
Informatik I

Course at BAUG department of ETH Zürich

Hermann Lehner, Felix Friedrich
ETH Zürich

HS 2018

1

1. Introduction

Welcome to the Lecture Series!

2

Material

Course homepage

http://lec.inf.ethz.ch/baug/informatik1

3

The Team

Lecturers Hermann Lehner
Felix Friedrich

Chief assistant Andrea Lattuada

Assistants Vincent Becker Lukas Burkhalter
Mihai Bace Irfan Bunjaku
Patrick Gruntz Max Rossmannek
Josua Schneider Rafael Wampfler
Temmy Bounedjar Simon Guldimann
Staal Sander

4

Programming and Problem Solving

In this course you learn how to program using Java

Software development is a handicraft
Analogy: learn to play a musical instrument
The problem: nobody has become a pianist from listening to
music.

Hence this course offers several possibilities, to train. Make use of it!

5

Programming and problem solving

In this course you learn to solve problems with selected algorithms
and data structures

Fundamental knowledge independent of the language
Comparison: musical scale, read music, rythm skills.
The problem: without musical instrument this is no fun.

Hence we combine learning problem solving with learning the
programming language Java.

6

Course Content

Programming using Java
introduction

statements and expressions
number representations

control flow

arrays

methods and recursion
types, classes and objects

inheritance and polymorphy

Algorithmen
Searching and Sorting

7

Goal of today’s Lecture

Introduction of computer model and algorithms
General informations to the course
Writing a first program

8

1.1 Computer Science and Algorithms

Computer Science, Euclidean Algorithm

9

What is Computer Science?

The science of systematic processing of informations,. . .
. . . particularly the automatic processing using digital computers.

(Wikipedia, according to “Duden Informatik”)

10

Computer Science 6= Computer Literacy

Computer literacy: user knowledge

Handling a computer
Working with computer programs for text processing, email,
presentations . . .

Computer Science Fundamental knowledge

How does a computer work?
How do you write a computer program?

11

Inhalt dieser Vorlesung

Systematic problem solving using algorithms and the
programming langauge Java
Hence:

not only
but also programming course.

12

Algorithm: Fundamental Notion of Computer Science

Algorithm:

Instructions to solve a problem step by step
Execution does not require any intelligence, but precision (even
computers can do it)
according to Muhammed al-Chwarizmi,
author of an arabic
computation textbook (about 825)

“Dixit algorizmi. . . ” (Latin translation) ht
tp

:/
/d

e.
wi

ki
pe

di
a.

or
g/

wi
ki

/A
lg

or
it

hm
us

13

Oldest Nontrivial Algorithm
Euclidean algorithm (from the elements from Euklid, 3. century B.C.)

Input: integers a > 0, b > 0

Output: gcd of a und b

While b 6= 0
If a > b then

a← a− b
else:

b← b− a
Result: a.

a b a b a b a b
14

Live Demo: Turing Machine

15

Euklid in the Box

0

[8]
→ L

1

[9]
→ R

2

L = 0?
stop

3

R > L?
springe

zu 6

4

L − R
→ [8]

5

springe
zu 0

6

R − L
→ [9]

7

springe
zu 0

8

b

9

a

Speicher

Programmcode Daten

Links

b

Rechts

a

Register

Daten
While b 6= 0

If a > b then
a← a− b

else:
b← b− a

Ergebnis: a.

16

1.3 Computer Model

Turing Machine, Von Neumann Architecture

17

Computers – Concept

An bright idea: universal Turing machine (Alan Turing, 1936)

Alan Turing ht
tp

:/
/e

n.
wi

ki
pe

di
a.

or
g/

wi
ki

/A
la

n_
Tu

ri
ng

18

Computer – Implementation

Z1 – Konrad Zuse (1938)
ENIAC – John Von Neumann (1945)

Konrad Zuse

John von Neumann ht
tp

:/
/w

ww
.h

s.
un

i-
ha

mb
ur

g.
de

/D
E/

GN
T/

hh
/b

io
gr

/z
us

e.
ht

m
ht

tp
:/

/c
om

mo
ns

.w
ik

im
ed

ia
.o

rg
/w

ik
i/

Fi
le

:J
oh

n_
vo

n_
Ne

um
an

n.
jp

g

19

Computer

Ingredients of a Von Neumann Architecture

Memory (RAM) for programs and data

Processor (CPU) to process programs and data

I/O components to communicate with the world

20

Memory for data and program

Sequence of bits from {0, 1}.
Program state: value of all bits.
Aggregation of bits to memory cells (often: 8 Bits = 1 Byte)
Every memory cell has an address.
Random access: access time to the memory cell is (nearly)
independent of its address.

21

Processor

The processor (CPU)

executes instructions in machine language

has an own "fast" memory (registers)

can read from and write to main memory

features a set of simplest operations = instructions (e.g. adding
to register values)

22

Computing speed

In the time, onaverage, that the sound takes to travel from from my
mouth to you ...

30 m =̂ more than 100.000.000 instructions

a contemporary desktop PC can process more than 100 millions
instructions 1

1Uniprocessor computer at 1 GHz.
23

Programming

With a programming language we issue commands to a computer
such that it does exactly what we want.
The sequence of instructions is the
(computer) program

The Harvard Computers, human computers, ca.1890 ht
tp

:/
/e

n.
wi

ki
pe

di
a.

or
g/

wi
ki

/H
ar

va
rd

_C
om

pu
te

rs

24

Why programming?

Do I study computer science or what ...
There are programs for everything ...
I am not interested in programming ...
because computer science is a mandatory subject here,
unfortunately...
. . .

25

Mathematics used to be the lingua franca of the natural
sciences on all universities. Today this is computer
science.
Lino Guzzella, president of ETH Zurich, NZZ Online, 1.9.2017

26

This is why programming!

Any understanding of modern technology requires knowledge
about the fundamental operating principles of a computer.
Programming (with the tool computer) is evolving a cultural
technique like reading and writing (using the tools paper and
pencil)
Most qualified jobs require at least elementary programming skills
Programming is fun!

27

This Course is for You

You learn the fundamental principles – the basics of computer
science and programming – from us on a nontrivial level
You will need to apply the principles learned in a different context
– for example for other programming languages (C++ ,Python
,Matlab , R)
This is not our requirement – we know this from you (= your
department)

28

Programming Languages

The language that the computer can understand (machine
language) is very primitive.
Simple operations have to be disassembled into many single steps
The machine language varies between computers.

29

Higher Programming Languages

can be represented as program text that

can be understood by humans
is independent of the computer model
→ Abstraction!

30

Java

is based on a virtual machine (with von-Neumann architecture)

Program code is translated into intermediate code
Intermediate code runs in a simulated computing envrionment, the
intermediate code is executed by an interpreted
Optimisation: Just-In-Time (JIT) compilation of frequently used code:
virtual machine→ physical machine

Consequence, and manifested goal of the Java developers:
write once – run anywhere

31

1.5 General Informations about the Course

Organisation, Tools, Exercises, Exams

32

Recitation Session Registry

Registration via web page http://echo.ethz.ch
Works only when enrolled for this course via myStudies.
Available rooms depend on the course of studies.

33

Exercises
Mon Tue Wed Thu Fri Sat Sun Mon Tue Wed Thu Fri Sat

issuance preliminary discussion
submission

discussion

V Ü V Ü

Exercises availabe at lectures.
Preliminary discussion in the following recitation session
Solution of the exercise until the day before the next recitation session.
Dicussion of the exercise in the next recitation session.

34

Exercises
At ETH an exercise certificate is not required in order to subscribe
for the exams.
The solution of the weekly exercises is thus voluntary but stronly
recommended.

35

Lacking Resources are no Excuse!

For the exercises we use an online development environment that
requires only a browser, internet connection and your ETH login.

If you do not have access to a computer: there are a a lot of computers publicly
accessible at ETH.

36

Tutorial

In the first week you work through our Java-tutorial on your own

Simple introduction to Java, no foreknowledge required
Time needed: about two hours
In the second week recitation session there will be a self
assessment about the tutorial

→ This time is well-invested!

37

Tutorial - Url

Java Tutorial
Here you find the tutorial:
https://frontend-1.et.ethz.ch/sc/WKrEKYAuHvaeTqLzr

38

Book to the Lecture

Sprechen Sie Java?
Hanspeter Mössenböck

dpunkt.verlag

Well structured learning material
In-depth discussion of the topics
Exercise tasks with solutions

Our exam will include 1-2 questions from the book
39

Exams

The exam (in examination period 2019) will cover

Lectures content (lectures, handouts)

Exercise content (recitation hours, exercise tasks).

Written exam - might be executed on a computer

We will test your practical skills (programming skills and theoretical knowledge
(background knowledge, systematics).

40

Offer

During the semester we offer weekly programming exercises that
are graded. Points achieved will be taken as a bonus to the exam.
The bonus is proportional to the score achieved in specially
marked bonus tasks, where a full score equals a bonus of 0.25.
The admission to specially marked bonus depends on the
successful completion of other exercises. The achieved mark
bonus expires as soon as the lecture is given anew.

41

Academic integrity

Rule: You submit solutions that you have written yourself and that
you have understood.

We check this (partially automatically) and reserve our rights to
invite you to interviews.

Should you be invited to an interview: don’t panic. Primary we
presume your innocence and want to know if you understood what
you have submitted.

42

Exercise group registration I
Visit http://expert.ethz.ch/enroll/AS18/inf1baug
Log in with your nethz account.

43

Exercise group registration II
Register with the subsequent dialog for an exercise group.

44

Overview

45

Programming Exercise

A: compile
B: run
C: test

D: description
E: History

46

Test and Submit

Test

Submission

47

Where is the Save Button?

The file system is transaction based and is saved permanently
("autosave"). When opening a project it is found in the most recent
observed state.
The current state can be saved as (named) snaphot. It is always
possible to return to saved snapshot.
The current state can be submitted (as snapshot). Additionally,
each saved named snapshot can be submitted.

48

Snapshots

Look at snapshot

Submission

Go Back

49

2. Introduction to Java

Programming – a first Java Program

50

Programming Tools

Editor: Program to modify, edit and store Java program texts
Compiler: program to translate a program text into machine
language
Computer: machine to execute machine language programs
Operating System: program to organize all procedures such as
file handling, editor-, compiler- and program execution.

51

German vs. Programming Language

Deutsch
Es ist nicht genug zu wissen,
man muss auch anwenden.
(Johann Wolfgang von Goethe)

Java / C / C++

// computation
int b = a ∗ a; // b = a^2
b = b ∗ b; // b = a^4

52

Syntax and Semantics

Like our langauge, programs have to be formed according to
certain rules.

Syntax: Connection rules for elementary symbols (characters)
Semantics: interpretation rules for connected symbols.

Corresponding rules for a computer program are simpler but also
more strict because computers are relatively stupid.

53

Syntax and Semantics of Java

Syntax

What is a Java program?

Is it grammatically correct?

Semantics

What does a program mean?

What kind of algorithm does a program implement?

54

First Java Program
// Program to raise a number to the eighth power
public class Main {

public static void main(String[] args) {
// input
Out.print("Compute a^8 for a= ?");
int a;
a = In.readInt();
// computation
int b = a ∗ a; // b = a^2
b = b ∗ b; // b = a^4
// output b∗b, i.e. a^8
Out.println(a + "^8 = " + b∗b);

}
}

Method: named se-
quence of statements.

Class: a program

55

Java Classes

A Java program comprises at least one class with main-method. The
sequence of statements in this method is executed when the
program starts.

public class Test{
// Potentiell weiterer Code und Daten

public static void main(String[] args) {
// Hier beginnt die Ausfuehrung
...

}
}

56

Behavior of a Program
At compile time:

program accepted by the compiler (syntactically correct)

Compiler error

During runtime:

correct result

incorrect result

program crashes

program does not terminate (endless loop)
57

Comments
// Program to raise a number to the eighth power
public class Main {

public static void main(String[] args) {
// input
Out.print("Compute a^8 for a= ?");
int a;
a = In.readInt();
// computation
int b = a ∗ a; // b = a^2
b = b ∗ b; // b = a^4
// output b∗b, i.e. a^8
Out.println(a + "^8 = " + b∗b);

}
}

Kommentare

58

Comments and Layout
Comments

are contained in every good program.

document, what and how a program does something and how it
should be used,

are ignored by the compiler

Syntax: “double slash” // until the line end.

The compiler ignores additionally

Empty lines, spaces,

Indendations that should reflect the program logic
59

Comments and Layout

The compiler does not care...

public class Main{public static void main(String[] args){Out.print
("Compute a^8 for a= ?");int a;a = In.readInt();int b = a*a;b =
b * b;Out.println(a + "^8 = " + b*b);}}

... but we do!

60

Statements
// Program to raise a number to the eighth power
public class Main {

public static void main(String[] args) {
// input
Out.print("Compute a^8 for a= ?");
int a;
a = In.readInt();
// computation
int b = a ∗ a; // b = a^2
b = b ∗ b; // b = a^4
// output b∗b, i.e. a^8
Out.println(a + "^8 = " + b∗b);

}
}

Ausdrucksanweisungen

61

Statements

building blocks of a Java program
are executed (sequentially)
end with a semicolon
Any statement provide an effect (potentially)

62

Expression Statements

have the following form:

expr;

where expr is an expression
Effect is the effect of expr, the value of expr is ignored.

Example: b = b*b;

63

Statements – Values and Effects
// Program to raise a number to the eighth power
public class Main {

public static void main(String[] args) {
// input
Out.print("Compute a^8 for a= ?");
int a;
a = In.readInt();
// computation
int b = a ∗ a; // b = a^2
b = b ∗ b; // b = a^4
// output b∗b, i.e. a^8
Out.println(a + "^8 = " + b∗b);

}
}

Effekt: Ausgabe des Strings Compute ...

Effekt: Eingabe einer Zahl und Speichern in a

Effekt: Speichern des berechneten Wertes von a*a in b

Effekt: Speichern des berechneten Wertes von b*b in b

Effekt: Ausgabe des Wertes von a und des
berechneten Wertes von b*b

64

Values and Effects

determine what a program does,
are purely semantical concepts:

Symbol 0 means Value 0 ∈ Z
a = In.readInt(); means effect "read in a number"

depend on the program state (memory content, inputs)

65

Variable Definitions
// Program to raise a number to the eighth power
public class Main {

public static void main(String[] args) {
// input
Out.print("Compute a^8 for a= ?");
int a;
a = In.readInt();
// computation
int b = a ∗ a; // b = a^2
b = b ∗ b; // b = a^4
// output b∗b, i.e. a^8
Out.println(a + "^8 = " + b∗b);

}
}

Deklarationsanweisungen

Typ-
namen

66

Declaration Statements

introduce new names in the program,
consist of declaration and semicolon

Example: int a;
can initialize variables

Example: int b = a * a;

67

Types and Functionality

int:

Java integer type

corresponds to (Z,+,×) in math

In Java each type has a name and

a domain (e.g. integers)

functionality (e.g. addition/multiplication)

68

Fundamental Types

Java comprises fundamental types for

integers (int)

real numbers (float, double)

boolean values (boolean)

...

69

Literals

represent constant values
have a fixed type and value
are "syntactical values".

Examples:

0 has type int, value 0.

1.2e5 has type double, transWertvalue 1.2 · 105.

70

Variables

represent (varying) values,
have

name
type
value
address

are "visible" in the program
context.

Beispiel
int a; defines a variable with

name: a

type: int

value: (initially) undefined

Address: determined by
compiler

71

Objects

represent values in main memory
have type, address and value (memory content at the address)
can be named (variable) ...
... but also anonymous.

Remarks
A program has a fixed number of variables. In order to be able to deal with a
variable number of value, it requires "anonymous" addresses that can be address
via temporary names.

72

Identifiers and Names

(Variable-)names are identifiers

allowed: A,...,Z; a,...,z; 0,...,9;_
First symbol needs to be a character.

There are more names:

Out.println (Qualified identifier)

73

Expressions

represent Computations

are either primary (b)

or composed (b*b). . .

. . . from different expressions by operators

Analogy: building blocks

74

Expressions

// input
Out.print("Compute a^8 for a= ?");
int a;
a = In.readInt();

// computation
int b = a ∗ a; // b = a^2
b = b * b; // b = a^4

// output b∗b, i.e. a^8
Out.println(a + "^8 = " + b * b|); ||

75

Expressions

represent computations
are primary or composite (by other expressions and operations)

a * a
composed of
variable name, operator symbol,variable name
variable name: primary expression

can be put into parantheses

a * a is equivalent to (a * a)

76

Expressions

have type, value und effect (potentially).

Example

a * a

type: int (type of the operands)

Value: product of a and a

Effect: none.

Example

b = b * b

type: int (Typ der Operanden)

Value: product of b and b

effect: assignment of the product value
to b

The type of an expression is fixed but the value and effect are only
determined by the evaluation of the expression

77

Operators and Operands

// input
Out.print("Compute a^8 for a= ?");
int a;
a = In.readInt();

// computation
int b = a * a; // b = a^2
b = b ∗ b; // b = a^4

// output b∗b, i.e. a^8
Out.println(a + "^8 = " + b * b);

left operand (variable)
right operand (expression)

assignment operator

multiplication operator

78

Operators

Operators

make expressions (operands) into new composed expressions

specify the required and resulting types for the operands and
the result

have an arity

79

Multiplication Operator *

expects to R-values of the same type as operands (arity 2)
"returns the product as value of the same type", that means
formally:

The composite expression is value of the product of the value of the two
operands

Examples: a * a and b * b

80

Assignment Operator =

Assigns to the left operand the value of the right operand and
returns the left operand

Examples: b = b * b and a = b

Attention, Trap!
The operator = corresponds to the assignment operator of mathematics (:=), not
to the comparison operator (=).

81

