
15. Java Object Orientation II

Polymorphism

434

Object Orientation: Different Aspects

Object
Orientation

Objects

Data

Code Inheritance

Type
Hierarchy

Sub- and
Super-
Classes

Interfaces

Encapsu-
lation

Abstract
Datatypes

Poly-
morphism

Override
Methods

Assign
Subtypes

435

Polymorphism

Override Methods: Inherited methods from a superclass can be
overriden: Same signature, new code.
Variable Assignment: Objects of a given type can be assigned to
variables of any supertype.

436

Overriding Methods
Inherited methods of a supertype can get a new implementation.
Same signature, new code.

We remember the method alarm() for last time. This abstract
method was defined in class Wind as follows

class Wind extends Measurement {
int speed;
...
boolean alarm(){ // implements abstract method alarm()

return this .speed > 80;
}

} 437

Overriding Methods
We define a new subclass WindWithGusts, that also tracks gusts in
addition to windspeed and direction.

/∗
∗ Fancy windsensor data that also tracks gusts. Requires special hardware.
∗/
class WindWithGusts extends Wind {

int gusts;

@Override
boolean alarm(){ // replaces implementation of supertype

return this .speed > 80 || this .gusts > 20;
}

}
Inherited from Wind 438

Access to Overriden Method: super Keyword
A subclass doesn’t have to repeat the code that is being overridden.

⇒ Call of the overriden implementation using keyword super, but only within the
overriding implementation

class WindWithGusts extends Wind {
int gusts;

@Override
boolean alarm(){ // replaces implementation of supertype

return super.alarm() || this .gusts > 20;
}

}
Executes: this.speed > 80 ;

439

Access to Constructors of Superclass
Setting: Creation of a measurement always requires a coordinate.
→ Constructor in class Measurement

class Measurement {
Coordinate position;

Measurement(float lat, float lon){
this . position = new Coordinate(lat, lon);

}
...

}
440

Access to Constructors of Superclass
Using keyword super, a constructer of a superclass can be called.
The amount and types of the arguments determines which constructer will be
called
Calling super(...) must be the first instruction!

class Wind {
...
Wind(float lat , float lon, int speed, int direction){

super(lat , lon);
this .speed = speed;
this . direction = direction;

}
...

}
441

Polymorphic References
Variables of a declared type can reference objects of a subtype.

WindWithGusts w = new WindWithGusts();

Measurement m;

m = w; // polymorphic reference!

// But this doesn’t compile: w = m;

WindWithGusts w

WindWithGusts

Measurement m

442

Static vs. Dynamic Type

WindWithGusts w

WindWithGusts

Measurement m

Static type of
the variable

Dynamic type: type
of the referenced
object

443

Dynamic Methodbinding
When calling a method, the implementation of the dynamic type is
executed!

Call:
m.alarm();

⇒ Executed code from class WindWithGusts:

@Override
boolean alarm(){

return super.alarm() || this .gusts > 20;
}

WindWithGusts

Measurement m

444

Usages for dynamic binding
Given: A list of different kinds of measurements (Temperatures, Wind, ...

Wanted: A list of measurements that cause an alarm.

void filterByAlarm(Measurement[] measurements){
for (int i = 0; i < measurements.length; ++i){

if (measurements[i].alarm()){ //dynamic method binding!
measurements[i]=null; //remove from array

}
}

}

445

