
Educational Objectives

You know where you can find a table with all operators in it
You understand the structure of a floating point number system
You can compute the binary representation of a floating point
number
You know the most imporant control flow stuctures and you can
use them in the right situation
You understand the visibility of variables and you can show the
scope of a variable

174

6. Operatoren

Tabular overview of all relevant operators

175

Table of Operators
Description Operator Arity Precedence Associativity

Object member access . 2 16 left
Array access [] 2 16 left
Method invocation () 2 16 left
Postfix increment/decrement ++ -- 1 15 left
Prefix increment/decrement ++ -- 1 14 right
Plus, minus, logical not + - ! 1 14 right
Type cast () 1 13 right
Object creation new 1 13 right
Multiplicative * / % 2 12 left
Additive + - 2 11 left
String concatination + 2 11 left
Relational < <= > >= 2 9 left
Type comparison instanceof 2 9 left
(non-)equality == != 2 8 left
Logical and && 2 4 left
Logical or || 2 3 left
Conditional ? : 3 2 right
Assignments = += -= *= /= %= 2 1 right

176

Table of Operators - Explanations

The arity shows the number of operands
A higher precedence means stronger binding
In case of the same precedence, evaluation order is defined by
the associativity

177

7. Floating Point Numbers

Floating Point Number Systems; IEEE Standard;

178

We remember from last time
public class Main {

public static void main(String[] args) {
Out.print("First number =? ");
float n1 = In.readFloat();

Out.print("Second number =? ");
float n2 = In.readFloat();

Out.print("Their difference =? ");
float d = In.readFloat();

Out.print("computed difference − input difference = ");
Out.println(n1−n2−d);
}

}

input 1.1

input 1.0

input 0.1

output 2.2351742E-8

W
ha

ti
s

go
in

g
on

he
re

?

179

Why is this happening?

Not all real numbers can be represented
Rounding errors can propagate and amplify throughout program
execution

We want to understand why this is happening!

180

Definition: Floating Point Number Systems

A floating point number system describes a sub-set of real numbers
by restricting the precision and the value range.

181

Floating Point Number Systems

A Floating Point Number System is defined by the four natural
numbers:

β ≥ 2, the Basis,
p ≥ 1, the precision (number of places),
emin, the smallest possible exponent,
emax, the largest possible exponent.

Notation:

F (β, p, emin, emax)

182

Floating Point Number Systems

F (β, p, emin, emax) comprises the numbers

±
p−1∑

i=0

diβ
−i · βe,

di ∈ {0, . . . , β − 1}, e ∈ {emin, . . . , emax}.
represented with Basis β:

± d0•d1 . . . dp−1 × βe,

183

Floating Point Number Systems

Example

β = 10

Representations of the decimal number 0.1

1.0 · 10−1, 0.1 · 100, 0.01 · 101, . . .

184

Definition: Normalized representation

A representation is normalized iff the exist exactly one digit not equal
0 before the comma

185

Normalized Representation

Normalized Number:

± d0•d1 . . . dp−1 × βe, d0 6= 0

Bemerkung 1
The normalized representation is unique and therefore prefered.

Remark 2
The number 0 (and all numbers smaller than βemin) have no
normalized representation (we will deal with this later)!

186

Set of Normalized Numbers

F ∗(β, p, emin, emax)

187

Normalized Representation
Example F ∗(2, 3, − 2, 2) (only positive numbers)

d0•d1d2 e = −2 e = −1 e = 0 e = 1 e = 2
1.002 0.25 0.5 1 2 4
1.012 0.3125 0.625 1.25 2.5 5
1.102 0.375 0.75 1.5 3 6
1.112 0.4375 0.875 1.75 3.5 7

0 8

1.00 · 2−2 = 1
4

1.11 · 22 = 7

188

Binary and Decimal Systems

Internally the computer computes with β = 2
(binary system)
Literals and inputs have β = 10
(decimal system)
Inputs have to be converted!

189

Conversion Decimal→ Binary

Angenommen, 0 < x < 2.

Hence: x′ = b−1•b−2b−3b−4 . . . = 2 · (x− b0)
Step 1 (for x): Compute b0:

b0 =

{
1, if x ≥ 1
0, otherwise

Step 2 (for x): Compute b−1, b−2, . . .:

Go to step 1 (for x′ = 2 · (x− b0))

191

Binary representation of 1.1

x bi x− bi 2(x− bi)
1.1 b0 = 1 0.1 0.2

0.2 b−1 = 0 0.2 0.4

0.4 b−2 = 0 0.4 0.8

0.8 b−3 = 0 0.8 1.6

1.6 b−4 = 1 0.6 1.2

1.2 b−5 = 1 0.2 0.4

⇒ 1.00011, periodic, not finite
192

Binary Number Representations of 1.1 and 0.1

are not finite, there are errors when converting into a (finite) binary
floating point system.
1.1f and 0.1f do not equal 1.1 and 0.1, but slightly inaccurate
approximation of these numbers.

1.1 = 1.1000000000000000888178 . . .

1.1f = 1.1000000238418 . . .

193

Computing with Floating Point Numbers

Beispiel (β = 2, p = 4):

1.111 · 2−2
+ 1.011 · 2−1

= 1.001 · 20

1. adjust exponents by denormalizing of one number 2. binary addition of the
mantissa 3. renormalize 4. round to p significant places, if necessary

194

The IEEE Standard 754

Defines floating point number systems and their rounding behavior

Single precision (float) numbers:

F ∗(2, 24,−126, 127) plus 0,∞, . . .

Double precision (double) numbers:

F ∗(2, 53,−1022, 1023) plus 0,∞, . . .

All arithmetic operations round the exact result to the next
representable number

195

32-bit Representation of a Floating Point Number

31 30 29 28 27 26 25 24 23 012345678910111213141516171819202122

± Exponent Mantisse

2−126, . . . , 2127±
0,∞, . . .

1.00000000000000000000000. . .
1.11111111111111111111111

196

The IEEE Standard 754

Why
F ∗(2, 24, − 126, 127)?

1 sign bit
23 bit for the mantissa (leading bit is 1 and is not stored)
8 bit for the exponent (256 possible values)(254 possible
exponents, 2 special values: 0,∞,. . .)

⇒ 32 bit overal.

197

The IEEE Standard 754

Why
F ∗(2, 53,−1022, 1023)?

1 sign bit
52 bit for the mantissa (leading bit is 1 and is not stored)
11 bit for the exponent (2046 possible exponents, 2 special
values: 0,∞,. . .)

⇒ 64 bit overal.

198

8. Control Structures

Selection Statements, Iteration Statements, Termination, Blocks,
Visibility, Local Variables, Switch Statement

199

Statements

A statement is . . .

comparable with a sentence in natural language
a complete execution unit
always finished with a semicolon

Example

f = 9f ∗ celsius / 5 + 32 ;

200

Statement types

Valid statements are:

Declaration statement
Assignments
Increment/decrement expressions
Method calls
Object-creation expressions
Null statement

201

Statement types

Examples

float aValue;
aValue = 8933.234;
aValue++;
Out.println(aValue);
new Student();
;

202

Blocks
A block is . . .

a group of statements
allowed wherever statements are allowed
Represented by curly braces

{
statement1
statement2
...

}

203

Control Flow

up to now linear (from top to bottom)
For interesting programs we need “branches” and “jumps”

Computation of 1 + 2 + ...+ n.

Eingabe n
i := 1; s := 0 i ≤ n? s := s + i;

i := i+ 1

Ausgabe s

ja

nein

204

Selection Statements

implement branches

if statement

if-else statement

205

if-Statement

if (condition)
statement

int a = In.readInt ();
if (a % 2 == 0) {

Out.println("even");
}

If condition is true then state-
ment is executed

statement: arbitrary
statement (body of the
if-Statement)
condition: expression of
type boolean

206

if-else-statement
if (condition)

statement1
else

statement2

int a = In.readInt ();
if (a % 2 == 0){

Out.println("even");
} else {

Out.println("odd");
}

If condition is true then state-
ment1 is executed, otherwise
statement2 is executed.

condition: expression of
type boolean
statement1: body of the
if-branch
statement2: body of the
else-branch

207

Layout!

int a = In.readInt();
if (a % 2 == 0){

Out.println("even");
} else {

Out.println("odd");
}

Indentation

Indentation

208

Iteration Statements

implement “loops”

for-statement
while-statement
do-statement

209

Example: Compute 1 + 2 + ... + n

// input
Out.print("Compute the sum 1+...+n for n=?");
int n = In.readInt();

// computation of sum_{i=1}^n i
int s = 0;
for (int i = 1; i <= n; ++i){

s += i;
}

// output
Out.println("1+...+" + n + " = " + s);

210

for-Statement: Syntax

for (init statement condition ; expression)
statement

init-statement: expression statement, declaration statement, null
statement
condition: expression of type boolean
expression: any expression
statement : any statement (body of the for-statement)

211

for-Statement: semantics

for (init statement condition ; expression)
statement

init-statement is executed
condition is evaluated

true: Iteration starts
statement is executed
expression is executed

false: for-statement is ended.

212

Example: Harmonic Numbers

The n-the harmonic number is

Hn =
n∑

i=1

1

i
≈ lnn.

This sum can be computed in forward or backward direction,
which mathematically is clearly equivalent

213

Example: Harmonic Numbers
Out.print("Compute H_n for n =? ");
int n = In.readInt ();

float fs = 0;
for (int i = 1; i <= n; ++i){

fs += 1.0f / i ;
}
Out.println("Forward sum = " + fs);

float bs = 0;
for (int i = n; i >= 1; −−i){

bs += 1.0f / i ;
}
Out.println("Backward sum = " + bs);

214

Example: Harmonic Numbers

Results:

Compute H_n for n =? 10000000
Forward sum = 15.4037
Backward sum = 16.686

Compute H_n for n =? 100000000
Forward sum = 15.4037
Backward sum = 18.8079

215

Example: Harmonic Numbers

Observation:

The forward sum stops growing at some point and is getting
“really” wrong.
The backward sum reasonably approximates Hn.

Erklärung:

For 1 + 1/2 + 1/3 + · · · the late terms are too small to actually
contribute
Floating Point Rule 2

216

Example: Prime Number Test

Def.: a natural number n ≥ 2 is a prime number, if no
d ∈ {2, . . . , n− 1} divides n .

A loop that can test this:

int d;
for (d=2; n%d != 0; ++d);

217

Example: Termination

int d;
for (d=2; n%d != 0; ++d);

Progress: Initial value d=2, then plus 1 in every iteration (++d)
Exit: n%d != 0 evaluates to true as soon as a divisor is found
— at the latest, once d == n
Progress guarantees that the exit condition will be reached

218

Example: Correctness

int d;
for (d=2; n%d != 0; ++d); // for n >= 2

Every potential divisor 2 <= d <= n will be tested. If the loop
terminates with d == n then and only then is n prime.

219

Endless Loops

Endless loops are easy to generate:

for (; ;) ;

Die empty condition is true.
Die empty expression has no effect.
Die null statement has no effect.

... but can in general not be automatically detected.

for (e; v; e) r;

220

Halting Problem

Undecidability of the Halting Problem
There is no Java program that can determine for each Java-Program
P and each input I if the program P terminates with the input I.

This means that the correctness of programs can in general not be
automatically checked.4

4Alan Turing, 1936. Theoretical quesitons of this kind were the main motivation for Alan Turing to construct a computing
machine.

221

Example: The Collatz-Sequence (n ∈ N)

n0 = n

ni =

{ni−1
2

, falls ni−1 gerade

3ni−1 + 1 , falls ni−1 ungerade
, i ≥ 1.

n=5: 5, 16, 8, 4, 2, 1, 4, 2, 1, ... (Repetition bei 1)

222

The Collatz-Sequence in Java
// Input
Out.println("Compute Collatz sequence, n =? ");
int n = In.readInt();

// Iteration
while (n > 1) { // stop when 1 reached

if (n % 2 == 0) { // n is even
n = n / 2;

} else { // n is odd
n = 3 ∗ n + 1;

}
Out.print(n + " ");

} 223

Die Collatz-Folge in Java

n = 27:
82, 41, 124, 62, 31, 94, 47, 142, 71, 214, 107, 322, 161, 484, 242,
121, 364, 182, 91, 274, 137, 412, 206, 103, 310, 155, 466, 233,
700, 350, 175, 526, 263, 790, 395, 1186, 593, 1780, 890, 445, 1336,
668, 334, 167, 502, 251, 754, 377, 1132, 566, 283, 850, 425, 1276,
638, 319, 958, 479, 1438, 719, 2158, 1079, 3238, 1619, 4858, 2429,
7288, 3644, 1822, 911, 2734, 1367, 4102, 2051, 6154, 3077, 9232,
4616, 2308, 1154, 577, 1732, 866, 433, 1300, 650, 325, 976, 488,
244, 122, 61, 184, 92, 46, 23, 70, 35, 106, 53, 160, 80, 40, 20,
10, 5, 16, 8, 4, 2, 1

224

The Collatz-Sequence

Does 1 occur for each n?

It is conjectured, but nobody can prove it!

If not, then the while-statement for computing the
Collatz-sequence can theoretically be an endless loop for some
n.

225

while-statement: why?

In a for-statement, the expression often provides the progress
(“counting loop”)

for (int i = 1; i <= n; ++i){
s += i;

}

If the progress is not as simple, while can be more readable.

226

while-Statement: Semantics

while (condition)
statement

condition is evaluated

true: iteration starts
statement is executed

false: while-statement ends.

227

while Statement

while (condition)
statement

statement: arbitrary statement, body of the while statement.
condition: expression of type boolean.

228

while Statement

while (condition)
statement

is equivalent to

for (; condition ;)
statement

229

Example: Mini-Calculator

int a; // next input value
int s = 0; // sum of values so far
do {

Out.print("next number =? ");
a = In.readInt();
s += a;
Out.println("sum = " + s);

} while (a != 0);

230

do Statement

do
statement

while (expression);

statement: arbitrary statement, body of the do statement.
expression: expression of type boolean.

231

do Statement

do
statement

while (expression);

is equivalent to

statement
while (expression)

statement

232

do-Statement: Semantics

do
statement

while (expression);

Iteration starts
statement is executed.

expression is evaluated
true: iteration begins
false: do-statement ends.

233

Blocks

Example: body of the main function

public static void main(String[] args) {
...

}

Example: loop body

for (int i = 1; i <= n; ++i) {
s += i;
Out.println("partial sum is " + s);

}

234

Visibility

Declaration in a block is not “visible” outside of the block.

public static void main(String[] args)
{

{
int i = 2;

}
Out.println(i); // Fehler: undeklarierter Name

}

bl
oc

k

m
ai

n
bl

oc
k

„Blickrichtung”

235

Control Statement defines Block

In this regard, statements behave like blocks.

public static void main(String[] args) {
{

for (int i = 0; i < 10; ++i){
s += i;

}
Out.println(i); // Fehler: undeklarierter Name

}

bl
oc

k

236

Scope of a Declaration
scope: from declaration until end of the part that contains the declaration.

in the block

{
int i = 2;
...

}

in function body

void main(String[] args) {
int i = 2;
...

}

in control statement

for (int i = 0; i < 10; ++i) {s += i; ... }

sc
op

e

sc
op

e

scope

237

Automatic Memory Lifetime

Local Variables (declaration in block)

are (re-)created each time their declaration are reached

memory address is assigned (allocation)
potential initialization is executed

are deallocated at the end of their declarative region (memory is
released, address becomes invalid)

238

Local Variables

public static void main(String[] args) {
int i = 5;
for (int j = 0; j < 5; ++j) {

Out.println(++i); // outputs 6, 7, 8, 9, 10
int k = 2;
Out.println(−−k); // outputs 1, 1, 1, 1, 1

}
}

Local variables (declaration in a block) have automatic lifetime.

239

Conclusion

Selection (conditional branches)

if and if-else-statement

Iteration (conditional jumps)

for-statement
while-statement
do-statement

Blocks and scope of declarations

240

Equivalence of Iteration Statements

We have seen:

while and do can be simulated with for

It even holds:

The three iteration statements provide the same “expressiveness”
(lecture notes)

241

The “right” Iteration Statement

Goals: readability, conciseness, in particular

few statements
few lines of code
simple control flow
simple expressions

Often not all goals can be achieved together.

242

Odd Numbers in {0, . . . , 100}

First (correct) attempt:

for (int i = 0; i < 100; ++i) {
if (i % 2 == 0){

continue;
}
Out.println(i);

}

243

Odd Numbers in {0, . . . , 100}

Less statements, less lines:

for (int i = 0; i < 100; ++i) {
if (i % 2 != 0){

Out.println(i);
}

}

244

Odd Numbers in {0, . . . , 100}
Less statements, simpler control flow:

for (int i = 1; i < 100; i += 2) {
Out.println(i);

}

This is the “right” iteration statement!

245

The switch-Statement

switch (condition)
statement

condition: Expression, convertible to
integral type

statement : arbitrary statemet, in
which case and default-lables are
permitted, break has a special
meaning.

int Note;
...
switch (Note) {

case 6:
Out.print("super!");
break;

case 5:
Out.print("gut!");
break;

case 4:
Out.print("ok!");
break;

default:
Out.print("schade.");

}
246

Semantics of the switch-statement

switch (condition)
statement

condition is evaluated.
If statement contains a case-label with (constant) value of
condition, then jump there
otherwise jump to the default-lable, if available. If not, jump over
statement.
The break statement ends the switch-statement.

247

Kontrollfluss switch in general

If breakis missing, continue with the next case.
7: Keine Note!
6: bestanden!
5: bestanden!
4: bestanden!
3: oops!
2: ooops!
1: oooops!
0: Keine Note!

switch (Note) {
case 6:
case 5:
case 4:

Out.print("bestanden!");
break;

case 1:
Out.print("o");

case 2:
Out.print("o");

case 3:
Out.print("oops!");
break;

default:
Out.print("Keine Note!");

}

248

Definition: Control Flow

Order of the (repeated) execution of statements

249

Control Flow

generally from top to bottom. . .
. . . except in selection and iteration statements

condition

statement

true

false if (condition)
statement

250

Control Flow if else

condition

statement1

statement2

true

false
if (condition)

statement1
else

statement2

251

Control Flow for
for (init statement condition ; expression)

statement

init-statement

condition

statement

expression

true

false

252

Control Flow while

while (condition)
statement

condition

statement

true

false

253

Control Flow do while
do

statement
while (condition)

condition

statement

false

true

254

Control Flow switch

switch

statement

case

case

default

break

break

255

