
14. Java Object Orientation

Classes, Inheritance, Encapsulation

413

Object Orientation: Different Aspects

Object
Orientation

Objects

Data

Code Inheritance

Type
Hierarchy

Sub- and
Super-
Classes

Interfaces

Encapsu-
lation

Abstract
Datatypes

Poly-
morphism

Override
Methods

Assign
Subtypes

414

Already discussed: Objects

Focus on Object of a data type that
contain

Data (Fields) and
Code (Methods)

DataType

field1

field2

· · ·

method1

method2

· · ·

415

Already discussed: Composition of Objects

Measurement

LocalDateTime date_time

Coordinate position

float magnitude

Coordinate

double latitude

double longitude

double distanceTo(Coordinate other)

java.time.LocalDateTime

· · ·

416

Inheritance

Data types are part
of a type hierarchy

Subtypes inherit
data and code from
their supertypes.

SuperType

fieldSuper

methodSuper

SubType1

fieldSuper

fieldSub1

methodSuper

methodSub1

SubType2

fieldSuper

fieldSub2

methodSuper

methodSub2

417

Inheritance 6= Composition

Composition: An object contains fields that refer to objects of a
different type

Inheritance: An object of some type contains additional fields and
methods that are inherited from a supertype

418

Correct Use for Inheritance

Important question to identify whether DataType1 should inherit
from DataType2:

Is DataType1 a DataType2?

Example
Is a “Student” a “Person” 4

Is an “Apple” a “Fruit” 4

419

Correct Use for Composition

Important question to identify whether DataType1 should contain
DataType2 as composition:

Has DataType1 a DataType2?

Example
Has a “Student” an “Address” 4

Has an “Apple” a “Color” 4

420

Inheritance: extends Keyword
class Measurement {

LocalDateTime datetime;
Coordinate position;

boolean alarm() {...}
}

class Temperature extends Measurement {
double temperature;

}

class Wind extends Measurement {
double speed;
double direction ;

}

Measurement

LocalDateTime datetime

Coordinate position

boolean alarm()

Temperature

LocalDateTime datetime

Coordinate position

double temperature

boolean alarm()
421

Data Encapsulation (Repetition)

Control, what data and what code can be
accessed from where.

Access modifiers:

private: Visible only from code within the
same class

protected: Visible from code in the same
class or a subclass

public: Visible from everywhere

Name

private field1

protected field2

· · ·

private method1

public method2

· · ·

422

Example for protected Visibility
class Measurement {

private LocalDateTime datetime;
protected Coordinate position;

public boolean alarm() {...}
}

class Temperature extends Measurement {
private double temperature;

}

class Wind extends Measurement {
private double speed;
private double direction ;

}

Measurement

private LocalDateTime datetime

protected Coordinate position

public boolean alarm()

Temperature

(not accessible: datetime)

protected Coordinate position

private double temperature

boolean alarm()
423

Abstract Classes

class Measurement {
...
// returns ’true’ if measurement is alarming, ’ false ’ otherwise
public boolean alarm() {...}

}

Class Measurement provides a method alarm()
The method should return true iff the measurement is alarming ...
... but the implementation of the method depends on the
implementation of the different subtypes ... ?!

424

Abstract Classes

It doesn’t make sense to create objects of type Measurement, it
should be abstract.

425

Abstract Classes: Keyword abstract
abstract class Measurement {

...
// returns ’true’ if measurement is alarming, ’ false ’ otherwise
abstract boolean alarm();

}

class Temperature extends Measurement {
double temperature;

// Implement the abstract method from the supertype
boolean alarm(){

return temperature > 35;
}

}

426

Abstract Classes: Keyword abstract
abstract class Measurement {

...
// returns ’true’ if measurement is alarming, ’ false ’ otherwise
abstract boolean alarm();

}

class Wind extends Measurement {
double speed;

// Implement the abstract method from the supertype
boolean alarm(){

return speed > 80;
}

}

427

Abstract Classes: Properties

If at least one method is abstract, that is, not implemented, the
whole class has to be declared abstract.
Abstract classes can’t be instanciated (new ...)
Abstract classes contain data and code that is inherided by all
subtypes. The differences are abstracted.

428

Abstract Classes: Usage

Temperature t = new Temperature(40);
boolean b = t.alarm();

⇒ In his example, the variable b is set to true.

What if we call alarm() from a method defined in class
Measurement?

429

Abstract Classes: Dynamic Method Binding

abstract class Measurement {
abstract boolean alarm();

String alarmOutput(){
if (this .alarm()){

Out.println("Alarm!");
} else {

Out.println("Nominal");
}

}
}

430

Abstract Classes: Dynamic Method Binding

Temperature t = new Temperature(40);
t .alarmOutput();

⇒ Outut: "Alarm!"

The object t of type Temperature inherited the method alarmOutput.

In this object, the implementation from method alarm() in Class Temperature
is bound to the abstract method alarm().

Thus, alarmOutput() will call the implementation from Temperature.

431

