

Matlab **Zufall / Programmieren mit Matlab**

Dr. Hermann Lehner Departement Informatik, ETH Zürich

Zufall ist ein Wort ohne Sinn; nichts kann ohne Ursache existieren ?

-- Voltaire

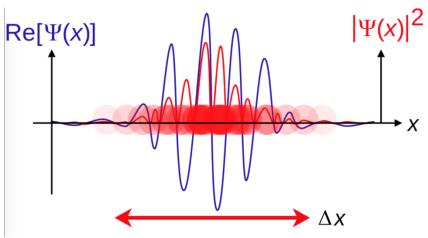
Was ist Zufall?

- Zufällige Ereignisse sind unabhängig voneinander
- Zufällige Ereignisse sind gleichmässig verteilt
- Zufällige Ereignisse haben keine Ursache

Quellen zufälliger Ereignisse

Chaotische systeme

Quantenmechanische Effekte

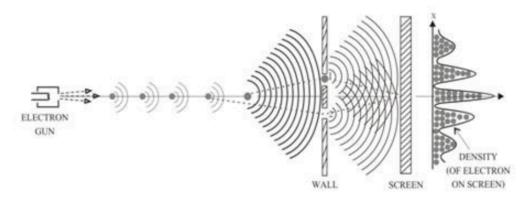


Chaotische Systeme

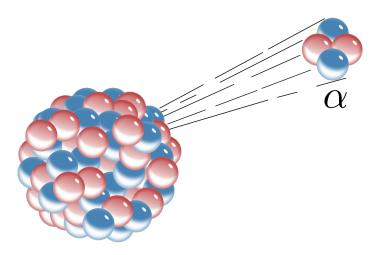
Lotto-Ziehung

Globales Wetter

Quantenmechanische Effekte



Teilchen-Welle Dualismus



Alpha-Zerfall von Atomkernen

Simulationen komplexer Vorgänge

- Physik (z.B. Molekulardynamik)
- Biochemie (z.B. Falten von Proteinen)
- Meteorologie (z.B. Wettervorhersage)
- Ökonomie (z.B. Aktienkurs-Vorhersagen)
- Politik (Wahl-Prognose Modelle)

Verschlüsselungsverfahren

- Erstellung sicherer Schlüssel
- Sichere Kommunikationsprotokolle

Mathematik

Integration sehr komplexer Funktionen

Software-Engineering

- Random testing
- Image rendering

Simulationen komplexer Vorgänge

- Physik (z.B. Molekulardynamik)
- **Biochemie (z.B. Falten von Proteinen)**
- Meteorologie (z.B. Wettervorhersage)
- Ökonomie (z.B. Aktienkurs-Vorhersagen)
- Politik (Wahl-Prognose Modelle)

Verschlüsselungsverfahren

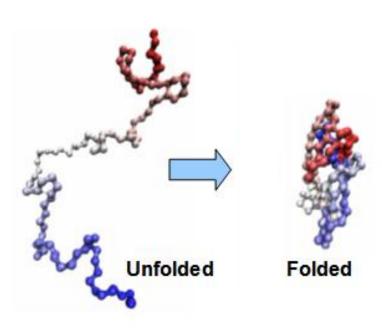
- Erstellung sicherer Schlüssel
- Sichere Kommunikationsprotokolle

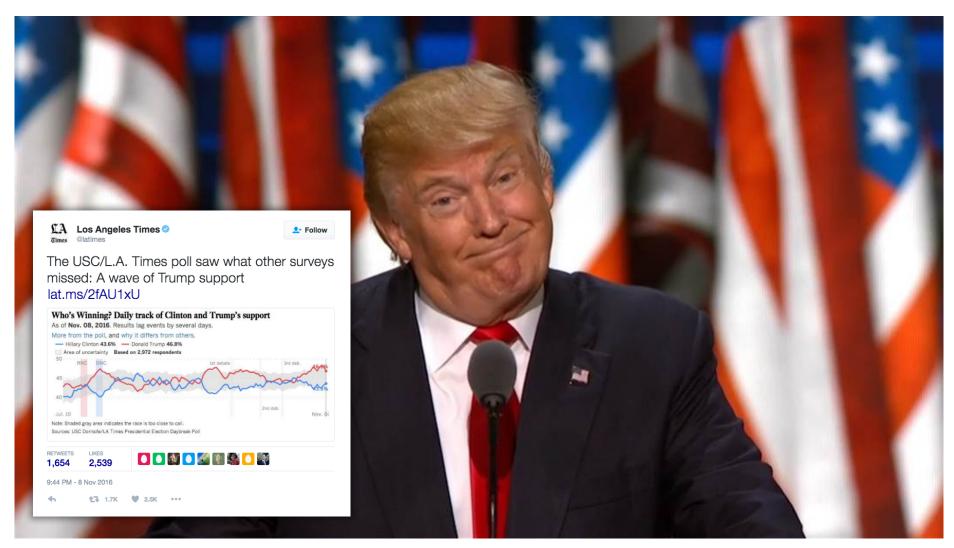
Mathematik

Integration sehr komplexer Funktionen

Software-Engineering

- Random testing
- Image rendering





Simulationen komplexer Vorgänge

- Physik (z.B. Molekulardynamik)
- Biochemie (z.B. Falten von Proteinen)
- Meteorologie (z.B. Wettervorhersage)
- Ökonomie (z.B. Aktienkurs-Vorhersagen)
- Politik (Wahl-Prognose Modelle)

Verschlüsselungsverfahren

- Erstellung sicherer Schlüssel
- Sichere Kommunikationsprotokolle

Mathematik

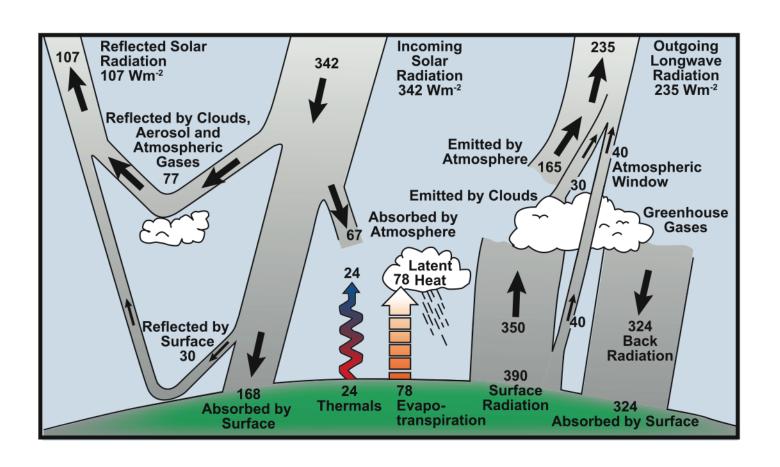
Integration sehr komplexer Funktionen

Software-Engineering

- Random testing
- Image rendering

Simulation komplexer Vorgänge:

Beispiel: Energy Balance Model



Simulation komplexer Vorgänge:

Beispiel: Energy Balance Model

- Nicht analytisch zu lösen
- Simulation mit Hilfe von mathematischen Modellen
- Verbesserung der Modelle aufgrund der Simulation

Methode: Monte Carlo Simulation

$$T_i = \frac{\gamma_i (H_0/4)(1-\alpha_i) + CT_s - A + 5 \varphi_i B}{B + C}$$

where:

 γ_i is the ratio correction of zone to incoming radiation

 H_0 is the solar constant

 α_i is the surface albedo for the zone

C is the constant 38 watt- $\text{m}^{-2}C^{-1}$

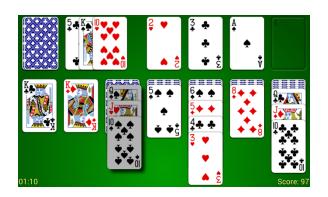
 T_s is the average surface temperature

A is a constant 204 watt-m⁻²

B is a constant 2.17watt-m⁻²C⁻¹

 φ_i is the fractional cloud cover in each zone

Monte Carlo Simulation

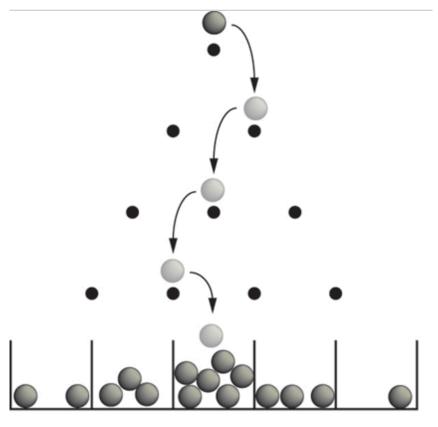


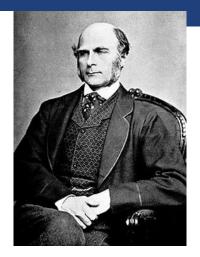
Stanislaw Ulam

- Was ist die Wahrscheinlichkeit dass ein lösbares Deck gespielt wird?
- → Zähle Anzahl erfolgreiche/nicht-erfolgreiche Spiele
- Je mehr Experimente desto genauer das Resultat
- → Das Gesetz der grossen Zahlen

Wir brauchen sehr, sehr ... sehr viele gute Zufallszahlen

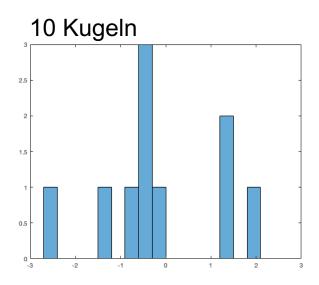
Beispiel einer Monte Carlo Simulation Das Galton-Brett

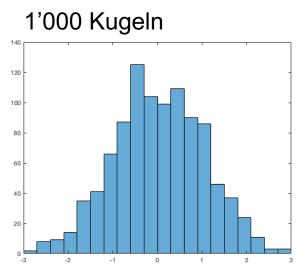


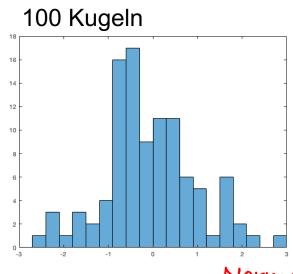


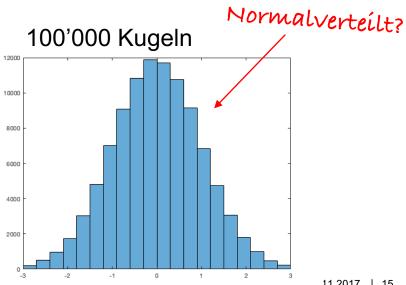
klassisches Galtonbrett

Galton Brett und das Gesetz der grossen Zahlen





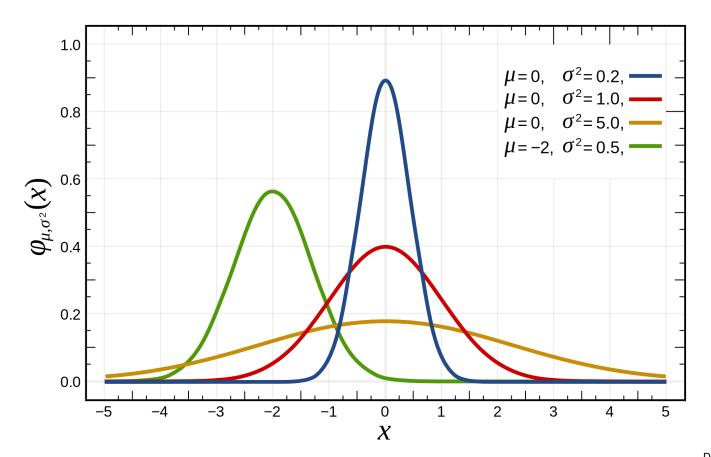




Normalverteilung

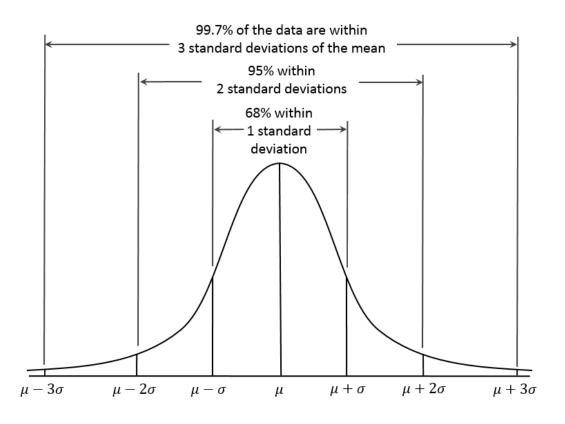
$$\varphi_{\mu,\sigma^2}(x) = \frac{1}{\sqrt{2\sigma^2\pi}} e^{-\frac{(x-\mu)^2}{2\sigma^2}}$$

Mittelwert Varianz Standardabweichung

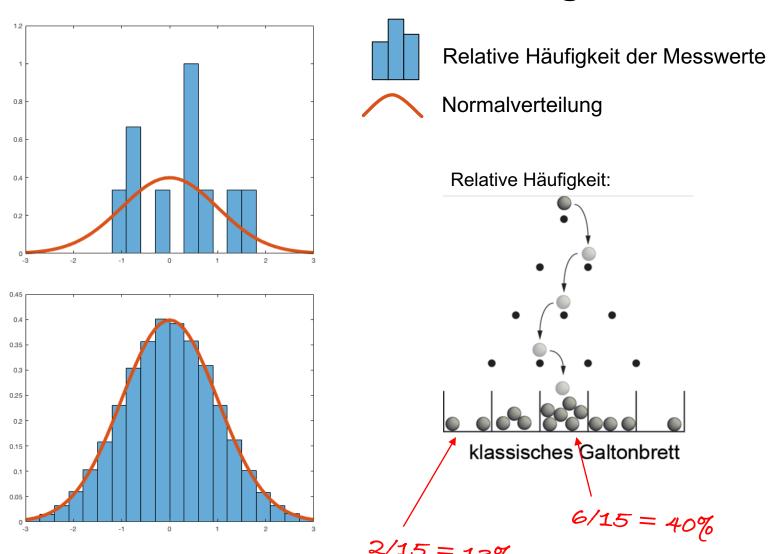


Normalverteilung

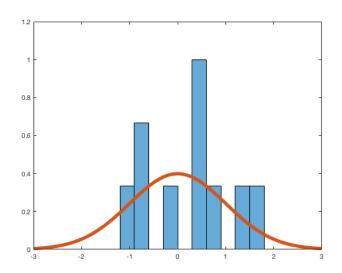
$$\varphi_{\mu,\sigma^2}\left(x\right) = \frac{1}{\sqrt{2\sigma^2\pi}} e^{-\frac{(x-\mu)^2}{2\sigma^2}} \qquad \qquad \begin{array}{ccc} \mu & \text{Mittelwert} \\ \sigma^2 & \text{Varianz} \\ \sigma & \text{Standardabweichung} \end{array}$$

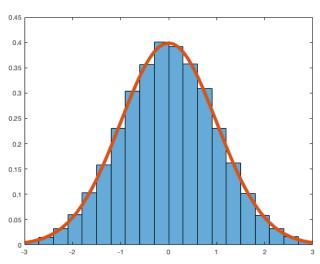


Galton Brett und das Gesetz der grossen Zahlen



Galton Brett und das Gesetz der grossen Zahlen





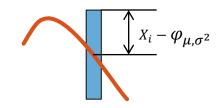
Relative Häufigkeit der Messwerte

Normalverteilung

Gesetz der grossen Zahlen:

Mit zunehmender Anzahl unabhängiger Experimente unter gleichbleibenden Bedingungen stabilisiert sich die relative Häufigkeit der Messwerte um die theoretischen Wahrscheinlichkeit.

$$\overline{X_n} = \frac{1}{n} \sum_{i=1}^{n} (X_i - \varphi_{\mu,\sigma^2})$$



$$\lim_{n\to\infty} P(|\overline{X_n}| > \varepsilon) = 0$$

$$Z.B: 1\%$$

$$\varepsilon > 0$$

Echte Zufallszahlen

Generiert aufgrund Beobachtung echt zufälliger Ereignisse:

- Zeitabstände des Alpha-Zerfalls von Atomen
- Varianz im atmosphärisches Rauschen
- Rauschen von verpolten Dioden
- Zeitabstände zwischen Maus-Klicks
- Unregelmässigkeiten beim Tippen
- Zeitliche Abfolge ankommender Datenpackete aus dem Internet

Vorteile:

- Unabhängige Zahlenreihen
- Keine Periodizität
- Selbst mit beliebigem Aufwand nicht vorhersehbar

Nachteile

- Langsam
- Teuer (je nachdem)
- Nicht reproduzierbar

Pseudo Zufallszahlen

Berechnet mittels einem deterministischen Algorithmus:

- Initialisiert mit einem Anfangswert (Seed)
- Jede Zufallszahl in der Reihe wird aufgrund der davor generierten Zufallszahl(en) berechnet

Vorteile:

- Schnell
- Erfordert kein Zugang zu externen Systemen
- Reproduzierbar

Nachteile

- Mit genügend Aufwand vorhersehbar (ungeeignet zum Verschlüsseln)
- Nicht immer genuegend Unabhaengig

Anwendungsbereiche von Zufallszahlen

	Echte Zufallszahlen	Pseudo- Zufallszahlen
Simulationen	✓ (zu langsam)	✓
Mathematische Applikationen	✓ (zu langsam)	•
Software Engineering	(nicht reproduzierbar)	✓
Verschlüsselung	✓	✗ (vorhersehbar)

Echt zufällig oder generiert?

8, 1, 7, 5, 15, 15, 10, 6, 11, 11, 21, 14, 14, 4, ...

Ja, echte Zufallszahlen

RANDOM.ORG

True Random Number Service

Do you own an iOS or Android device? Check out our app!

Random Integer Generator

Here are your random numbers:

12

11

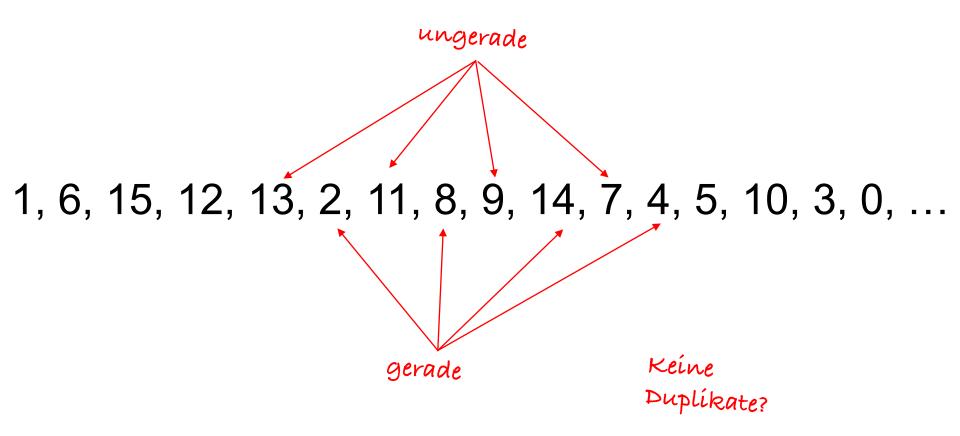
12

14

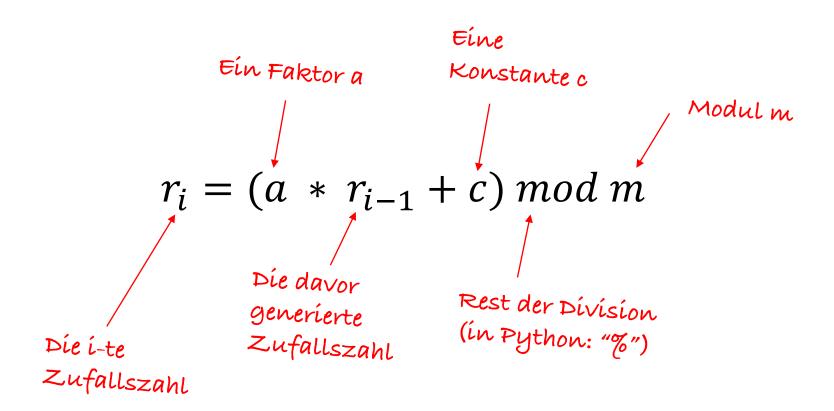
14

Timestamp: 2016-11-09 23:22:13 UTC

Echt zufällig oder generiert?



Der Lineare Kongruenzgenerator



Der Lineare Kongruenzgenerator

$$r_i = (\mathbf{5} * r_{i-1} + \mathbf{1}) \mod \mathbf{16}$$
 $1 = (\mathbf{5} * 0 + \mathbf{1}) \mod \mathbf{16}$
 $6 = (\mathbf{5} * 1 + \mathbf{1}) \mod \mathbf{16}$
 $15 = (\mathbf{5} * 6 + \mathbf{1}) \mod \mathbf{16}$
 $12 = (\mathbf{5} * 15 + \mathbf{1}) \mod \mathbf{16}$

1, 6, 15, 12, 13, 2, 11, 8, 9, 14, 7, 4, 5, 10, 3, 0, 1, 6, 15, ...

Ab hier wiederholt sich die Reihe

Der Lineare Kongruenzgenerator

$$r_i = (65539 * r_{i-1} + \mathbf{0}) \bmod 2^{32}$$

"RANDU"

- Extrem schnell
- Früher sehr verbreitet
- Problem:
- Korrelation zwischen drei aufeinanderfolgenden Punkten

Erst mal: Wie funktioniert denn der 'interne' Random Generator?

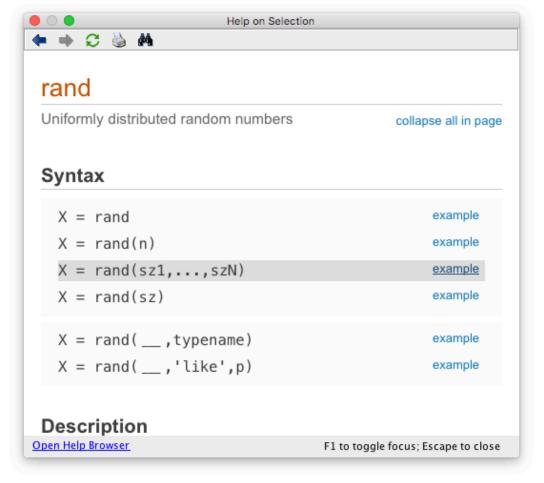
```
Command Window

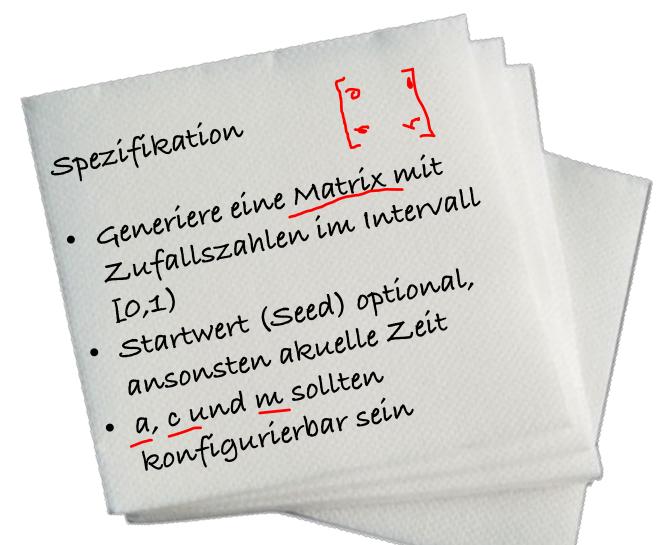
>> rand(3,2)

ans =

0.9822  0.8389
 0.7336  0.8006
 0.8090  0.5273

fx →> |
```






```
r = mod(seed, m);
Startwert: z.B aktuelle uhrzeit
r = mod(a*r + c, m);
disp(r/m)
r = mod(a*r + c, m);
disp(r/m)
```

$$r_i = (a * r_{i-1} + c) \bmod m$$

spezifikation

Generiere eine Matrix mit

Generiere eine Matrix mit

Zufallszahlen im Intervall

Zufallszahlen im Intervall

[0,1)

Startwert (Seed) optional,

ansonsten akuelle Zeit

ansonsten akuelle Zeit

ansonsten akuelle Zeit

konfigurierbar sein

konfigurierbar sein


```
r = mod(seed, m);
```

```
r_i = (a * r_{i-1} + c) \bmod m
```

```
for row = 1:rows
    for col = 1:columns
        r = mod(a*r + c, m);
        Result(row, col) = r/m;
end
end
```

spezifikation · Generiere eine Matrix mit Zufallszahlen im Intervall · Startwert (Seed) optional, ansonsten akuelle Zeit · a, c und m sollten konfigurierbar sein


```
r_i = (a * r_{i-1} + c) \mod m
r = mod(seed, m);
Result = zeros(rows, columns);
for row = 1:rows
    for col = 1:columns
        r = mod(a*r + c, m);
        Result(row, col) = r/m;
    end
end
```

```
spezifikation
 · Generiere eine Matrix mit
   Zufallszahlen im Intervall
  · Startwert (Seed) optional,
     ansonsten akuelle Zeit
   · a, c und m sollten
     konfigurierbar sein
```

```
function Result = lcg(rows, columns, seed, a, c, m)
    r = mod(seed, m);
    Result = zeros(rows, columns);
    for row = 1:rows
        for col = 1:columns
            r = mod(a*r + c, m);
                                        spezifikation
            Result(row, col) = r/m;
        end
    end
```

end

spezifikation

Generiere eine Matrix mit

Jufallszahlen im Intervall

Zufallszahlen im Intervall

[0,1)

Startwert (Seed) optional,

ansonsten akuelle Zeit

ansonsten akuelle Zeit

ansonsten akuelle Zeit

konfigurierbar sein

konfigurierbar sein

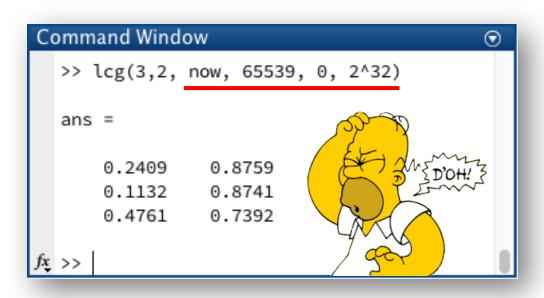

```
function Result = lcg(rows, columns, seed, a, c, m)

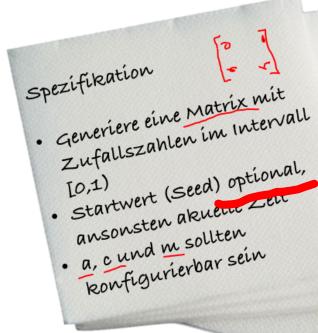
r = mod(seed, m);

Result = zeros(rows, columns);

for row = 1:rows
    for col = 1:columns
        r = mod(a*r + c, m);
        Result(row, col) = r/m;
    end
end
```

end





```
function Result = lcg(rows, columns, seed, a, c, m)
    if ~exist('seed', 'var')
         seed = now;
    end
    r = mod(seed, m);
    Result = zeros(rows, columns);
                                               spezifikation
                                               · Generiere eine Matrix mit
    for row = 1:rows
                                                 Zufallszahlen im Intervall
         for col = 1:columns
               r = mod(a*r + c, m);

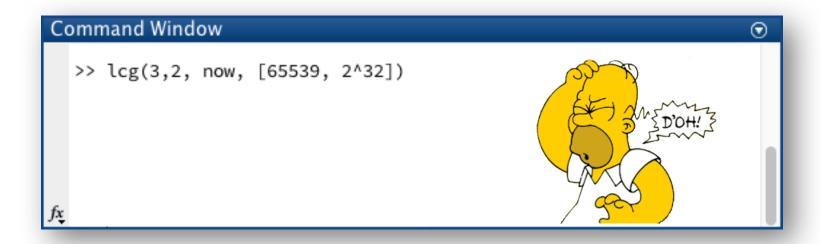
    Startwert (Seed) optional,

              Result(row, col) = r/m;
                                                  ansonsten akuelle Zeit
          end
                                                 · a, c und m sollten
                                                   konfigurierbar sein
    end
```



```
function Result = lcg(rows, columns, seed, config)
    if ~exist('seed', 'var')
         seed = now;
                                                 optional: [a, c, m]
    end
    if exist('config','var')
         a = config(1);
         c = config(2);
         m = config(3);
                              Command Window
                                                                    ◐
    else
                                >> lcg(3,2)
         % Default: RANDU
         a = 65539;
                                ans =
         C = 0;
         m = 2^32;
                                              0.888
                                    0.2409
    end
                                             0.5724
                                    0.2830
                                              0.5169
                                    0.4812
                              f_{\underline{x}} >>
```


Wie sieht's aus bei fehlerhaften Eingaben?




```
if exist('config','var')
    dim = size(config);
    if (dim(2) \sim 3)
         error('Die Konfiguration muss eine Matrix der Form [ a c m ] sein.')
    end
    a = config(1);
    c = config(2);
    m = config(3);
else
Command Window
```

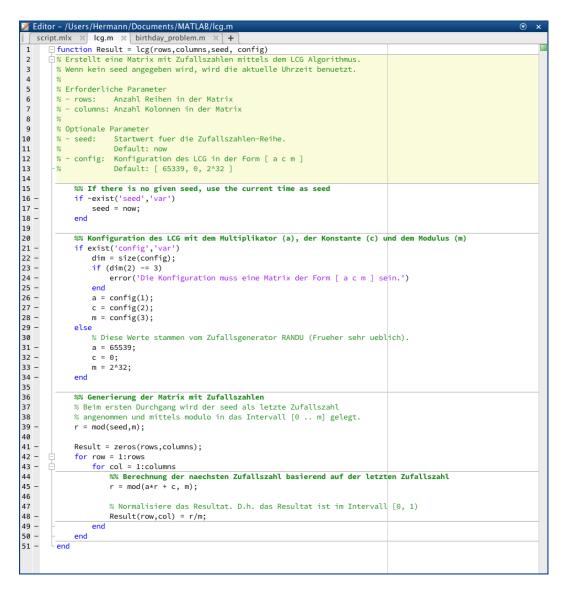
```
>> lcg(3,2, now, [65539, 2^32])
Error using lcg (line 23)
Die Konfiguration muss eine Matrix der Form [ a c m ] sein.
```

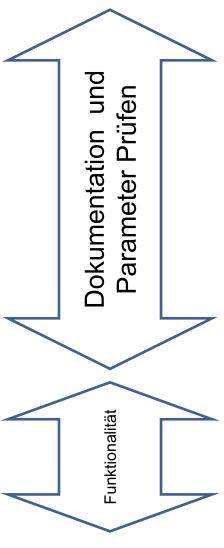

Hilfe für den Anwender?

```
Command Window
  >> help lcg
  No help found for lcg.m.
fx >>
```

function Result = lcg(rows, columns, seed, config)

```
% Erstellt eine Matrix mit Zufallszahlen mittels dem LCG Algorithmus.
% Wenn kein seed angegeben wird, wird die aktuelle Uhrzeit benuetzt.
% Erforderliche Parameter
% - rows: Anzahl Reihen in der Matrix
% - columns: Anzahl Kolonnen in der Matrix
% Optionale Parameter
% - seed: Startwert fuer die Zufallszahlen-Reihe.
              Default: now
% - config: Konfiguration des LCG in der Form [ a c m ]
              Default: Γ 65339, 0, 2^32 7
     if ~exist('seed', 'var')
           seed = now;
     end
               Command Window
                 >> help lcg
                   Erstellt eine Matrix mit Zufallszahlen mittels dem lcg Algorithmus.
      . . .
                   Wenn kein seed angegeben wird, wird die aktuelle Uhrzeit benuetzt.
                   Erforderliche Parameter
                            Anzahl Reihen in der Matrix
                   - columns: Anzahl Kolonnen in der Matrix
                   Optionale Parameter
                            Startwert fuer die Zufallszahlen-Reihe.
                   - seed:
                            Default: now
                   - config: Konfiguration des lcg in der Form [ a c m ]
                            Default: [ 65339, 0, 2^32 ]
```



Echt zufällig oder generiert?

1, 6, 15, 12, 13, 2, 11, 8, 9, 14, 7, 4, 5, 10, 3, 0, ...

Keine Duplikate?

Das Geburtstags-Problem

Die Klasse meiner Tochter hat 23 Kinder (und zwei Lehrpersonen) Wie gross ist die Wahrscheinlichkeit, dass zwei oder mehr Kinder am gleichen Tag Geburtstag haben?

0-2%

2-5%

5-10%

10-20%

20-40%

40-60%

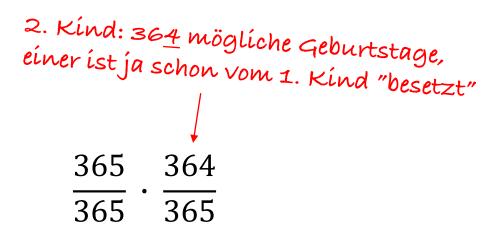
> 60%

Viel einfacher zu berechnen:

Wie gross ist die Wahrscheinlichkeit, dass jedes Kind einen unterschiedlichen Tag Geburtstag hat.

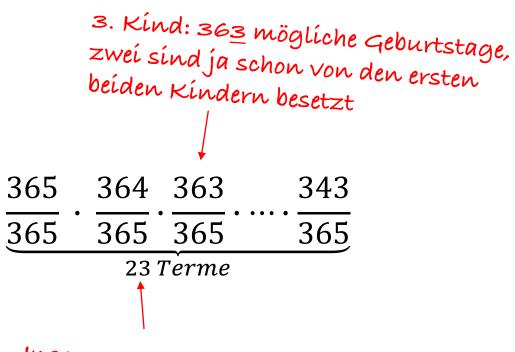
Viel einfacher zu berechnen:

Wie gross ist die Wahrscheinlichkeit, dass jedes Kind einen unterschiedlichen Tag Geburtstag hat.



Viel einfacher zu berechnen:

Wie gross ist die Wahrscheinlichkeit, dass jedes Kind einen unterschiedlichen Tag Geburtstag hat.



Insgesamt 23 Kinder

Daraus folgt...

Die Wahrscheinlichkeit für zwei oder mehr Kinder mit dem gleichen Geburtstag ist also 100% minus die berechnete Wahrscheinlichkeit:

$$1 - \left(\frac{365}{365} \cdot \frac{364}{365} \cdot \frac{363}{365} \cdot \dots \cdot \frac{343}{365}\right) = 50.7\%$$

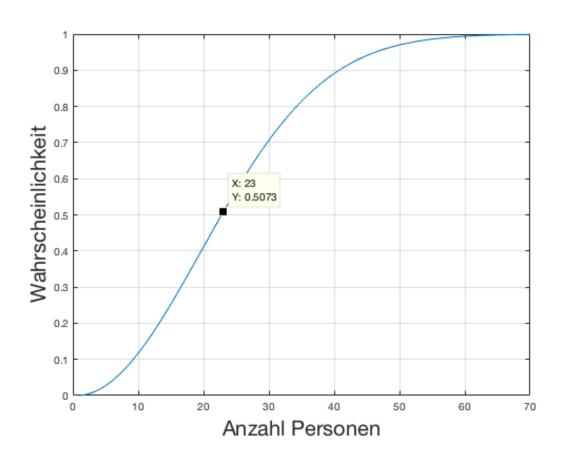
Berechnung der Wahrscheinlichkeit in Matlab

- Wir wollen diese Berechnung in Matlab machen
- Nicht nur für 23 Kinder, sondern für alle Gruppen-Grössen von 1 bis n (z.B. 70)
- Die Wahrscheinlichkeit grafisch darstellen

Berechnung der Wahrscheinlichkeit in Matlab

```
% Anzahl Tage im Jahr
d = 365;
% Was soll die groesste Gruppe sein, welche betrachtet wird
max_people = 70;
N = 1 : max_people;
% Initialisierung aller Wahrscheinlichkeiten auf 1 (neutrales Element der
% Multiplikation)
P = ones(1, max_people);
% Klein n geht also von 1 .. max_people.
% Fuer jedes n berechnen wir die gesuchte Wahrscheinlichkeit.
for n = N
    % Berechnung der Reihe 365/365 * 364/365 * ... * (365 - n + 1)/365
    for i = 1 : n
        P(n) = P(n) * (d - i + 1) / d;
    end
    % Das Resultat ist die inverse Wahrscheinlichkeit
    P(n) = 1 - P(n):
end
plot(P)
arid on
xlabel('Anzahl Personen', 'FontSize', 20)
ylabel('Wahrscheinlichkeit', 'FontSize', 20)
```


Berechnung der Wahrscheinlichkeit in Matlab



Kontrolle ist besser als Vertrauen

Wie können wir kontrollieren, ob das wirklich stimmt?

→ Sehr sehr viele Klassen besuchen und die Resultate auswerten

Kontrolle ist besser als Vertrauen

Wie können wir kontrollieren, ob das wirklich stimmt?

→ Monte Carlo Simulation!

d = 365;

Monte Carlo Simulation in Matlab

your Task! $max_people = 70;$ $at_least = 2;$ experiments = 100; % Simuli it pro Tag N = 1: P sim =0.9 for n =succ 8.0 for **Wahrscheinlichkeit** X: 23 Y: 0.5071

40

Anzahl Personen

50

60

70

% Zeichr plot(P_s axis([0

end

end

P_si

0.2

0.1

grid on xlabel('Anzahl Personen', 'FontSize', 20) ylabel('Wahrscheinlichkeit', 'FontSize', 20)

10

20

30

n Wahrscheinlichkeit