
14. Hashing

Hash Tables, Pre-Hashing, Hashing, Resolving Collisions using Chaining,
Simple Uniform Hashing, Popular Hash Functions, Table-Doubling, Open
Addressing: Probing, Uniform Hashing [Ottman/Widmayer, Kap. 4.1-4.3.2,
4.3.4, Cormen et al, Kap. 11-11.4]

370

Introductory Example

Gloal: E�cient management of a table of all n ETH students.

Requirement: Fast access (insertion, removal, �nd) of a dataset by name.

371

Dictionary

Abstract Data Type (ADT) D to manage items16 i = (k, v) with keys k ∈ K
with operations:

insert(D, i): Insert or replace i in the dictionary D.
delete(D, i): Delete i from the dictionary D. Not existing⇒ error
message.
search(D, k): Returns item with key k if it exists.

16Key-value pairs (k, v), in the following we consider mainly the keys
372

Dictionary in C++
Associative Container std::unordered_map<>

// Create an unordered_map of strings that map to strings
std::unordered_map<std::string, std::string> colours = {

{"RED","#FF0000"}, {"GREEN","#00FF00"}
};

colours["BLUE"] = "#0000FF"; // Add

std::cout << "The hex value of color red is: "
<< colours["RED"] << "\n";

for (const auto& entry : colours) // iterate over key-value pairs
std::cout << entry.first << ": " << entry.second << ’\n’;

373

Motivation/Applications
Perhaps the most popular data structure.
Supported in many programming languages (C++, Python, Javascript,
Java, C#, Ruby, . . .)
Obvious use

Databases
Symbol tables in compilers and interpreters
Objects in dynamically typed languages, e.g. Python, Javascript

Less obvious
Substring search (z.B. Rabin-Karp)
String similarity (e.g. comparing documents, DNA)
File synchronisation (e.g. git, rsync)
Cryptography (e.g. identi�cation, authenti�cation)

374

Idea: Keys as Indices

Index Item
0 -
1 -
2 -
3 [3,value(3)]
4 -
5 -
...

...
k [k,value(k)]
...

...

Problems
1. Keys must be non-negative integers
2. Large key-range⇒ large array

375

Solution to the �rst problem: Prehashing

Prehashing: Map keys to positive integers using a function ph : K → N

Theoretically always possible because each key is stored as a
bit-sequence in the computer
Theoretically also: x = y ⇔ ph(x) = ph(y)
In practice: APIs o�er functions for pre-hashing (Java:
object.hashCode(), C++: std::hash<>, Python: hash(object))
APIs map the key from the key set to an integer with a restricted size17

17Therefore the implication ph(x) = ph(y)⇒ x = y does not hold any more for all x,y.
376

Prehashing Example: String

Mapping Name s = s1s2 . . . sls to key

ph(s) =
 ls∑
i=1

si · bi
 mod 2w

b so that di�erent names map to di�erent keys as far as possible.
b Word-size of the system (e.g. 32 or 64)

Example with b = 31, w = 32, ASCII values si
Anna 7→ 92966272
Anne 7→ 96660356
Heinz-Harald 7→ 81592996699304236533 mod 232 = 631641589

377

Solution to the second problem: Hashing
Reduce the universe. Map (hash-function) h : K → {0, ...,m− 1} (m ≈ n =
number entries of the table)

Collision: h(ki) = h(kj).
378

Nomenclature

Hash function h: Mapping from the set of keys K to the index set
{0, 1, . . . ,m− 1} of an array (hash table).

h : K → {0, 1, . . . ,m− 1}.

Usually |K| � m. There are k1, k2 ∈ K with h(k1) = h(k2) (collision).

A hash function should map the set of keys as uniformly as possible to the
hash table.

379

Examples of popular Hash Functions

Division method
h(k) = k mod m

Ideal: m prime number, not too close to powers of 2 or 10
(see e.g. Cormen et al. “Introduction to Algorithms”, Donald E. Knuth “The
Art of Computer Programming”).

But often: m = 2r − 1 (r ∈ N), due to growing tables by doubling (more
later).

380

Examples of popular Hash Functions

Multiplication method

h(k) =
⌊
(a · k mod 2w)/2w−r

⌋
mod m

A good value of a:
⌊√

5−1
2 · 2w

⌋
: Integer that represents the �rst w bits of the

fractional part of the irrational number.

Table size m = 2r , w = size of the machine word in bits.

Multiplication adds k along all bits of a, integer division by 2w−r and mod m
extract the upper r bits.

Written as code very simple: a * k >> (w-r)

381

Illustration

k

×
k

a1 1 1

k

k

k

+

+

= ← r bits→

← r bits→0>> (w − r)

w bits← →

382

Resolving Collisions: Chaining

m = 7, K = {0, . . . , 500}, h(k) = k mod m.

Keys 12 , 55 , 5 , 15 , 2 , 19 , 43
Direct Chaining of the Colliding entries

15

43

2 12

5

19

55

hash table

Colliding entries

0 1 2 3 4 5 6

383

Algorithm for Hashing with Chaining

Let H be a hash table with collision lists.
insert(H, i) Check if key k of item i is in list at position h(k). If no, then
append i to the end of the list. Otherwise replace element by i.
find(H, k) Check if key k is in list at position h(k). If yes, return the data
associated to key k, otherwise return empty element null.
delete(H, k) Search the list at position h(k) for k. If successful, remove
the list element.

384

Worst-case Analysis

Worst-case: all keys are mapped to the same index.
⇒ Θ(n) per operation in the worst case.

385

Simple Uniform Hashing

Strong Assumptions: Each key will be mapped to one of the m available
slots

with equal probability (uniformity)
and independent of where other keys are hashed (independence).

386

Simple Uniform Hashing

Under the assumption of simple uniform hashing:
Expected length of a chain when n elements are inserted into a hash
table with m elements

E(Length of Chain j) = E

(
n−1∑
i=0
1(h(ki) = j)

)
=

n−1∑
i=0
P(h(ki) = j)

=
n∑
i=1

1
m

= n

m

α = n/m is called load factor of the hash table.

387

Simple Uniform Hashing

Theorem 17
Let a hash table with chaining be �lled with load factor α = n

m
< 1.

Under the assumption of simple uniform hashing, the next operation
has expected costs of Θ(1 + α).

Consequence: if the number slots m of the hash table is always at least
proportional to the number of elements n of the hash table, n ∈ O(m)⇒
Expected Running time of Insertion, Search and Deletion is O(1).

388

Further Analysis (directly chained list)

1. Unsuccesful search. The average list lenght is α = n
m
. The list has to

be traversed entirely.
⇒ Average number of entries considered

C ′n = α.

2. Successful search. Consider the insertion history: key j sees an
average list length of (j − 1)/m.
⇒ Average number of considered entries

Cn = 1
n

n∑
j=1

(1 + (j − 1)/m)) = 1 + 1
n

n(n− 1)
2m ≈ 1 + α

2 .

389

Advantages and Disadvantages of Chaining

Advantages:
Load factor greater 1 possible (more entries than hash table slots)
Removing keys is straightforward (relative to alternative introduced
later)

Disadvantages:
Linear runtime in case of degenerated hash tables with long collision
chains
(Memory consumption of the chains)

Better: reduce probability of collisions

390

[Variant:Indirect Chaining]

Example m = 7, K = {0, . . . , 500}, h(k) = k mod m.
Keys 12 , 55 , 5 , 15 , 2 , 19 , 43
Indirect chaining of colliding entries

15

43

2 12

5

19

55hash table

Colliding entries

0 1 2 3 4 5 6

391

Table size increase

We do not know beforehand how large n will be
We would like m = Θ(n) at all times (hash table size m linearly
dependent on no. of entries n, i.e. not arbitrarily large)

Adjust table size→ Hash function changes→ rehashing
Allocate array A′ with size m′ > m

Insert each entry of A into A′ (with re-hashing the keys)
Set A← A′

Costs Θ(n+m+m′)

How to choose m′?

392

Table size increase

Double the table size, depending on the load factor.
⇒ Amortized analysis yields: Each operation of hashing with chaining has
expected amortized costs Θ(1).

393

Open Addressing

Store the colliding entries directly in the hash table using a probing
function s : K × {0, 1, . . . ,m− 1} → {0, 1, . . . ,m− 1}
Key table position along a probing sequence

S(k) := (s(k, 0), s(k, 1), . . . , s(k,m− 1)) mod m

Probing sequence must for each k ∈ K be a permutation of
{0, 1, . . . ,m− 1}

Notational clari�cation: this method uses open addressing (meaning that the positions in
the hash table are not �xed), but it is nonetheless a closed hashing procedure (entries
stay in the hash table).

394

Algorithms for open addressing

Let H be a hash table (without collision lists).
insert(H, i) Search for kes k of i in the table according to S(k). If k is
not present, insert k at the �rst free position in the probing sequence.
Otherwise error message.
find(H, k) Traverse table entries according to S(k). If k is found, return
data associated to k. Otherwise return an empty element null.
delete(H, k) Search k in the table according to S(k). If k is found,
replace it with a special key removed.

395

Linear Probing

s(k, j) = h(k) + j ⇒ S(k) = (h(k), h(k) + 1, . . . , h(k) +m− 1) mod m

m = 7, K = {0, . . . , 500}, h(k) = k mod m.

Key 12 , 55 , 5 , 15 , 2 , 19

0 1 2 3 4 5 6

12 555 15 2 19

396

[Analysis linear probing (without proof)]

1. Unsuccessful search. Average number of considered entries

C ′n ≈
1
2

(
1 + 1

(1− α)2

)

2. Successful search. Average number of considered entries

Cn ≈
1
2

(
1 + 1

1− α

)
.

397

Discussion

Example α = 0.95

The unsuccessful search consideres 200 table entries on average!
(Here without derivation.).

Disadvantage of the method?

Primary clustering: similar hash addresses have similar probing se-
quences⇒ long contiguous areas of used entries.

398

Quadratic Probing

s(k, j) = h(k) + dj/2e2(−1)j+1

S(k) = (h(k), h(k) + 1, h(k)− 1, h(k) + 4, h(k)− 4, . . .) mod m

m = 7, K = {0, . . . , 500}, h(k) = k mod m.

Keys 12 , 55 , 5 , 15 , 2 , 19

0 1 2 3 4 5 6

12 55515 219

399

[Analysis Quadratic Probing (without Proof)]

1. Unsuccessful search. Average number of entries considered

C ′n ≈
1

1− α − α + ln
(1

1− α

)

2. Successful search. Average number of entries considered

Cn ≈ 1 + ln
(1

1− α

)
− α

2 .

400

Discussion

Example α = 0.95

Unsuccessfuly search considers 22 entries on average
(Here without derivation.)

Problems of this method?

Secondary clustering: Synonyms k and k′ (with h(k) = h(k′)) travers the
same probing sequence.

401

Double Hashing

Two hash functions h(k) and h′(k). s(k, j) = h(k) + j · h′(k).
S(k) = (h(k), h(k) + h′(k), h(k) + 2h′(k), . . . , h(k) + (m− 1)h′(k)) mod m

m = 7, K = {0, . . . , 500}, h(k) = k mod 7, h′(k) = 1 + k mod 5.

Keys 12 , 55 , 5 , 15 , 2 , 19

0 1 2 3 4 5 6

12 555 15 2 19

402

Double Hashing

Probing sequence must permute all hash addresses. Thus h′(k) 6= 0 and
h′(k) may not divide m, for example guaranteed with m prime.
h′ should be as independent of h as possible (to avoid secondary
clustering)

Independence:

P
(
(h(k) = h(k′)) ∧ (h′(k) = h′(k′))

)
= P

(
h(k) = h(k′)

)
·P
(
h′(k) = h′(k′)

)
.

Independence largely ful�lled by h(k) = k mod m and h′(k) = 1 + k mod
(m− 2) (m prime).

403

[Analysis Double Hashing]

Let h and h′ be independent, then:
1. Unsuccessful search. Average number of considered entries:

C ′n ≈
1

1− α

2. Successful search. Average number of considered entries:

Cn ≈
1
α

ln
(1

1− α

)

404

Uniform Hashing

Strong assumption: the probing sequence S(k) of a key l is equaly likely to
be any of the m! permutations of {0, 1, . . . ,m− 1}
(Double hashing is reasonably close)

405

Analysis of Uniform Hashing with Open Addressing

Theorem 18
Let an open-addressing hash table be �lled with load-factor α = n

m
<

1. Under the assumption of uniform hashing, the next operation has
expected costs of ≤ 1

1−α .

406

Analysis: Proof of the theorem
Random Variable X : Number of probings when searching without success.

P(X ≥ i) ∗= n

m
· n− 1
m− 1 ·

n− 2
m− 2 · · ·

n− i+ 2
m− i+ 2

∗∗
≤
(n
m

)i−1
= αi−1. (1 ≤ i ≤ m)

* : Event Aj : slot used during step j.
P(A1 ∩ · · · ∩Ai−1) = P(A1) ·P(A2|A1) · ... ·P(Ai−1|A1 ∩ · · · ∩Ai−2),

** : n−1
m−1 <

n
m because n < m: n−1

m−1 <
n
m ⇔

n−1
n < m−1

m ⇔ 1− 1
n < 1− 1

m ⇔ n < m

(n > 0,m > 0)

Moreover P(x ≥ i) = 0 for i ≥ m. Therefore

E(X) Appendix=
∞∑

i=1
P(X ≥ i) ≤

∞∑
i=1

αi−1 =
∞∑

i=0
αi = 1

1− α.

407

[Successful search of Uniform Open Hashing]

Theorem 19

Let an open-addressing hash table be �lled with load-factor α = n
m
< 1.

Under the assumption of uniform hashing, the successful search has
expected costs of ≤ 1

α
· log 1

1−α .

Proof: Cormen et al, Kap. 11.4

408

Overview

α = 0.50 α = 0.90 α = 0.95

Cn C ′n Cn C ′n Cn C ′n

(Direct) Chaining 1.25 0.50 1.45 0.90 1.48 0.95

Linear Probing 1.50 2.50 5.50 50.50 10.50 200.50

Quadratic Probing 1.44 2.19 2.85 11.40 3.52 22.05

Uniform Hashing 1.39 2.00 2.56 10.00 3.15 20.00

α: load factor.
Cn: Number steps successful search,
C ′n: Number steps unsuccessful search

409

14.8 Appendix

Some mathematical formulas

410

[Birthday Paradox]

Assumption: m urns, n balls (wlog n ≤ m).
n balls are put uniformly distributed into the urns

What is the collision probability?
Birthdayparadox: with how many people (n) the probability that two of
them share the same birthday (m = 365) is larger than 50%?

411

[Birthday Paradox]

P(no collision) = m
m
· m−1

m
· · · · · m−n+1

m
= m!

(m−n)!·mm .

Let a� m. With ex = 1 + x+ x2

2! + . . . approximate 1− a
m
≈ e−

a
m . This yields:

1 ·
(

1− 1
m

)
·
(

1− 2
m

)
· ... ·

(
1− n− 1

m

)
≈ e−

1+···+n−1
m = e−

n(n−1)
2m .

Thus
P(Kollision) = 1− e−

n(n−1)
2m .

Puzzle answer: with 23 people the probability for a birthday collision is 50.7%. Derived
from the slightly more accurate Stirling formula. n! ≈

√
2πn · nn · e−n

412

[Formula for Expected Value]

X ≥ 0 discrete random variable with E(X) <∞

E(X) (def)=
∞∑
x=0

xP(X = x)

Counting=
∞∑
x=1

∞∑
y=x

P(X = y)

=
∞∑
x=0

P(X > x)

413

	Hashing
	Dictionaries
	Prehashing, Hash Functions and Tables
	Hash Functions
	Chaining Collisions
	Dynamic Table Size
	Open Addressing
	Overview
	Appendix

