11. Fundamental Data Structures

Abstract data types stack, queue, implementation variants for linked lists [Ottman/Widmayer, Kap. 1.5.1-1.5.2, Cormen et al, Kap. 10.1.-10.2]

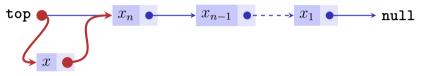
Abstract Data Types

We recall

A **stack** is an abstract data type (ADR) with operations

- **push**(x, S): Puts element x on the stack S.
- \blacksquare pop(S): Removes and returns top most element of S or null
- \blacksquare top(S): Returns top most element of S or null.
- **isEmpty**(S): Returns **true** if stack is empty, **false** otherwise.
- emptyStack(): Returns an empty stack.

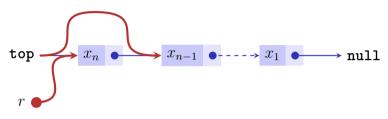
Implementation Push



push(x, S):

- 1. Create new list element with x and pointer to the value of top.
- 2. Assign the node with x to **top**.

Implementation Pop



pop(S):

- 1. If top=null, then return null
- 2. otherwise memorize pointer p of top in r.
- 3. Set **top** to p.next and return r

Analysis

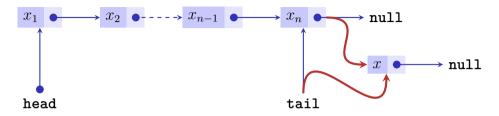
Each of the operations **push**, **pop**, **top** and **isEmpty** on a stack can be executed in $\mathcal{O}(1)$ steps.

Queue (fifo)

A queue is an ADT with the following operations

- **enqueue**(x, Q): adds x to the tail (=end) of the queue.
- **dequeue**(Q): removes x from the head of the queue and returns x (**null** otherwise)
- **head**(Q): returns the object from the head of the queue (**null** otherwise)
- **isEmpty**(Q): return **true** if the queue is empty, otherwise **false**
- emptyQueue(): returns empty queue.

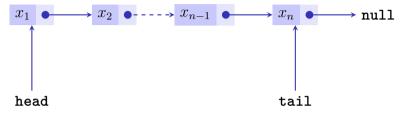
Implementation Queue



enqueue(x, S):

- 1. Create a new list element with x and pointer to **null**.
- 2. If $tail \neq null$, then set tail.next to the node with x.
- 3. Set **tail** to the node with x.
- 4. If head = null, then set head to tail.

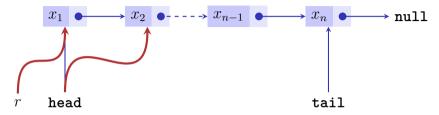
Invariants



With this implementation it holds that

- \blacksquare either **head** = **tail** = **null**,
- lacktriangledown or $\mathtt{head} = \mathtt{tail} \neq \mathtt{null}$ and $\mathtt{head}.\mathtt{next} = \mathtt{null}$
- or head \neq null and tail \neq null and head \neq tail and head.next \neq null.

Implementation Queue



dequeue(S):

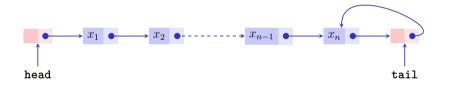
- 1. Store pointer to **head** in r. If r =**null**, then return r .
- 2. Set the pointer of head to head.next.
- 3. Is now head = null then set tail to null.
- 4. Return the value of r.

Analysis

Each of the operations enqueue, dequeue, head and is Empty on the queue can be executed in $\mathcal{O}(1)$ steps.

Implementation Variants of Linked Lists

List with dummy elements (sentinels).



Advantage: less special cases

Variant: like this with pointer of an element stored singly indirect.

(Example: pointer to x_3 points to x_2 .)

Implementation Variants of Linked Lists

Doubly linked list

Overview

	enqueue	delete	search	concat
(A)	$\Theta(1)$	$\Theta(n)$	$\Theta(n)$	$\Theta(n)$
(B)	$\Theta(1)$	$\Theta(n)$	$\Theta(n)$	$\Theta(1)$
(C)	$\Theta(1)$	$\Theta(1)$	$\Theta(n)$	$\Theta(1)$
(D)	$\Theta(1)$	$\Theta(1)$	$\Theta(n)$	$\Theta(1)$

- (A) = singly linked
- (B) = Singly linked with dummy element at the beginning and the end
- (C) = Singly linked with indirect element addressing
- (D) = doubly linked

12. Amortized Analyis

Amortized Analysis: Aggregate Analysis, Account-Method, Potential-Method [Ottman/Widmayer, Kap. 3.3, Cormen et al, Kap. 17]

Multistack

Multistack adds to the stack operations **push** und **pop** $\mathbf{multipop}(k, S)$: remove the $\min(\mathsf{size}(S), k)$ most recently inserted objects and return them.

Implementation as with the stack. Runtime of **multipop** is $\mathcal{O}(k)$.

Academic Question

If we execute on a stack with n elements a number of n times $\operatorname{multipop}(\mathbf{k},\mathbf{S})$ then this costs $\mathcal{O}(n^2)$? Certainly correct because each $\operatorname{multipop}$ may take $\mathcal{O}(n)$ steps. How to make a better estimation?

Amortized Analysis

■ Upper bound: **average** performance of each considered operation in the **worst case**.

$$\frac{1}{n} \sum_{i=1}^{n} \mathsf{cost}(\mathsf{op}_i)$$

- Makes use of the fact that a few expensive operations are opposed to many cheap operations.
- In amortized analysis we search for a credit or a potential function that captures how the cheap operations can "compensate" for the expensive ones.

Aggregate Analysis

Direct argument: compute a bound for the total number of elementary operations and divide by the total number of operations.

Aggregate Analysis: (Stack)

- With n operations at most n elements can be pushed onto the stack. Therefore a maximum of n elements can be removed from the stack
- For the total costs we get

$$\sum_{i=1}^{n} \mathsf{cost}(\mathsf{op}_i) \le 2n$$

and thus

amortized
$$cost(op_i) \le 2 \in \mathcal{O}(1)$$

Accounting Method

Model

- The computer is driven with coins: each elementary operation of the machine costs a coin.
- For each operation op_k of a data structure, a number of coins a_k has to be put on an account A: $A_k = A_{k-1} + a_k$
- Use the coins from the account A to pay the true costs t_k of each operation.
- The account A needs to provide enough coins in order to pay each of the ongoing operations op_k : $A_k t_k \ge 0 \, \forall k$.
- $\Rightarrow a_k$ are the amortized costs of op_k .

Accounting Method (Stack)

- Each call of push costs 1 CHF and additionally 1 CHF will be deposited on the account. $(a_k = 2)$
- **Each** call to pop costs 1 CHF and will be paid from the account. $(a_k = 0)$ Account will never have a negative balance.

 $a_k < 2 \,\forall \, k$, thus: constant amortized costs.

Potential Method

Slightly different model

- Define a potential Φ_i that is associated to the state of a data structure at time i.
- The potential shall be used to level out expensive operations und therefore needs to be chosen such that it is increased during the (frequent) cheap operations while it decreases for the (rare) expensive operations.

Potential Method (Formal)

Let t_i denote the real costs of the operation op_i .

Potential function $\Phi_i \geq 0$ to the data structure after i operations.

Requirement: $\Phi_i \geq \Phi_0 \ \forall i$.

Amortized costs of the *i*th operation:

$$a_i := t_i + \Phi_i - \Phi_{i-1}.$$

It holds

$$\sum_{i=1}^{n} a_i = \sum_{i=1}^{n} (t_i + \Phi_i - \Phi_{i-1}) = \left(\sum_{i=1}^{n} t_i\right) + \Phi_n - \Phi_0 \ge \sum_{i=1}^{n} t_i.$$

Example stack

Potential function Φ_i = number element on the stack.

- **push**(x, S): real costs $t_i = 1$. $\Phi_i \Phi_{i-1} = 1$. Amortized costs $a_i = 2$.
- **pop**(S): real costs $t_i = 1$. $\Phi_i \Phi_{i-1} = -1$. Amortized costs $a_i = 0$.
- multipop(k, S): real costs $t_i = k$. $\Phi_i \Phi_{i-1} = -k$. amortized costs $a_i = 0$.

All operations have **constant amortized cost**! Therefore, on average Multipop requires a constant amount of time. ¹²

¹²Note that we are not talking about the probabilistic mean but the (worst-case) average of the costs.

Example Binary Counter

Given: counter with k bits. We count from 0 to n-1 where $n=2^k$.

Wanted: average counting costs as number bit-flips per operation

Naive: per operation maximally k bit-flips. Thus, in total $\mathcal{O}(n \cdot k)$ operations or $\mathcal{O}(\log n)$ bitflips per count operation on average.

Example Binary Counter

Real costs t_i = number bit flips from 0 to 1 plus number of bit-flips from 1 to 0.

$$...0\underbrace{1111111}_{l \text{Ones}} + 1 = ...1\underbrace{0000000}_{l \text{ Zeroes}}.$$

$$\Rightarrow t_i = l + 1$$

Binary Counter: Aggregate Analysis

Count the number of bit flips when counting from 0 to n-1.

Observation

■ Bit 0 flips each time

■ Bit 1 flips each 2. time

■ Bit 2 flips each 4. time

Thus, total number bit flips

 $\sum_{i=0}^{n-1} \frac{n}{2^i} \le n \cdot \sum_{i=0}^{\infty} \frac{1}{2^i} = 2n$

Amortized cost for operation: $\mathcal{O}(1)$ bit flips.

Binary Counter: Account Method

Observation: for each increment exactly one bit is incremented to 1, while many bits may be reset to 0. Only a bit that had previously been set to 1 can be reset to 0.

Amortised costs $a_i = 2$:

- 1 CHF real cost for setting $0 \mapsto 1$
- plus 1 CHF to deposit on the account.
- Every reset $1 \rightarrow 0$ can be paid from the account.

Binary Counter: Potential Method

...0
$$\underbrace{1111111}_{l \text{ ones}} + 1 = ...1 \underbrace{0000000}_{l \text{ zeros}}$$

potential function Φ_i : number of 1-bits of x_i .

$$0 = \Phi_0 \le \Phi_i \,\forall i,$$

$$\Phi_i - \Phi_{i-1} = 1 - l_i,$$

$$\Rightarrow a_i = t_i + \Phi_i - \Phi_{i-1}$$

$$= l_i + 1 + (1 - l_i)$$

$$= 2.$$

Amortized constant cost per count operation.

13. Dictionaries

Dictionary, Self-ordering List, Implementation of Dictionaries with Array / List /Skip lists. [Ottman/Widmayer, Kap. 3.3,1.7, Cormen et al, Kap. Problem 17-5]

Dictionary

ADT to manage keys from a set \mathcal{K} with operations

- insert(k, D): Insert $k \in \mathcal{K}$ to the dictionary D. Already exists \Rightarrow error messsage.
- **delete**(k, D): Delete k from the dictionary D. Not existing \Rightarrow error message.
- **search**(k, D): Returns **true** if $k \in D$, otherwise **false**

Idea

Implement dictionary as sorted array
Worst case number of fundamental operations

Search $\mathcal{O}(\log n)$ \bigcirc Insert $\mathcal{O}(n)$ \bigcirc Delete $\mathcal{O}(n)$

Other idea

Implement dictionary as a linked list Worst case number of fundamental operations

Search $\mathcal{O}(n)$ (a) Insert $\mathcal{O}(1)^{13}$ (b) Delete $\mathcal{O}(n)$ (b)

¹³Provided that we do not have to check existence.

13.1 Self Ordering

Self Ordered Lists

Problematic with the adoption of a linked list: linear search time **Idea:** Try to order the list elements such that accesses over time are possible in a faster way

For example

- Transpose: For each access to a key, the key is moved one position closer to the front.
- Move-to-Front (MTF): For each access to a key, the key is moved to the front of the list.

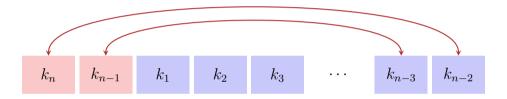
Transpose

Transpose:

Worst case: Alternating sequence of n accesses to k_{n-1} and k_n . Runtime: $\Theta(n^2)$

Move-to-Front

Move-to-Front:



Alternating sequence of n accesses to k_{n-1} and k_n . Runtime: $\Theta(n)$ Also here we can provide a sequence of accesses with quadratic runtime, e.g. access to the last element. But there is no obvious strategy to counteract much better than MTF.

Analysis

Compare MTF with the best-possible competitor (algorithm) A. How much better can A be?

Assumptions:

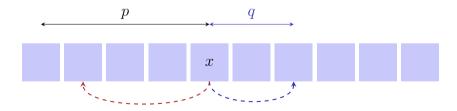
- MTF and A may only move the accessed element.
- MTF and A start with the same list.

Let M_k and A_k designate the lists after the kth step. $M_0 = A_0$.

Analysis

Costs:

- \blacksquare Access to x: position p of x in the list.
- \blacksquare No further costs, if x is moved before p
- lacktriangle Further costs q for each element that x is moved back starting from p.



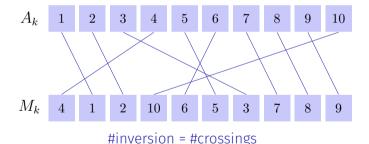
Amortized Analysis

Let an arbitrary sequence of search requests be given and let $G_k^{(M)}$ and $G_k^{(A)}$ the costs in step k for Move-to-Front and A, respectively. Want estimation of $\sum_k G_k^{(M)}$ compared with $\sum_k G_k^{(A)}$.

 \Rightarrow Amortized analysis with potential function Φ .

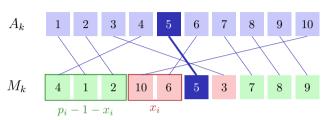
Potential Function

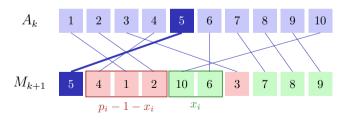
Potential function $\Phi =$ Number of inversions of A vs. MTF. Inversion = Pair x, y such that for the positions of a and y $\left(p^{(A)}(x) < p^{(A)}(y)\right) \neq \left(p^{(M)}(x) < p^{(M)}(y)\right)$



Estimating the Potential Function: MTF

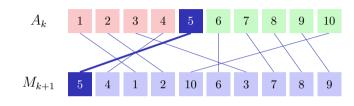
- Element i at position $p_i := p^{(M)}(i)$.
- lacksquare access costs $C_k^{(M)} = p_i$.
- x_i : Number elements that are in M before p_i and in A after i.
- \blacksquare MTF removes x_i inversions.
- $p_i x_i 1$: Number elements that in M are before p_i and in A are before i.
- MTF generates $p_i 1 x_i$ inversions.

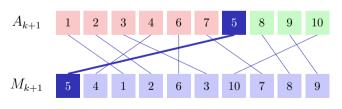




Estimating the Potential Function: A

- Wlog element i at position $p^{(A)}(i)$.
- $X_k^{(A)}$: number movements to the back (otherwise 0).
- access costs for i: $C_k^{(A)} = p^{(A)}(i) \ge p^{(M)}(i) x_i.$
- lacktriangle A increases the number of inversions maximally by $X_k^{(A)}$.





Estimation

$$\Phi_{k+1} - \Phi_k \le -x_i + (p_i - 1 - x_i) + X_k^{(A)}$$

Amortized costs of MTF in step k:

$$a_k^{(M)} = C_k^{(M)} + \Phi_{k+1} - \Phi_k$$

$$\leq p_i - x_i + (p_i - 1 - x_i) + X_k^{(A)}$$

$$= (p_i - x_i) + (p_i - x_i) - 1 + X_k^{(A)}$$

$$\leq C_k^{(A)} + C_k^{(A)} - 1 + X_k^{(A)} \leq 2 \cdot C_k^{(A)} + X_k^{(A)}.$$

Estimation

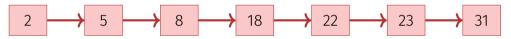
Summing up costs

$$\sum_{k} G_{k}^{(M)} = \sum_{k} C_{k}^{(M)} \le \sum_{k} a_{k}^{(M)} \le \sum_{k} 2 \cdot C_{k}^{(A)} + X_{k}^{(A)}$$
$$\le 2 \cdot \sum_{k} C_{k}^{(A)} + X_{k}^{(A)}$$
$$= 2 \cdot \sum_{k} G_{k}^{(A)}$$

In the worst case MTF requires at most twice as many operations as the optimal strategy.

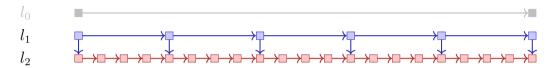
13.2 Skip Lists

Sorted Linked List



Search for element / insertion position: **worst-case** n Steps.

Sorted Linked List with two Levels

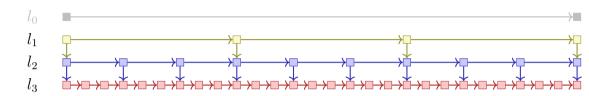


- Number elements: $n_0 := n$
- Stepsize on level 1: n_1
- Stepsize on level 2: $n_2 = 1$
- \Rightarrow Search for element / insertion position: worst-case $\frac{n_0}{n_1} + \frac{n_1}{n_2}$.
- \Rightarrow Best Choice for n_1 : $n_1 = \frac{n_0}{n_1} = \sqrt{n_0}$.

Search for element / insertion position: **worst-case** $2\sqrt{n}$ steps.

¹⁴Differentiate and set to zero, cf. appendix

Sorted Linked List with two Levels



- Number elements: $n_0 := n$
- Stepsizes on levels 0 < i < 3: n_i
- Stepsize on level 3: $n_3 = 1$
- \Rightarrow Best Choice for (n_1, n_2) : $n_2 = \frac{n_0}{n_1} = \frac{n_1}{n_2} = \sqrt[3]{n_0}$.

Search for element / insertion position: **worst-case** $3 \cdot \sqrt[3]{n}$ steps.

Sorted Linked List with k Levels (Skiplist)

- Number elements: $n_0 := n$
- Stepsizes on levels 0 < i < k: n_i
- Stepsize on level k: $n_k = 1$
- \Rightarrow Best Choice for (n_1,\ldots,n_k) : $n_{k-1}=\frac{n_0}{n_1}=\frac{n_1}{n_2}=\cdots=\sqrt[k]{n_0}$.

Search for element / insertion position: **worst-case** $k \cdot \sqrt[k]{n}$ steps¹⁵.

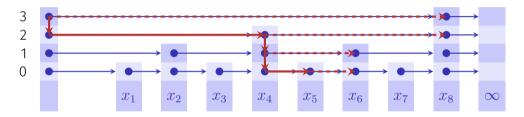
Assumption $n = 2^k$

 \Rightarrow worst case $\log_2 n \cdot 2$ steps and $\frac{n_i}{n_{i+1}} = 2 \,\forall \, 0 \leq i < \log_2 n$.

¹⁵(Derivation: Appendix)

Search in a Skiplist

Perfect skip list



$$x_1 \le x_2 \le x_3 \le \dots \le x_9.$$

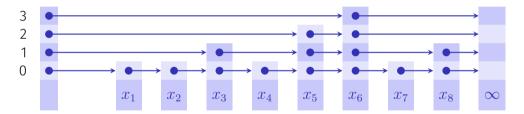
Example: search for a key x with $x_5 < x < x_6$.

Analysis perfect skip list (worst cases)

Search in $\mathcal{O}(\log n)$. Insert in $\mathcal{O}(n)$.

Randomized Skip List

Idea: insert a key with random height H with $\mathbb{P}(H=i) = \frac{1}{2^{i+1}}$.



Analysis Randomized Skip List

Theorem 16

The expected number of fundamental operations for Search, Insert and Delete of an element in a randomized skip list is $\mathcal{O}(\log n)$.

The lengthy proof that will not be presented in this courseobserves the length of a path from a searched node back to the starting point in the highest level.

13.3 Appendix

Mathematik zur Skipliste

[k-Level Skiplist Math]

Let the number of data points n_0 and number levels k>0 be given and let n_l be the numbers of elements skipped per level l, $n_k=1$. Maximum number of total steps in the skip list:

$$f(\vec{n}) = \frac{n_0}{n_1} + \frac{n_1}{n_2} + \dots \frac{n_{k-1}}{n_k}$$

Minimize
$$f$$
 for (n_1, \dots, n_{k-1}) : $\frac{\partial f(\vec{n})}{\partial n_t} = 0$ for all $0 < t < k$, $\frac{\partial f(\vec{n})}{\partial n_t} = -\frac{n_{t-1}}{n_t^2} + \frac{1}{n_{t+1}} = 0 \Rightarrow n_{t+1} = \frac{n_t^2}{n_{t-1}}$ and $\frac{n_{t+1}}{n_t} = \frac{n_t}{n_{t-1}}$.

[k-Level Skiplist Math]

Previous slide $\Rightarrow \frac{n_t}{n_0} = \frac{n_t}{n_{t-1}} \frac{n_{t-1}}{n_{t-2}} \dots \frac{n_1}{n_0} = \left(\frac{n_1}{n_0}\right)^t$

Particularly
$$1=n_k=\frac{n_1^k}{n_0^{k-1}}\Rightarrow n_1=\sqrt[k]{n_0^{k-1}}$$
 Thus $n_{k-1}=\frac{n_0}{n_1}=\sqrt[k]{\frac{n_0^k}{n_0^{k-1}}}=\sqrt[k]{n_0}$. Maximum number of total steps in the skip list: $f(\vec{n})=k\cdot(\sqrt[k]{n_0})$ Assume $n_0=2^k$, then $\frac{n_l}{n_{l+1}}=2$ for all $0\leq l< k$ (skiplist halves data in each step) and $f(n)=k\cdot 2=2\log_2 n\in\Theta(\log n)$.