: Constructor

Always has the same name as the class
Is automatically executed when an object of the class is
created
The constructor returns the reference to a new object of the
class. Since this is always the case, java is doing this behind
the scenes. You even don’t have to give a return type.

The main usage of the constructor is to initialize the fields
(variables) of the class.
The constructor can use parameters. This often comes in
very handy.
If you don’t specify a constructor, java uses an empty default
constructor.

March 11, 2014 Informatics II, D-BAUG 12 / 39

Class Ingredient: Constructor

Always has the same name as the class
Is automatically executed when an object of the class is
created
The constructor returns the reference to a new object of the
class. Since this is always the case, java is doing this behind
the scenes. You even don’t have to give a return type.
The main usage of the constructor is to initialize the fields
(variables) of the class.

The constructor can use parameters. This often comes in
very handy.
If you don’t specify a constructor, java uses an empty default
constructor.

March 11, 2014 Informatics II, D-BAUG 12 / 39

Class Ingredient: Constructor

Always has the same name as the class
Is automatically executed when an object of the class is
created
The constructor returns the reference to a new object of the
class. Since this is always the case, java is doing this behind
the scenes. You even don’t have to give a return type.
The main usage of the constructor is to initialize the fields
(variables) of the class.
The constructor can use parameters. This often comes in
very handy.

If you don’t specify a constructor, java uses an empty default
constructor.

March 11, 2014 Informatics II, D-BAUG 12 / 39

Class Ingredient: Constructor

Always has the same name as the class
Is automatically executed when an object of the class is
created
The constructor returns the reference to a new object of the
class. Since this is always the case, java is doing this behind
the scenes. You even don’t have to give a return type.
The main usage of the constructor is to initialize the fields
(variables) of the class.
The constructor can use parameters. This often comes in
very handy.
If you don’t specify a constructor, java uses an empty default
constructor.

March 11, 2014 Informatics II, D-BAUG 12 / 39

Classes are “between” Methods & Programs

It’s like a Matrjoschka*

1 A method contains code.
2 A class contains methods.
3 A program contains classes.

code ∈ method ∈ class ∈ program
*Matrjoschkas are wrongly

named as Babuschkas.
Babuschka actually means

grandmother.

March 11, 2014 Informatics II, D-BAUG 13 / 39

Outline

1 Know How
Classes vs. Objects
Objects & their References
Classes

2 Prediscussion Assignment 3
Encapsulation
Example

3 Postdiscussion Assignment 2
Matrix-Vector-Multiplication
Highscore

March 11, 2014 Informatics II, D-BAUG 14 / 39

How much do you already know?

Question?
What is encapsulation?

March 11, 2014 Informatics II, D-BAUG 15 / 39

What is Encapsulation

The process of packing data and the according methods
in one class (“construction plan”)

A class therefore represents an individual piece of
functionality
It will be used to separate the HiLo-game from the
highscore-handling
Thus: Separation of concerns

March 11, 2014 Informatics II, D-BAUG 16 / 39

What is Encapsulation

The process of packing data and the according methods
in one class (“construction plan”)
A class therefore represents an individual piece of
functionality

It will be used to separate the HiLo-game from the
highscore-handling
Thus: Separation of concerns

March 11, 2014 Informatics II, D-BAUG 16 / 39

What is Encapsulation

The process of packing data and the according methods
in one class (“construction plan”)
A class therefore represents an individual piece of
functionality
It will be used to separate the HiLo-game from the
highscore-handling

Thus: Separation of concerns

March 11, 2014 Informatics II, D-BAUG 16 / 39

What is Encapsulation

The process of packing data and the according methods
in one class (“construction plan”)
A class therefore represents an individual piece of
functionality
It will be used to separate the HiLo-game from the
highscore-handling
Thus: Separation of concerns

March 11, 2014 Informatics II, D-BAUG 16 / 39

Encapsulation Example

We have an example-program, which “invents” good
passwords.

1 svYiS
2 W. avY .
3 ∗Fr $Hp
4 EHscumjW
5 QKCsmlQqi

March 11, 2014 Informatics II, D-BAUG 17 / 39

The program has the following methods

initDefaultChars()
Adds the normal letters uppercase and lowercase into a
LinkedList.

addChar(char ch)
Adds a user defined special character to the list (e. g. ’*’)
getNewPassword(int length)
Returns a new password of the requested length. By
randomly selecting characters from the LinkedList.
main(String[] args)
Uses getNewPassword(int length) in a loop to print 5
random passwords with 5 different lengths.

March 11, 2014 Informatics II, D-BAUG 18 / 39

The program has the following methods

initDefaultChars()
Adds the normal letters uppercase and lowercase into a
LinkedList.
addChar(char ch)
Adds a user defined special character to the list (e. g. ’*’)

getNewPassword(int length)
Returns a new password of the requested length. By
randomly selecting characters from the LinkedList.
main(String[] args)
Uses getNewPassword(int length) in a loop to print 5
random passwords with 5 different lengths.

March 11, 2014 Informatics II, D-BAUG 18 / 39

The program has the following methods

initDefaultChars()
Adds the normal letters uppercase and lowercase into a
LinkedList.
addChar(char ch)
Adds a user defined special character to the list (e. g. ’*’)
getNewPassword(int length)
Returns a new password of the requested length. By
randomly selecting characters from the LinkedList.

main(String[] args)
Uses getNewPassword(int length) in a loop to print 5
random passwords with 5 different lengths.

March 11, 2014 Informatics II, D-BAUG 18 / 39

The program has the following methods

initDefaultChars()
Adds the normal letters uppercase and lowercase into a
LinkedList.
addChar(char ch)
Adds a user defined special character to the list (e. g. ’*’)
getNewPassword(int length)
Returns a new password of the requested length. By
randomly selecting characters from the LinkedList.
main(String[] args)
Uses getNewPassword(int length) in a loop to print 5
random passwords with 5 different lengths.

March 11, 2014 Informatics II, D-BAUG 18 / 39

Example Code, just if you’re interested

1 p u b l i c s t a t i c S t r i n g getNewPassword (i n t leng th)
2 { S t r i n g pw = ” ” ;
3 f o r (i n t i =0; i<l eng th ; ++ i)
4 { pw += buchstaben . get (
5 rand . n e x t I n t (buchstaben . s ize ())) ;
6 }
7 r e t u r n pw ;
8 }

March 11, 2014 Informatics II, D-BAUG 19 / 39

Main-Program

1 p u b l i c s t a t i c vo id main (S t r i n g [] args)
2 { i n i t D e f a u l t C h a r s () ;
3 addChar (’ ∗ ’) ;
4 addChar (’ / ’) ;
5 addChar (’ $ ’) ;
6 addChar (’ . ’) ;
7 addChar (’− ’) ;
8 addChar (’ ’) ;
9 f o r (i n t i =0; i <5; ++ i)

10 { System . out . p r i n t l n (getNewPassword(5+ i)) ;
11 }
12 }

March 11, 2014 Informatics II, D-BAUG 20 / 39

Wrap the functionality

1 Class RandomPasswords
initDefaultChars()→ Constructor
addChar(char ch)
getNewPassword(int length)→ getNew(int length)

2 main(String[] args)
Creates an object e. g. rps of class RandomPasswords and
uses the functionality through this object.

March 11, 2014 Informatics II, D-BAUG 21 / 39

New Class Structure

1 p u b l i c c lass RandomPasswords
2 { p u b l i c RandomPasswords () { . . . } / / Const ruc tor
3 p u b l i c vo id addChar (char ch) { . . . }
4 p u b l i c S t r i n g getNew (i n t leng th) { . . . }
5 }

No more static keywords in the new class. There are no more
substitutes for Pascal like procedures. We now have truly
object-oriented methods which are encapsulated in a class.

March 11, 2014 Informatics II, D-BAUG 22 / 39

New Main-Program

1 p u b l i c s t a t i c vo id main (S t r i n g [] args)
2 { RandomPasswords rps = new RandomPasswords () ;
3 rps . addChar (’ ∗ ’) ; / / adding some
4 rps . addChar (’ / ’) ; / / spec ia l charac te rs
5 rps . addChar (’− ’) ; / / f o r g e t t i n g
6 rps . addChar (’ ’) ; / / sa fe r passwords
7 rps . addChar (’ . ’) ; / / . . .
8 rps . addChar (’ $ ’) ; / / . . .
9 f o r (i n t i =0; i <5; ++ i)

10 { System . out . p r i n t l n (rps . getNew (i + 5)) ;
11 }
12 }

March 11, 2014 Informatics II, D-BAUG 23 / 39

Designing Classes

source: www.f5systems.in

Forming classes is not
only important when
refactoring existing
code. Also when
planning a fresh
program from scratch,
we structure it into
classes.

March 11, 2014 Informatics II, D-BAUG 24 / 39

Outline

1 Know How
Classes vs. Objects
Objects & their References
Classes

2 Prediscussion Assignment 3
Encapsulation
Example

3 Postdiscussion Assignment 2
Matrix-Vector-Multiplication
Highscore

March 11, 2014 Informatics II, D-BAUG 25 / 39

Multiply Code

1 Ensure that vector length is equal to matrix height

2 Prepare empty result vector
3 For every row of the matrix . . .

1 Set initial value 0 in the output vector at the current position
2 For every element of the vector . . .

1 Add the product of the according vector and matrix values to the
current element in the result vector

March 11, 2014 Informatics II, D-BAUG 26 / 39

Multiply Code

1 Ensure that vector length is equal to matrix height
2 Prepare empty result vector

3 For every row of the matrix . . .

1 Set initial value 0 in the output vector at the current position
2 For every element of the vector . . .

1 Add the product of the according vector and matrix values to the
current element in the result vector

March 11, 2014 Informatics II, D-BAUG 26 / 39

Multiply Code

1 Ensure that vector length is equal to matrix height
2 Prepare empty result vector
3 For every row of the matrix . . .

1 Set initial value 0 in the output vector at the current position
2 For every element of the vector . . .

1 Add the product of the according vector and matrix values to the
current element in the result vector

March 11, 2014 Informatics II, D-BAUG 26 / 39

Multiply Code

1 Ensure that vector length is equal to matrix height
2 Prepare empty result vector
3 For every row of the matrix . . .

1 Set initial value 0 in the output vector at the current position

2 For every element of the vector . . .

1 Add the product of the according vector and matrix values to the
current element in the result vector

March 11, 2014 Informatics II, D-BAUG 26 / 39

Multiply Code

1 Ensure that vector length is equal to matrix height
2 Prepare empty result vector
3 For every row of the matrix . . .

1 Set initial value 0 in the output vector at the current position
2 For every element of the vector . . .

1 Add the product of the according vector and matrix values to the
current element in the result vector

March 11, 2014 Informatics II, D-BAUG 26 / 39

Multiply Code

1 Ensure that vector length is equal to matrix height
2 Prepare empty result vector
3 For every row of the matrix . . .

1 Set initial value 0 in the output vector at the current position
2 For every element of the vector . . .

1 Add the product of the according vector and matrix values to the
current element in the result vector

March 11, 2014 Informatics II, D-BAUG 26 / 39

Method Multiply

1 p u b l i c s t a t i c double [] m u l t i p l y (
2 double [] v , double [] [] m) {
3 asser t (v . leng th == m. leng th) ;
4 double [] res = new double [m. leng th] ;
5 f o r (i n t j =0; j < m[0] . leng th ; ++ j) {
6 res [j] = 0 ; / / i n i t i a l value
7 f o r (i n t i =0; i<v . leng th ; ++ i)
8 res [j] += m[i] [j] ∗ v [i] ;
9 }

10 r e t u r n res ;
11 }

March 11, 2014 Informatics II, D-BAUG 27 / 39

Resulting Vector

The given vector converges to the following numbers:

1 0.32520325203252043
2 0.2274121797821752
3 0.12540266912103087
4 0.14365700260776196
5 0.17832489645651178

March 11, 2014 Informatics II, D-BAUG 28 / 39

Values bigger than 1

With a Value bigger than one . . .

There is no convergence anymore. The vector “explodes”. The
numbers get higher and higher until they reach the error state
“naN” (not a Number).

March 11, 2014 Informatics II, D-BAUG 29 / 39

A line of 0s

With a line of zeros . . .
There is no convergence as well. All the vector values drop and
finally stay at zero.

March 11, 2014 Informatics II, D-BAUG 30 / 39

Why no convergence

Question?
Why de we lose convergence?
What’s the reason?

March 11, 2014 Informatics II, D-BAUG 31 / 39

What’s the Reason?

Explanation

The values in the matrix are defined to be probabilities.
A probability has to be a value between zero and one:
0 ≤ p ≤ 1
If a line contains only zeros, it means that the probabilities are
zero. Which means the surfer never leaves the page.

March 11, 2014 Informatics II, D-BAUG 32 / 39

Outline

1 Know How
Classes vs. Objects
Objects & their References
Classes

2 Prediscussion Assignment 3
Encapsulation
Example

3 Postdiscussion Assignment 2
Matrix-Vector-Multiplication
Highscore

March 11, 2014 Informatics II, D-BAUG 33 / 39

Fields & Constructor

1 p r i v a t e i n t [] h ighscore ;
2 p r i v a t e i n t s ize ;
3

4 p u b l i c Highscore (i n t s) {
5 s ize = s ;
6 highscore = new i n t [s i ze] ;
7 }

As it should be, the constructor initializes the fields of the class.

March 11, 2014 Informatics II, D-BAUG 34 / 39

Method showHighscore

1 p u b l i c s t a t i c vo id showHighscore ()
2 { System . out . p r i n t l n (” ∗∗∗ HIGHSCORE ∗∗∗ ”) ;
3 f o r (i n t i =0; i<s ize ; ++ i)
4 { System . out . p r i n t l n (h ighscore [i]) ;
5 }
6 }

Simple, isn’t it?

March 11, 2014 Informatics II, D-BAUG 35 / 39

HowTo insertScore?

1 Check if the score is good enough for the highscore

2 Locate position in highscore (while loop)
3 Move the lower scores one slot down
4 Insert the new score

Algorithms like that are not easy to implement. There’s a lot of
potential for mistakes which produces errors under certain
conditions. To be honest, writing something like that takes a
good mixture of smart thinking and testing. Only one of them,
usually is not enough.

March 11, 2014 Informatics II, D-BAUG 36 / 39

HowTo insertScore?

1 Check if the score is good enough for the highscore
2 Locate position in highscore (while loop)

3 Move the lower scores one slot down
4 Insert the new score

Algorithms like that are not easy to implement. There’s a lot of
potential for mistakes which produces errors under certain
conditions. To be honest, writing something like that takes a
good mixture of smart thinking and testing. Only one of them,
usually is not enough.

March 11, 2014 Informatics II, D-BAUG 36 / 39

HowTo insertScore?

1 Check if the score is good enough for the highscore
2 Locate position in highscore (while loop)
3 Move the lower scores one slot down

4 Insert the new score

Algorithms like that are not easy to implement. There’s a lot of
potential for mistakes which produces errors under certain
conditions. To be honest, writing something like that takes a
good mixture of smart thinking and testing. Only one of them,
usually is not enough.

March 11, 2014 Informatics II, D-BAUG 36 / 39

HowTo insertScore?

1 Check if the score is good enough for the highscore
2 Locate position in highscore (while loop)
3 Move the lower scores one slot down
4 Insert the new score

Algorithms like that are not easy to implement. There’s a lot of
potential for mistakes which produces errors under certain
conditions. To be honest, writing something like that takes a
good mixture of smart thinking and testing. Only one of them,
usually is not enough.

March 11, 2014 Informatics II, D-BAUG 36 / 39

Method insertScore

1 p u b l i c s t a t i c vo id inse r tScore (i n t score)
2 { / / i f good enough f o r a highscore :
3 i f (score > highscore [s ize −1]) / / 9
4 { i n t pos = 0;
5 whi le (score < highscore [pos])
6 { ++pos ;
7 }
8 f o r (i n t i =size −2; i >=pos ; −− i)
9 { highscore [i +1] = highscore [i] ;

10 }
11 highscore [pos] = score ;
12 }
13 }

March 11, 2014 Informatics II, D-BAUG 37 / 39

Questions?

Please

Questions?
Feedback?
Wishes?
Remarks?
. . .

March 11, 2014 Informatics II, D-BAUG 38 / 39

We Wish You Success!

March 11, 2014 Informatics II, D-BAUG 39 / 39

	Know How
	Classes vs. Objects
	Objects & their References
	Classes

	Prediscussion Assignment 3
	Encapsulation
	Example

	Postdiscussion Assignment 2
	Matrix-Vector-Multiplication
	Highscore

