10. Sorting III

Lower bounds for the comparison based sorting, radix- and bucket-sort

10.1 Lower bounds for comparison based sorting

[Ottman/Widmayer, Kap. 2.8, Cormen et al, Kap. 8.1]

Lower bound for sorting

Up to here: worst case sorting takes $\Omega(n \log n)$ steps. Is there a better way?

Lower bound for sorting

Up to here: worst case sorting takes $\Omega(n \log n)$ steps. Is there a better way? No:

Theorem 15

Sorting procedures that are based on comparison require in the worst case and on average at least $\Omega(n \log n)$ key comparisons.

■ An algorithm must identify the correct one of n! permutations of an array $(A_i)_{i=1,\dots,n}$.

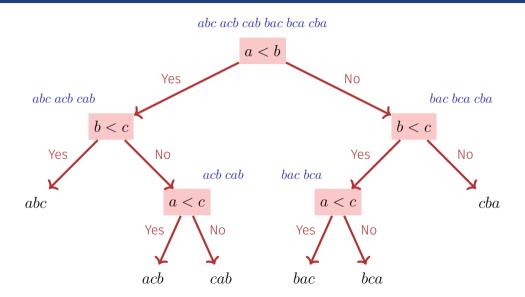
- An algorithm must identify the correct one of n! permutations of an array $(A_i)_{i=1,\dots,n}$.
- At the beginning the algorithm knows nothing about the array structure.

- An algorithm must identify the correct one of n! permutations of an array $(A_i)_{i=1,\dots,n}$.
- At the beginning the algorithm knows nothing about the array structure.
- We consider the knowledge gain of the algorithm in the form of a decision tree:

- An algorithm must identify the correct one of n! permutations of an array $(A_i)_{i=1,...,n}$.
- At the beginning the algorithm knows nothing about the array structure.
- We consider the knowledge gain of the algorithm in the form of a decision tree:
 - Nodes contain the remaining possibilities.

- An algorithm must identify the correct one of n! permutations of an array $(A_i)_{i=1,...,n}$.
- At the beginning the algorithm knows nothing about the array structure.
- We consider the knowledge gain of the algorithm in the form of a decision tree:
 - Nodes contain the remaining possibilities.
 - Edges contain the decisions.

Decision tree



Decision tree

A binary tree with L leaves provides K = L - 1 inner nodes.¹⁰

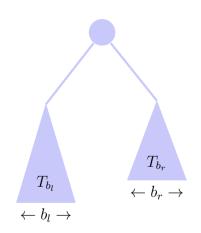
The height of a binary tree with L leaves is at least $\log_2 L$. \Rightarrow The height of the decision tree $h \ge \log n! \in \Omega(n \log n)$.

Thus the length of the longest path in the decision tree $\in \Omega(n \log n)$.

Remaining to show: mean length M(n) of a path $M(n) \in \Omega(n \log n)$.

¹⁰ Proof: start with emtpy tree (K=0, L=1). Each added node replaces a leaf by two leaves, i.e.} $K \to K+1 \Rightarrow L \to L+1$.

Average lower bound



- Decision tree T_n with n leaves, average height of a leaf $m(T_n)$
- Assumption $m(T_n) \ge \log n$ not for all n.
- Choose smallest b with $m(T_b) < \log b \Rightarrow b \geq 2$
- $b_l + b_r = b$ with $b_l > 0$ and $b_r > 0 \Rightarrow$ $b_l < b, b_r < b \Rightarrow m(T_{b_l}) \ge \log b_l$ und $m(T_{b_r}) \ge \log b_r$

Average lower bound

Average height of a leaf:

$$m(T_b) = \frac{b_l}{b}(m(T_{b_l}) + 1) + \frac{b_r}{b}(m(T_{b_r}) + 1)$$

$$\geq \frac{1}{b}(b_l(\log b_l + 1) + b_r(\log b_r + 1)) = \frac{1}{b}(b_l \log 2b_l + b_r \log 2b_r)$$

$$\geq \frac{1}{b}(b \log b) = \log b.$$

Contradiction.

The last inequality holds because $f(x) = x \log x$ is convex (f''(x) = 1/x > 0) and for a convex function it holds that $f((x+y)/2) \le 1/2f(x) + 1/2f(y)$ $(x=2b_l, y=2b_r)$. Inter $x=2b_l$, $y=2b_r$, and $b_l+b_r=b$.

¹¹generally $f(\lambda x + (1 - \lambda)y) \le \lambda f(x) + (1 - \lambda)f(y)$ for $0 \le \lambda \le 1$.

10.2 Radixsort and Bucketsort

Radixsort, Bucketsort [Ottman/Widmayer, Kap. 2.5, Cormen et al, Kap. 8.3]

Radix Sort

Sorting based on comparison: comparable keys (< or >, often =). No further assumptions.

Radix Sort

Sorting based on comparison: comparable keys (< or >, often =). No further assumptions.

Different idea: use more information about the keys.

Assumption: keys representable as words from an alphabet containing m elements.

Examples

$$m=10$$
 decimal numbers

$$183 = 183_{10}$$

Assumption: keys representable as words from an alphabet containing m elements.

Examples

```
m=10 decimal numbers 183=183_{10} m=2 dual numbers 101_2
```

Assumption: keys representable as words from an alphabet containing m elements.

Examples

```
\begin{array}{ll} m=10 & \text{decimal numbers} & 183=183_{10} \\ m=2 & \text{dual numbers} & 101_2 \\ m=16 & \text{hexadecimal numbers} & A0_{16} \end{array}
```

Assumption: keys representable as words from an alphabet containing m elements.

Examples $m=10 \quad \text{decimal numbers} \qquad 183=183_{10} \\ m=2 \quad \text{dual numbers} \qquad 101_2 \\ m=16 \quad \text{hexadecimal numbers} \qquad A0_{16} \\ m=26 \quad \text{words} \qquad \text{"INFORMATIK"}$

 \blacksquare keys = m-adic numbers with same length.

- \blacksquare keys = m-adic numbers with same length.
- Procedure z for the extraction of digit k in $\mathcal{O}(1)$ steps.

Example

$$z_{10}(0,85) = 5$$

 $z_{10}(1,85) = 8$
 $z_{10}(2,85) = 0$

Keys with radix 2.

Observation: if for some k > 0:

$$z_2(i,x) = z_2(i,y)$$
 for all $i > k$

and

$$z_2(k,x) < z_2(k,y),$$

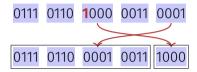
then it holds that x < y.

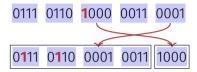
Idea:

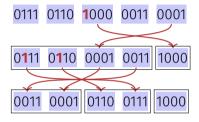
- \blacksquare Start with a maximal k.
- Binary partition the data sets with $z_2(k,\cdot)=0$ vs. $z_2(k,\cdot)=1$ like with quicksort.
- $k \leftarrow k 1.$

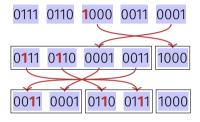
0111 0110 1000 0011 0001

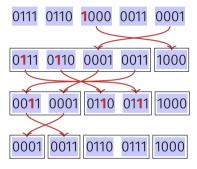
0111 0110 **1**000 0011 0001

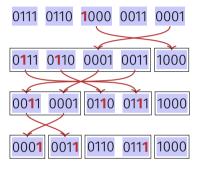


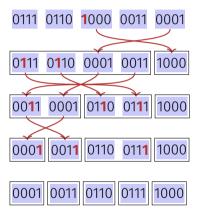












Algorithm RadixExchangeSort(A, l, r, b)

```
Array A with length n, left and right bounds 1 \le l \le r \le n, bit position b
Input:
Output: Array A, sorted in the domain [l, r] by bits [0, \ldots, b].
if l < r and b > 0 then
    i \leftarrow l-1
   i \leftarrow r + 1
    repeat
        repeat i \leftarrow i+1 until z_2(b,A[i])=1 or i \geq j
        repeat j \leftarrow j-1 until z_2(b,A[j])=0 or i \geq j
        if i < j then swap(A[i], A[j])
    until i > j
    RadixExchangeSort(A, l, i - 1, b - 1)
    RadixExchangeSort(A, i, r, b - 1)
```

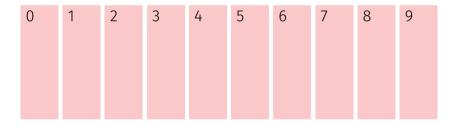
Analysis

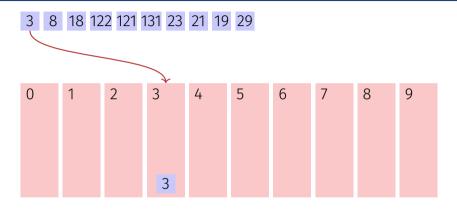
RadixExchangeSort provides recursion with maximal recursion depth = maximal number of digits $\it p$.

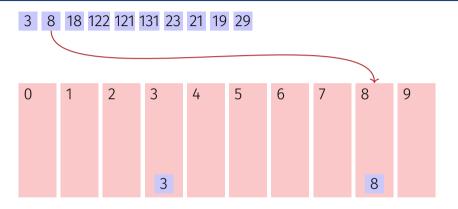
Worst case run time $\mathcal{O}(p \cdot n)$.

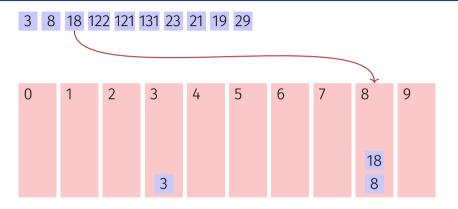
Bucket Sort

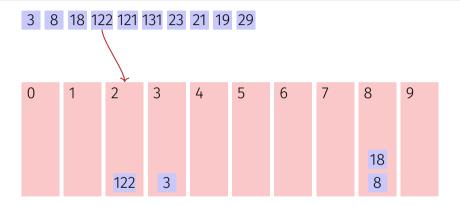
3 8 18 122 121 131 23 21 19 29

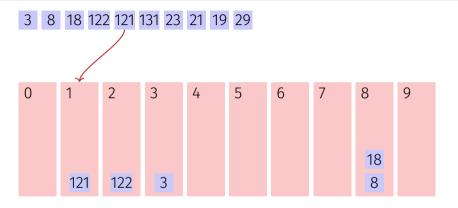


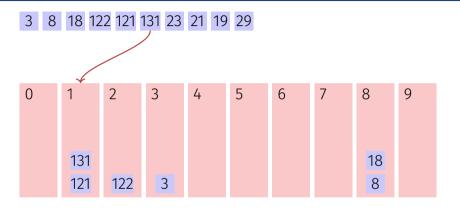


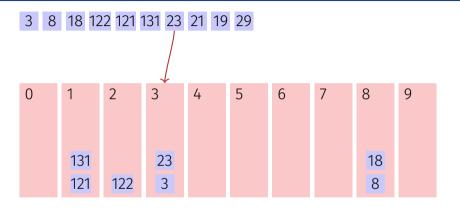


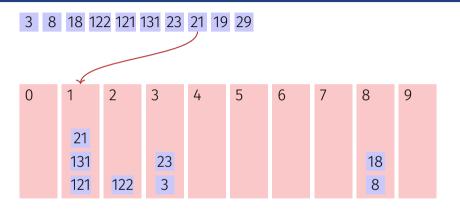


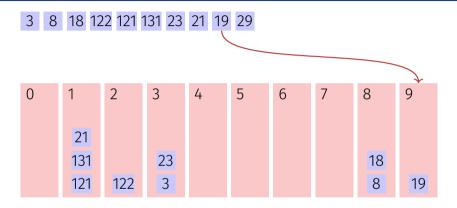


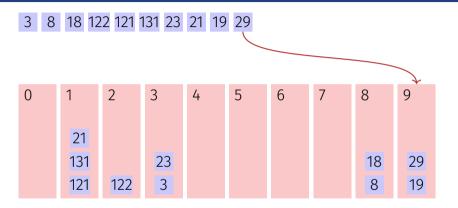




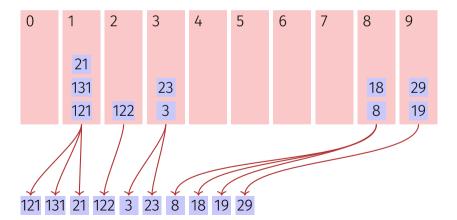




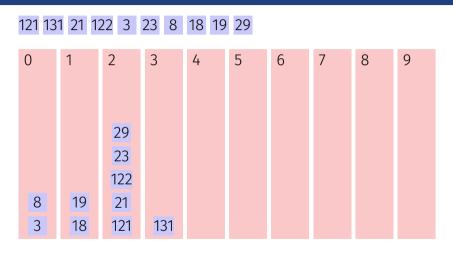


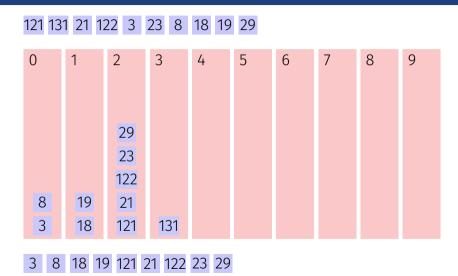


3 8 18 122 121 131 23 21 19 29

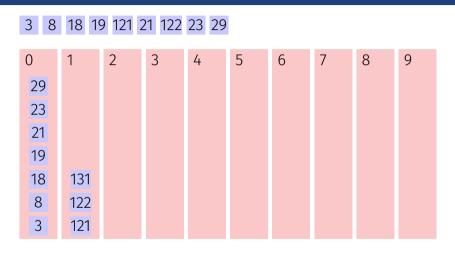


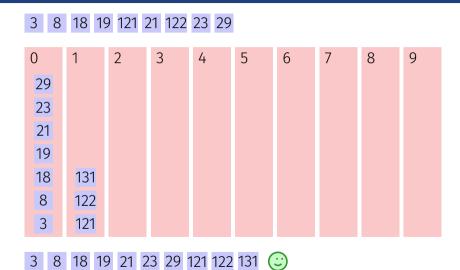
121 131 21 122 3 23 8 18 19 29





3 8 18 19 121 21 122 23 29





implementation details

Bucket size varies greatly. Possibilities

- Linked list or dynamic array for each digit.
- lacktriangle One array of length n. compute offsets for each digit in the first iteration.

Assumptions: Input length n , Number bits / integer: k , Number Buckets: 2^b

Asymptotic running time $\mathcal{O}(\frac{k}{b} \cdot (n+2^b)$.

For Example: k = 32, $2^b = 256$: $\frac{k}{b} \cdot (n + 2^b) = 4n + 1024$.

Bucket Sort – Different Assumption

```
Hypothesis: uniformly distributed data e.g. from [0,1)
         Array A with length n, A_i \in [0, 1), constant M \in \mathbb{N}^+
Output: Sorted array
k \leftarrow \lceil n/M \rceil
B \leftarrow \text{new array of } k \text{ empty lists}
for i \leftarrow 1 to n do
B[|A_i \cdot k|].append(A[i])
for i \leftarrow 1 to k do
    sort B[i] // e.g. insertion sort, running time \mathcal{O}(M^2)
return B[0] \circ B[1] \circ \cdots \circ B[k] // concatenated
```

Expected asymptotic running time $\mathcal{O}(n)$ (Proof in Cormen et al, Kap. 8.4)