Educational Objectives

m You know where you can find a table with all operators in it
m You understand the structure of a floating point number system
m You can compute the binary representation of a floating point

number 6. Operatoren
m You know the most imporant control flow stuctures and you can
use them in the right situation Tabular overview of all relevant operators

m You understand the visibility of variables and you can show the
scope of a variable

174 175

Table of Operators Table of Operators - Explanations
Description I Operator | Arity | Precedence | Associativity
Object member access . 2 16 left
Array access [1] 2 16 left
Method invocation) 2 16 left
Postfix increment/decrement ++ - 1 15 left
Prefix increment/decrement - 1 14 right m The arity shows the number of operands
Plus, minus, logical not + - ! 1 14 right . . .
Type cast O i 13 right m A higher precedence means stronger binding
Object creation new 1 13 right . . .
Multiplicative A 2 12 left m In case of the same precedence, evaluation order is defined by
Additive + - 2 11 left 12tiv/i
String concatination + 2 11 left the aSSOCIatIVIty
Relational < <= > >= 2 9 left
Type comparison instanceof 2 9 left
(non-)equality == |I= 2 8 left
Logical and && 2 4 left
Logical or I 2 3 left
Conditional ? 3 2 right
Assignments = += -= *x= [= = 2 1 right

7. Floating Point Numbers

Floating Point Number Systems; IEEE Standard;

178

Why is this happening?

m Not all real numbers can be represented

m Rounding errors can propagate and amplify throughout program
execution

We want to understand why this is happening!

180

We remember from last time

public class Main { -
public static void main(Stringl[] args) { o
OQut.print("First number =7 "); input 1.1 g
float nl = In.readFloat(); c
o
Out.print("Second number =7 "); input 1.0 (@)
float n2 = In.readFloat(); %
(@)
Out.print("Their difference =7 "); input 0.1 n
float d = In.readFloat(); %
e
Out.print("computed difference — input difference = "); ;
Out.println(nl—n2-d);
} output 2.2351742E-8

Definition: Floating Point Number Systems

A floating point number system describes a sub-set of real numbers
by restricting the precision and the value range.

179

181

Floating Point Number Systems
A Floating Point Number System is defined by the four natural
numbers:

m $ > 2, the Basis,

m p > 1, the precision (number of places),
B ey, the smallest possible exponent,

B c.., the largest possible exponent.

Notation:
F(ﬁ) P; €min, emax)

182

Floating Point Number Systems

Example
m =10

Representations of the decimal number 0.1

1.0-107Y, 0.1-10° 0.01-10%,

184

Floating Point Number Systems

F (3, P, €min, €max) COMprises the numbers

p—1
izdiﬂ_l 'Bea
=0
diE{O,.--,B—l}, ee{emin7-~'7emax}-

represented with Basis :

+ do,dl .. -dp—l X 66,

Definition: Normalized representation

A representation is normalized iff the exist exactly one digit not equal
0 before the comma

Normalized Representation

Normalized Number:

+ do.dl Ca dp—l X 567 d() 7& 0

—

Bemerkung 1
The normalized representation is unique and therefore prefered.

The number 0 (and all numbers smaller than 5¢»i») have no
normalized representation (we will deal with this later)!

186

Normalized Representation

Example F*(2,3, — 2,2) (only positive numbers)
do.d1d2‘€:—2 e=—1 e=0 e=1 e=2
1.004 0.25 0.5 1 2 4
1.014 0.3125 0.625 1.25 2.5 53
1.104 0.375 0.75 1.5 3 6
1.114 0.4375 0.875 1.75 3.5 7
0 8
it t t t t t t t t
T
1.00-272 =1 111822 =7

188

Set of Normalized Numbers

F*<67 P, €min, emax)

Binary and Decimal Systems

m Internally the computer computes with g = 2
(binary system)

m Literals and inputs have g = 10
(decimal system)

m Inputs have to be converted!

187

189

Conversion Decimal — Binary

Angenommen, 0 < z < 2.

m Hence: 2/ = bfl.b,2b73b74 .= 2- ({L’ — bo)
m Step 1 (for x): Compute by:

b 1, ifz>1
71 0, otherwise

m Step 2 (for x): Compute b_1,b_o, .. .:
Gotostep 1 (forz’ =2 (z — by))

191

Binary Number Representations of 1.1 and 0.1

m are not finite, there are errors when converting into a (finite) binary
floating point system.

m 1.1f and 0.1f do not equal 1.1 and 0.1, but slightly inaccurate
approximation of these numbers.

1.1 = 1.1000000000000000888178 ...
1.1f = 1.1000000238418...

193

Binary representation of 1.1

x bi ©—0b 2(x—b)
11 =1 0.1 0.2
0.2 b_1=0 0.2 0.4
04 bo=0 0.4 0.8
08 bs=0 08 1.6
1.6 b_s=1 0.6 1.2

bs=1 02 0.4

= 1.00011, periodic, not finite

J 192

Computing with Floating Point Numbers

Beispiel (8 = 2, p = 4):

1.111-272
+ 1.011-271

— 1.001 - 2V

1. adjust exponents by denormalizing of one number 2. binary addition of the
mantissa 3. renormalize 4. round to p significant places, if necessary

194

The IEEE Standard 754

Defines floating point number systems and their rounding behavior
m Single precision (float) numbers:

F*(2,24,—-126,127)
m Double precision (double) numbers:

plus 0, oo, ... J

F*(2,53,-1022,1023) puso.0.... |

m All arithmetic operations round the exact result to the next
representable number

The IEEE Standard 754

Why
F*(2,24, — 126,127)?

m 1 sign bit

m 23 bit for the mantissa (leading bit is 1 and is not stored)

m 8 bit for the exponent (256 possible values)(254 possible
exponents, 2 special values: 0, co,...)

= 32 bit overal.

32-bit Representation of a Floating Point Number

[3t][z0] 2] 8 2725][5 24] 2= |[e2][zt][e0][ve]|[ve sz se]s]][]][][se] o e][] [[== e

+ Mantisse

1.00000000000000000000000

+
T.1111111 1111111111111
The IEEE Standard 754
Why
F*(2,53,-1022,1023)?
m 1 sign bit

m 52 bit for the mantissa (leading bit is 1 and is not stored)

m 11 bit for the exponent (2046 possible exponents, 2 special
values: 0, co,...)

= 64 bit overal.

196

198

Statements

A statementis ...

m comparable with a sentence in natural language

8. Control Structures m a complete execution unit

m always finished with a semicolon

Selection Statements, lteration Statements, Termination, Blocks,
Visibility, Local Variables, Switch Statement

f = 9f % celsius / 5 + 32

199 200

Statement types Statement types

Valid statements are:

Declaration statement float aValue;
Assignments aValue = 8933.234;
aValue++;
Out.println(aValue);
new Student();

|

|

m Increment/decrement expressions
m Method calls

m Object-creation expressions ;
m Null statement .

201 202

Blocks
Ablockis ...

m a group of statements
m allowed wherever statements are allowed
m Represented by curly braces

{
statement1
statement?2

Selection Statements

implement branches

m if statement

B if-else statement

Control Flow

m up to now linear (from top to bottom)

m For interesting programs we need “branches” and “jumps

Computationof 1 +2 + ... + n. m

Eingabe n . 8 |s=s+i
i=1;8:=0 =i+ 1
nein
Ausgabe s
if-Statement

if (condition)
Statement

int a = In.readInt Q;
if (@a%2==0)1{
Out.println("even");

}

If condition is true then state-
ment is executed

m statement: arbitrary
statement (body of the
if-Statement)

m condition: expression of
type boolean

206

if-else-statement

if (condition)
Statement1

else
statement2

int a = In.readInt ();

if (a % 2 == 0){
Out.println("even");

} else {
Out.println("odd");

}

lteration Statements

implement “loops”

m for-statement
B while-statement
B do-statement

If condition is true then state-
ment1 is executed, otherwise
statement?2 is executed.

m condition: expression of
type boolean

m statement1: body of the
if-branch

m statement2: body of the
else-branch

207

209

Layout!

int a = In.readInt();
if (a % 2 == 0){

AN

Out.println("even");
} else {

Indentation

Out.println("odd");

N

3

Example: Compute 1 + 2 + ...

// input

Out.print ("Compute the sum 1+...

int n = In.readInt();

// computation of sum_{i=1}"n i

int s = 0;
for (int i = 1; i <= n; ++i){
s += 1i;

}

// output

Indentation

208

+n

+n for n=7");

Out.println("i+...+" + n + " =" + g);

210

f or-Statement: Syntax

for (init statement condition ; expression)
statement

m /nit-statement. expression statement, declaration statement, null
statement

m condition: expression of type boolean
B expression: any expression
m statement : any statement (body of the for-statement)

Example: Harmonic Numbers

n - (L‘ ~ .

m This sum can be computed in forward or backward direction,
which mathematically is clearly equivalent

f or-Statement: semantics

for (init statement condition ; expression)
Statement

m /nit-statement is executed
m condition is evaluated

m true: lteration starts
statement is executed
expression is executed

m false: for-statement is ended.

Example: Harmonic Numbers

Out.print("Compute H_n for n =7 "),
int n = In.readInt ();

float fs = 0;
for (int i = 1; i <= n; ++i){
fs += 1.0f / i;

}
Out.println("Forward sum = " + fs);
float bs = 0;
for (int i = n; i >=1; ——i){
bs += 1.0f / i;
}

Out.println("Backward sum = " + bs);

Example: Harmonic Numbers

Results:

]
Compute H_n for n =7 10000000
Forward sum = 15.4037
Backward sum = 16.686

|
Compute H_n for n =7 100000000
Forward sum = 15.4037
Backward sum = 18.8079

Example: Prime Number Test

Def.: a natural number n > 2 is a prime number, if no
de{2,...,n— 1} divides n .

A loop that can test this:

int d;
for (d=2; nl%d '= 0; ++d);

Example: Harmonic Numbers

Observation:

m The forward sum stops growing at some point and is getting
“really” wrong.

m The backward sum reasonably approximates H,,.
Erklarung:

m For1+1/2+41/3+ --- the late terms are too small to actually
contribute

m Floating Point Rule 2

Example: Termination

int d;
for (d=2; n%d '= 0; ++d);

m Progress: Initial value d=2, then plus 1 in every iteration (++d)

m Exit: n%d != 0 evaluates to true as soon as a divisor is found
— at the latest, once d ==

m Progress guarantees that the exit condition will be reached

216

218

Example: Correctness

int d;
for (d=2; n%d !'= 0; ++d); // for n >= 2

Every potential divisor 2 <= d <= n will be tested. If the loop
terminates with d == n then and only then is n prime.

219

Halting Problem

Undecidability of the Halting Problem

There is no Java program that can determine for each Java-Program
P and each input I if the program P terminates with the input 1.

This means that the correctness of programs can in general not be
automatically checked.*

4Alan Turing, 1936. Theoretical quesitons of this kind were the main motivation for Alan Turing to construct a computing

machine.
221

Endless Loops

m Endless loops are easy to generate:

for (; ;) ;

m Die empty condition is true.
m Die empty expression has no effect.
m Die null statement has no effect.

m ... but can in general not be automatically detected.

for (e; v; e) r;

Example: The Collatz-Sequence

Bnygy=mn
, falls n;_, gerade

ni—1
mn, =)
3n;,_1+1 , falls n,_; ungerade

1> 1.

n=5:5,16,8,4,2,1,4,2,1, ... (Repetition bei 1)

220

(n € N)

222

The Collatz-Sequence in Java

// Input
Out.println("Compute Collatz sequence, n =7 ");
int n = In.readInt();

// Iteration
while (n > 1) { // stop when 1 reached
if (n%2==0) {// n is even

n=n/ 2;
} else { // n is odd
n=3x%xn+ 1;
}
Out.print(n + " ");
} 223

The Collatz-Sequence

Does 1 occur for each n?

m It is conjectured, but nobody can prove it!

m If not, then the while-statement for computing the
Collatz-sequence can theoretically be an endless loop for some
n.

225

Die Collatz-Folge in Java

n = 27:

82, 41, 124, 62, 31, 94, 47, 142, 71, 214, 107, 322, 161, 484, 242,
121, 364, 182, 91, 274, 137, 412, 206, 103, 310, 155, 466, 233,
700, 350, 175, 526, 263, 790, 395, 1186, 593, 1780, 890, 445, 1336,
668, 334, 167, 502, 251, 754, 377, 1132, 566, 283, 850, 425, 1276,
638, 319, 958, 479, 1438, 719, 2158, 1079, 3238, 1619, 4858, 2429,
7288, 3644, 1822, 911, 2734, 1367, 4102, 2051, 6154, 3077, 9232,
4616, 2308, 1154, 577, 1732, 866, 433, 1300, 650, 325, 976, 488,
244, 122, 61, 184, 92, 46, 23, 70, 35, 106, 53, 160, 80, 40, 20,
10, 5, 16, 8, 4, 2, 1

224

while-statement: why?

m In a for-statement, the expression often provides the progress
(“counting loop”)

for (int i = 1; i <= n; ++i){
s += 1i;

}

m If the progress is not as simple, while can be more readable.

226

while-Statement: Semantics

while (condition)
statement

m condition is evaluated
m true: iteration starts
statement is executed

m false: while-statement ends.

while Statement

while (condition)
statement

is equivalent to

for (; condition ;)
statement

227

229

while Statement

while (condition)
statement

m statement: arbitrary statement, body of the while statement.
m condition: expression of type boolean.

228

Example: Mini-Calculator

int a; // next input value
int s = 0; // sum of values so far
do {

Out.print("next number =7 ");
a = In.readInt();
s += a;
Out.println("sum = " + s);
} while (a != 0);

230

do Statement

do
statement
while (expression);

m statement. arbitrary statement, body of the do statement.

m expression: expression of type boolean.

do-Statement: Semantics

do
statement
while (expression);

m lteration starts

m statementis executed.
m expression is evaluated

m true: iteration begins
m false: do-statement ends.

do Statement

do
statement
while (expression);

is equivalent to

statement
while (expression)
Statement

Blocks

m Example: body of the main function

public static void main(Stringl[] args) {

}
m Example: loop body
for (int i = 1; i <= n; ++i) {

s += 1i;
Out.println("partial sum is " + 8);

main block

scope

Visibility

Declaration in a block is not “visible” outside of the block.

public static void main(String[] args)

{
{
é int 1 = 2;
}
Out.println(i); // Fehler: undeklarierter Name
}

,Blickrichtung”

235

Scope of a Declaration

scope: from declaration until end of the part that contains the declaration.

in the block in function body

{ void main(String[] args) {
int i = 2;

scope

in control statement

i < 10; ++i) {s +=di: ...}

scope

for (int i = 0;

237

Control Statement defines Block

In this regard, statements behave like blocks.
public static void main(String[] args) {

{
for (int 1 = 0; i < 10; ++i){
E s += 1i;
}
Out.println(i); // Fehler: undeklarierter Name
}

236

Automatic Memory Lifetime

Local Variables (declaration in block)
m are (re-)created each time their declaration are reached

B memory address is assigned (allocation)
m potential initialization is executed

m are deallocated at the end of their declarative region (memory is
released, address becomes invalid)

238

Local Variables

public static void main(String[] args) {
int i = 5;
for (int j = 0; j < 5; ++j) {
Out.println(++i); // outputs 6, 7, 8, 9, 10
int k = 2;
Out.println(——Xk); // outputs 1, 1, 1, 1, 1

}

Local variables (declaration in a block) have automatic lifetime.

239

Equivalence of lteration Statements

We have seen:
m while and do can be simulated with for
It even holds:

m The three iteration statements provide the same “expressiveness”
(lecture notes)

Conclusion

m Selection (conditional branches)

m if and if-else-statement

m lteration (conditional jumps)

m for-statement
B while-statement
H do-statement

m Blocks and scope of declarations

240

The “right” lteration Statement

Goals: readability, conciseness, in particular

m few statements

m few lines of code

m simple control flow
m simple expressions

Often not all goals can be achieved together.

242

Odd Numbers in {0, ..., 100}

First (correct) attempt:
for (int i = 0; i < 100; ++i) {
if (1% 2 == 0){
continue;

}
Out.println(i);

243

Odd Numbers in {0, ..., 100}

Less statements, simpler control flow:

for (int 1 = 1; i < 100; i += 2) {
Out.println(i);
}

This is the “right” iteration statement!

245

Odd Numbers in {0, ..., 100}

Less statements, /ess lines:

for (int i = 0; i < 100; ++i) {
if (1% 2 =04
Out.println(i);
}

The switch-Statement

int Note;

switch (Note) {

switch (Condiﬁon) case 6:
Statement Out.print ("super!");
break;
m condition: Expression, convertible to case 5:
integral type Out.print("gut!");
. . break;
m statement : arbitrary statemet, in case 4:
which case and default-lables are Out.print("ok!");
permitted, break has a special break;
meaning. default:

Out.print("schade.");

244

246

Semantics of the switch-statement

switch (condition)
statement

B condition is evaluated.

m If statement contains a case-label with (constant) value of
condition, then jump there

m otherwise jump to the default-lable, if available. If not, jump over
statement.

B The break statement ends the switch-statement.

247

Definition: Control Flow

Order of the (repeated) execution of statements

249

Kontrollfluss switch in general

If breakis missing, continue with the next case.

7: Keine Note! switen (Rote) &

6: bestanden! case o

5: bestanden! Ezzgifint(”bestanden!");
4: bestanden! 5 ot prit(ron;

3: oops! T et prins o

2: OOOpS! e 3[]:11t.print(”oops!");

1: oooops! dotantes |

0 Keine Note! . Out.print("Keine Note!");

248

Control Flow

m generally from top to bottom. ..
m ...except in selection and iteration statements

condition

true
if (condition)
statement

statement false

Control Flow if else

condition
true
false "
statementi if (condition)
statement1
statement2 else
statement2
Control Flow while
while (condition)
statement
condition
statement false

253

Control Flow for

for (init statement condition ; expression)
Statement

init-statement

condition
statement
false

expression
Control Flow do while
do

statement
while (condition)
statement true

condition

false

254

Control Flow switch

switch
case

break
case

statement

break
default

255

