10. Sorting Il

Lower bounds for the comparison based sorting, radix- and bucket-sort

291

10.1 Lower bounds for comparison based sorting

[Ottman/Widmayer, Kap. 2.8, Cormen et al, Kap. 81]

292

Lower bound for sorting

Up to here: worst case sorting takes Q(nlogn) steps.
Is there a better way?

293

Lower bound for sorting

Up to here: worst case sorting takes Q(nlogn) steps.
Is there a better way? No:

Theorem 15

Sorting procedures that are based on comparison require in the worst
case and on average at least Q(nlogn) Rey comparisons.

293

Comparison based sorting

m An algorithm must identify the correct one of n! permutations of an

294

Comparison based sorting

m An algorithm must identify the correct one of n! permutations of an
array (A;)iz1,..n -

m At the beginning the algorithm knows nothing about the array structure.

294

Comparison based sorting

m An algorithm must identify the correct one of n! permutations of an
array (A
m At the beginning the algorithm knows nothing about the array structure.

m We consider the knowledge gain of the algorithm in the form of a
decision tree:

294

Comparison based sorting

m An algorithm must identify the correct one of n! permutations of an
array (A;)i=1

m At the beginning the algorithm knows nothing about the array structure.

m We consider the knowledge gain of the algorithm in the form of a
decision tree:

m Nodes contain the remaining possibilities.

294

Comparison based sorting

m An algorithm must identify the correct one of n! permutations of an
array (A;)iz1,..n -
m At the beginning the algorithm knows nothing about the array structure.

m We consider the knowledge gain of the algorithm in the form of a
decision tree:

m Nodes contain the remaining possibilities.
m Edges contain the decisions.

294

Decision tree

abe acb cab bac bea cba

a<b
Yes No
abe acb cab bac bea cba
b<ec b<ec
Yes No Yes No
achb cab bac bea
abe a<c a<c cba
Yes No Yes No

ach cab bac bca 295

Decision tree

A binary tree with L leaves provides K = L — 1 inner nodes.”

The height of a binary tree with L leaves is at least log, L. = The height of
the decision tree h > logn! € Q(nlogn).

Thus the length of the longest path in the decision tree € Q(nlogn).
Remaining to show: mean length M(n) of a path M(n) € Q(nlogn).

OProof: start with emtpy tree (K = 0, L = 1). Each added node replaces a leaf by two
leaves,ie} K + K+1=L—L+1.
296

Average lower bound

m Decision tree T,, with n leaves, average height
of a leaf m(T5,)

m Assumption m(7,) > logn not for all n.
m Choose smallest b with m(T}) < logh = b > 2

mb+b =bwithy, >0and b, >0=
by <b b <b= m(Tbl) > logbl und
m(Ty,) > logb,

297

Average lower bound

Average height of a leaf:

m(1y) =

Contradiction.

S

L m(Ti) + 1) + 2 (m(T,) +1)

1

S

(bi(log by + 1) + by (log by + 1)) = —(b; log 2b; + by log 2b,.)

b(

= o

> —(blogb) = logb.

S

The last inequality holds because f(z) = xlogz is convex (f”(x) = 1/x > 0) and
for a convex function it holds that f((z +1v)/2) < 1/2f(x) + 1/2f(y) (z = 28,
y = 2b,). Enter & = 2b;, y = 2b,,, and b; + b, = b.

Mgenerally f(Az + (1 = A)y) < Af(z) + (1= N)f(y) foro <A< 1.

298

10.2 Radixsort and Bucketsort

Radixsort, Bucketsort [Ottman/Widmayer, Kap. 2.5, Cormen et al, Kap. 8.3]

299

Radix Sort

Sorting based on comparison: comparable keys (< or >, often =). No
further assumptions.

300

Radix Sort

Sorting based on comparison: comparable keys (< or >, often =). No
further assumptions.
Different idea: use more information about the keys.

300

Assumptions

Assumption: keys representable as words from an alphabet containing m
elements.

Examples

m = 10 decimal numbers 183 = 183y

m is called the radix of the representation.

301

Assumptions

Assumption: keys representable as words from an alphabet containing m
elements.

Examples
m = 10 decimal numbers 183 = 183y
m =2 dual numbers 101,

m is called the radix of the representation.

301

Assumptions

Assumption: keys representable as words from an alphabet containing m
elements.

m = 10 decimal numbers 183 = 183y
m =2 dual numbers 101,
m = 16 hexadecimal numbers A0

m is called the radix of the representation.

301

Assumptions

Assumption: keys representable as words from an alphabet containing m
elements.

m = 10 decimal numbers 183 = 183y
m =2 dual numbers 101,

m = 16 hexadecimal numbers A0

m =26 words "INFORMATIK"

m is called the radix of the representation.

301

m keys = m-adic numbers with same length.

302

Assumptions

m keys = m-adic numbers with same length.
m Procedure z for the extraction of digit k£ in O(1) steps.

Example
210(0,85) =5
210(1, 85) =38

210(2, 85) =0

302

Radix-Exchange-Sort

Keys with radix 2.
Observation: if for some k& > 0:

29(1,) = zo(i,y) foralli > k

and
22(k7 .’I?) < Zz(k, y>7

then it holds that z < y.

303

Radix-Exchange-Sort

ldea:

m Start with a maximal k.

m Binary partition the data sets with z(k,-) = 0 vs. z3(k,-) = 1 like with
quicksort.

mLEk— k-1

304

Radix-Exchange-Sort

0111 0170 1000 0011 0001

305

Radix-Exchange-Sort

0111 0170 1000 0011 0001

305

Radix-Exchange-Sort

0111 0170 1000 0011 0001

0111 0110 0001 0011\1000

305

Radix-Exchange-Sort

0111 0170 1000 0011 0001

0111 0110 0001 0011\ 1000

305

Radix-Exchange-Sort

0111 0170 1000 0011 0001

]0111 0110 0001 0011\1000

N— .~

0011 0001{/0110 0111/|1000

305

Radix-Exchange-Sort

0111 0110 1000 0011 0001

]0111 0110 0001 0011\1000

N— .~

0011 0001{{0110 0111({1000

305

Radix-Exchange-Sort

0111 0110 1000 0011 0001

]0111 0110 0001 0011\1000

N— .~

0011 0001{{0110 0111({1000

0001/|0011||0110 0111 /1000]

305

Radix-Exchange-Sort

0111 0110 1000 0011 0001

]0111 0110 0001 0011\1000

N— .~

0011 0001{{0110 0111({1000

0001||0011]|0110 0111][1000)

305

Radix-Exchange-Sort

0111 0110 1000 0011 0001

]0111 0110 0001 0011\1000

N— .~

0011 0001{{0110 0111({1000

0001||0011]|0110 0111][1000)

0001/|0011] 0110 0111/ 1000

305

Algorithm RadixExchangeSort(A, [, r,b)

Input: Array A with length n, left and right bounds 1 <[< r < n, bit position b
Output: Array A, sorted in the domain [[,7] by bits [0, .

if [<rand b >0 then

1 1—1

j—r+1

repeat
repeat i < i+ 1 until z2(b, Ali]) =1ori>j
repeat j < j — 1 until 25(b, A[j]) =0ori >j
if ¢ < j then swap(A[i], Alj])

until : > 5

RadixExchangeSort(A,1,i —1,b— 1)

RadixExchangeSort(A,i,7,b — 1)

0]

306

RadixExchangeSort provides recursion with maximal recursion depth =
maximal number of digits p.

Worst case run time O(p - n).

307

Bucket Sort

3 8 18122121131 23 21 19 29

308

Bucket Sort

3 8 18122121131 23 21 19 29

308

Bucket Sort

3 8 18122121131 23 21 19 29

308

Bucket Sort

3 8 18122121131 23 21 19 29

308

Bucket Sort

3 8 18122121131 23 21 19 29

308

Bucket Sort

3 8 18122121131 23 21 19 29

iz = B 8

308

Bucket Sort

3 8 18122121131 23 21 19 29

131 18
iz = B 8

308

Bucket Sort

3 8 18122121131 23 21 19 29

131 23 18
iz = B 8

308

Bucket Sort

3 8 18122121131 23 21 19 29

21
131 23 18
iz = B 8

308

Bucket Sort

3 8 18122121131 23 21 19 29

21
131 23 18
iz = B 8 19

308

Bucket Sort

3 8 18122121131 23 21 19 29

21
131 23 18 29
iz = B 8 19

308

Bucket Sort

3 8 18122121131 23 21 19 29

21
131 23 18 29
iz = B 8 19

12113121122 3 23 8 18 19 29 308

Bucket Sort

121131 21122 3 23 8 18 19 29

Bucket Sort

121131 21122 3 23 8 18 19 29

0 1 2 3 4 5 6 7 8 9

29
23
122
ikl B
3 18 121 131

Bucket Sort

121131 21122 3 23 8 18 19 29

0 1 2 3 4 5 6 7 8 9

29
23
122
ikl B
3 18 121 131

3 8 18 19121 21 122 23 29

309

Bucket Sort

3 8 18 19121 21 122 23 29

Bucket Sort

3 8 18 19121 21 122 23 29

0 1 2 3 4 5 6 7 8 9

29

23

21

19

18 131
122

3 121

Bucket Sort

3 8 18 19121 21 122 23 29

0 1 2 3 4 5 6 7 8 9

29

23

21

19

18 131
122

3 121

3 8 18 19 21 23 29 121122 131 @

310

iImplementation details

Bucket size varies greatly. Possibilities

m Linked list or dynamic array for each digit.

m One array of length n. compute offsets for each digit in the first iteration.
Abssumptions: Input length n, Number bits / integer: k, Number Buckets:
2

Asymptotic running time O(% - (n + 2°).

For Example: k= 32,20 =256 % - (n+2°) = 4n + 1024.

3n

Bucket Sort - Different Assumption

Hypothesis: uniformly distributed data e.g. from [0, 1)

Input: Array A with length n, A; € [0,1), constant M € N+
Output: Sorted array

k « [n/M]

B < new array of k empty lists

for i < 1 ton do
| BI[|A; - k]].append(A[i])

for i < 1 to k do
‘7 sort B[i] // e.g. insertion sort, running time O(M?)

return B[0] o B[1]o--- o B[k] // concatenated

Expected asymptotic running time O(n) (Proof in Cormen et al, Kap. 8.4)

312

	Sorting III
	Lower bounds for comparison based sorting
	Radixsort and Bucketsort

