9. Sorting II

Mergesort, Quicksort

9.1 Mergesort

[Ottman/Widmayer, Kap. 2.4, Cormen et al, Kap. 2.3],

Divide and Conquer!

- \blacksquare Assumption: two halves of the array A are already sorted.
- lacktriangle Minimum of A can be evaluated with a single element comparison.
- Iteratively: merge the two presorted halves of A in $\mathcal{O}(n)$.

 1
 4
 7
 9
 16
 2
 3
 10
 11
 12

Algorithm Merge(A, l, m, r)

```
Array A with length n, indexes 1 < l < m < r < n.
  Input:
               A[l,\ldots,m], A[m+1,\ldots,r] sorted
  Output: A[l, \ldots, r] sorted
1 B \leftarrow \text{new Array}(r - l + 1)
i \leftarrow l: i \leftarrow m+1: k \leftarrow 1
3 while i \leq m and i \leq r do
4 if A[i] < A[j] then B[k] \leftarrow A[i]; i \leftarrow i+1
b \in B[k] \leftarrow A[j]; j \leftarrow j+1
6 \quad k \leftarrow k+1:
7 while i \leq m do B[k] \leftarrow A[i]; i \leftarrow i+1; k \leftarrow k+1
8 while i \le r do B[k] \leftarrow A[i]: i \leftarrow i+1: k \leftarrow k+1
9 for k \leftarrow l to r do A[k] \leftarrow B[k-l+1]
```

Correctness

Hypothesis: after k iterations of the loop in line 3 $B[1, \ldots, k]$ is sorted and $B[k] \leq A[i]$, if $i \leq m$ and $B[k] \leq A[j]$ if $j \leq r$.

Proof by induction:

Base case: the empty array $B[1,\ldots,0]$ is trivially sorted. Induction step $(k\to k+1)$:

- B[1,...,k] is sorted by hypothesis and $B[k] \leq A[i]$.
- After $B[k+1] \leftarrow A[i]$ B[1, ..., k+1] is sorted.
- $B[k+1] = A[i] \le A[i+1]$ (if $i+1 \le m$) and $B[k+1] \le A[j]$ if $j \le r$.
- $k \leftarrow k + 1, i \leftarrow i + 1$: Statement holds again.

Analysis (Merge)

Lemma 12

If: array A with length n, indexes $1 \le l < r \le n$. $m = \lfloor (l+r)/2 \rfloor$ and $A[l, \ldots, m]$, $A[m+1, \ldots, r]$ sorted.

Then: in the call of Merge(A, l, m, r) a number of $\Theta(r-l)$ key movements and comparisons are executed.

Proof: straightforward(Inspect the algorithm and count the operations.)

5 2 6 1 8 4 3 9

5 2 6 1 8 4 3 9

Split

Split

Split

Split

Split

Split

Split

Split

Split

Split

Split

Split

Split

Split

Split

Merge

Split

Split

Split

Merge

Split

Split

Split

Merge

Merge

Algorithm (recursive 2-way) Mergesort(A, l, r)

```
\begin{array}{lll} \textbf{Input:} & \text{Array $A$ with length $n$. } 1 \leq l \leq r \leq n \\ \textbf{Output:} & A[l,\ldots,r] \text{ sorted.} \\ & \textbf{if } l < r \text{ then} \\ & & m \leftarrow \lfloor (l+r)/2 \rfloor & // \text{ middle position} \\ & & \text{Mergesort}(A,l,m) & // \text{ sort lower half} \\ & & \text{Mergesort}(A,m+1,r) & // \text{ sort higher half} \\ & & \text{Merge}(A,l,m,r) & // \text{ Merge subsequences} \\ \end{array}
```

Analysis

Recursion equation for the number of comparisons and key movements:

$$T(n) = T(\left\lceil \frac{n}{2} \right\rceil) + T(\left\lfloor \frac{n}{2} \right\rfloor) + \Theta(n)$$

Analysis

Recursion equation for the number of comparisons and key movements:

$$T(n) = T(\left\lceil \frac{n}{2} \right\rceil) + T(\left\lfloor \frac{n}{2} \right\rfloor) + \Theta(n) \in \Theta(n \log n)$$

Algorithm StraightMergesort(A)

```
Avoid recursion: merge sequences of length 1, 2, 4, ... directly
Input: Array A with length n
Output: Array A sorted
length \leftarrow 1
while length < n do
                                        // Iterate over lengths n
    r \leftarrow 0
    while r + length < n do // Iterate over subsequences
        l \leftarrow r + 1
        m \leftarrow l + length - 1
        r \leftarrow \min(m + length, n)
       \mathsf{Merge}(A, l, m, r)
    length \leftarrow length \cdot 2
```

Analysis

Like the recursive variant, the straight 2-way mergesort always executes a number of $\Theta(n \log n)$ key comparisons and key movements.

Natural 2-way mergesort

Observation: the variants above do not make use of any presorting and always execute $\Theta(n \log n)$ memory movements.

How can partially presorted arrays be sorted better?

Observation: the variants above do not make use of any presorting and always execute $\Theta(n \log n)$ memory movements.

How can partially presorted arrays be sorted better?

① Recursive merging of previously sorted parts (runs) of A.

5 6 2 4 8 3 9 7 1

5 6 2 4 8 3 9 7 1

Algorithm NaturalMergesort(A)

```
Input: Array A with length n > 0
Output: Array A sorted
repeat
    r \leftarrow 0
    while r < n do
        l \leftarrow r + 1
       m \leftarrow l; while m < n and A[m+1] \geq A[m] do m \leftarrow m+1
        if m < n then
            r \leftarrow m+1; while r < n and A[r+1] \ge A[r] do r \leftarrow r+1
            Merge(A, l, m, r);
        else
until l=1
```

Analysis

Is it also asymptotically better than StraightMergesort on average?

Analysis

Is it also asymptotically better than StraightMergesort on average?

①No. Given the assumption of pairwise distinct keys, on average there are n/2 positions i with $k_i > k_{i+1}$, i.e. n/2 runs. Only one iteration is saved on average.

Natural mergesort executes in the worst case and on average a number of $\Theta(n\log n)$ comparisons and memory movements.

9.2 Quicksort

[Ottman/Widmayer, Kap. 2.2, Cormen et al, Kap. 7]

What is the disadvantage of Mergesort?

What is the disadvantage of Mergesort?

Requires additional $\Theta(n)$ storage for merging.

What is the disadvantage of Mergesort?

Requires additional $\Theta(n)$ storage for merging.

How could we reduce the merge costs?

What is the disadvantage of Mergesort?

Requires additional $\Theta(n)$ storage for merging.

How could we reduce the merge costs?

Make sure that the left part contains only smaller elements than the right part.

How?

What is the disadvantage of Mergesort?

Requires additional $\Theta(n)$ storage for merging.

How could we reduce the merge costs?

Make sure that the left part contains only smaller elements than the right part.

How?

Pivot and Partition!

1. Choose a (an arbitrary) **pivot** p

- 1. Choose a (an arbitrary) **pivot** p
- 2. Partition A in two parts, one part L with the elements with $A[i] \leq p$ and another part R with A[i] > p

- 1. Choose a (an arbitrary) **pivot** p
- 2. Partition A in two parts, one part L with the elements with $A[i] \leq p$ and another part R with A[i] > p
- 3. Quicksort: Recursion on parts L and R

- 1. Choose a (an arbitrary) **pivot** p
- 2. Partition A in two parts, one part L with the elements with $A[i] \leq p$ and another part R with A[i] > p
- 3. Quicksort: Recursion on parts L and R

Algorithm Partition(A, l, r, p)

```
Input: Array A, that contains the pivot p in A[l, ..., r] at least once.
Output: Array A partitioned in [l, \ldots, r] around p. Returns position of p.
while l \leq r do
    while A[l] < p do
    l \leftarrow l + 1
    while A[r] > p do
    r \leftarrow r - 1
    swap(A[l], A[r])
   if A[l] = A[r] then
    \lfloor l \leftarrow l+1 \rfloor
```

return |-1

Algorithm Quicksort(A, l, r)

```
\begin{array}{ll} \textbf{Input:} & \text{Array $A$ with length $n$. $1 \leq l \leq r \leq n$.} \\ \textbf{Output:} & \text{Array $A$, sorted in $A[l,\ldots,r]$.} \\ \textbf{if $l < r$ then} \\ & \text{Choose pivot $p \in A[l,\ldots,r]$} \\ & k \leftarrow \texttt{Partition}(A,l,r,p) \\ & \text{Quicksort}(A,l,k-1) \\ & \text{Quicksort}(A,k+1,r) \end{array}
```

2 4 5 6 8 3 7 9 1

2 4 5 6 8 3 7 9 1

- 2 4 5 6 8 3 7 9 1
- 2 1 3 6 8 5 7 9 4

- 2 4 5 6 8 3 7 9 1
- 2 1 3 6 8 5 7 9 4

 2
 4
 5
 6
 8
 3
 7
 9
 1

 2
 1
 3
 6
 8
 5
 7
 9
 4

 1
 2
 3
 4
 5
 8
 7
 9
 6

 2
 4
 5
 6
 8
 3
 7
 9
 1

 2
 1
 3
 6
 8
 5
 7
 9
 4

 1
 2
 3
 4
 5
 8
 7
 9
 6

 2
 4
 5
 6
 8
 3
 7
 9
 1

 2
 1
 3
 6
 8
 5
 7
 9
 4

 1
 2
 3
 4
 5
 8
 7
 9
 6

 1
 2
 3
 4
 5
 6
 7
 9
 8

 2
 4
 5
 6
 8
 3
 7
 9
 1

 2
 1
 3
 6
 8
 5
 7
 9
 4

 1
 2
 3
 4
 5
 8
 7
 9
 6

 1
 2
 3
 4
 5
 6
 7
 9
 8

4 5 6 8 3 7 9 1 2 1 3 6 8 5 7 9 4 1 2 3 4 5 8 7 9 6 1 2 3 4 5 6 7 9 8 1 2 3 4 5 6 7 8 9

Analysis: number comparisons

Worst case.

Analysis: number comparisons

Worst case. Pivot = min or max; number comparisons:

$$T(n) = T(n-1) + c \cdot n, \ T(1) = d \quad \Rightarrow \quad T(n) \in \Theta(n^2)$$

Result of a call to partition (pivot 3):

- 2 1 3 6 8 5 7 9 4
- 1 How many swaps have taken place?

Result of a call to partition (pivot 3):

- 2 1 3 6 8 5 7 9 4
- 1 How many swaps have taken place?
- ① 2. The maximum number of swaps is given by the number of keys in the smaller part.

Thought experiment

Thought experiment

■ Each key from the smaller part pays a coin when it is being swapped.

Thought experiment

- Each key from the smaller part pays a coin when it is being swapped.
- After a key has paid a coin the domain containing the key decreases to half its previous size.

Thought experiment

- Each key from the smaller part pays a coin when it is being swapped.
- After a key has paid a coin the domain containing the key decreases to half its previous size.
- \blacksquare Every key needs to pay at most $\log n$ coins. But there are only n keys.

Thought experiment

- Each key from the smaller part pays a coin when it is being swapped.
- After a key has paid a coin the domain containing the key decreases to half its previous size.
- \blacksquare Every key needs to pay at most $\log n$ coins. But there are only n keys.

Consequence: there are $O(n \log n)$ key swaps in the worst case.

Randomized Quicksort

Despite the worst case running time of $\Theta(n^2)$, quicksort is used practically very often.

Reason: quadratic running time unlikely provided that the choice of the pivot and the pre-sorting are not very disadvantageous.

Avoidance: randomly choose pivot. Draw uniformly from [l, r].

Analysis (randomized quicksort)

Expected number of compared keys with input length n:

$$T(n) = (n-1) + \frac{1}{n} \sum_{k=1}^{n} (T(k-1) + T(n-k)), \ T(0) = T(1) = 0$$

Claim $T(n) \le 4n \log n$.

Proof by induction:

Base case straightforward for n = 0 (with $0 \log 0 := 0$) and for n = 1.

Hypothesis: $T(n) \le 4n \log n$ for some n.

Induction step: $(n-1 \rightarrow n)$

Analysis (randomized quicksort)

$$T(n) = n - 1 + \frac{2}{n} \sum_{k=0}^{n-1} T(k) \stackrel{\text{H}}{\leq} n - 1 + \frac{2}{n} \sum_{k=0}^{n-1} 4k \log k$$

$$= n - 1 + \sum_{k=1}^{n/2} 4k \underbrace{\log k}_{\leq \log n - 1} + \sum_{k=n/2+1}^{n-1} 4k \underbrace{\log k}_{\leq \log n}$$

$$\leq n - 1 + \frac{8}{n} \left((\log n - 1) \sum_{k=1}^{n/2} k + \log n \sum_{k=n/2+1}^{n-1} k \right)$$

$$= n - 1 + \frac{8}{n} \left((\log n) \cdot \frac{n(n-1)}{2} - \frac{n}{4} \left(\frac{n}{2} + 1 \right) \right)$$

$$= 4n \log n - 4 \log n - 3 \leq 4n \log n$$

Analysis (randomized quicksort)

Theorem 13

On average randomized quicksort requires $\mathcal{O}(n \log n)$ comparisons.

Practical Considerations

Worst case recursion depth $n-1^9$. Then also a memory consumption of $\mathcal{O}(n)$.

Can be avoided: recursion only on the smaller part. Then guaranteed $\mathcal{O}(\log n)$ worst case recursion depth and memory consumption.

⁹stack overflow possible!

Quicksort with logarithmic memory consumption

```
Input: Array A with length n. 1 < l < r < n.
Output: Array A, sorted between l and r.
while l < r do
    Choose pivot p \in A[l, \ldots, r]
    k \leftarrow \mathsf{Partition}(A, l, r, p)
    if k-l < r-k then
        Quicksort(A[l, \ldots, k-1])
      l \leftarrow k+1
    else
    Quicksort(A[k+1,\ldots,r])
r \leftarrow k-1
```

The call of Quicksort(A[l, ..., r]) in the original algorithm has moved to iteration (tail recursion!): the if-statement became a while-statement.

Practical Considerations.

- Practically the pivot is often the median of three elements. For example: Median3(A[l], A[r], $A[\lfloor l+r/2 \rfloor]$).
- There is a variant of quicksort that requires only constant storage. Idea: store the old pivot at the position of the new pivot.
- Complex divide-and-conquer algorithms often use a trivial $(\Theta(n^2))$ algorithm as base case to deal with small problem sizes.

9.3 Appendix

Derivation of some mathematical formulas

$\log n! \in \Theta(n \log n)$

$$\log n! = \sum_{i=1}^{n} \log i \le \sum_{i=1}^{n} \log n = n \log n$$

$$\sum_{i=1}^{n} \log i = \sum_{i=1}^{\lfloor n/2 \rfloor} \log i + \sum_{\lfloor n/2 \rfloor + 1}^{n} \log i$$

$$\ge \sum_{i=2}^{\lfloor n/2 \rfloor} \log 2 + \sum_{\lfloor n/2 \rfloor + 1}^{n} \log \frac{n}{2}$$

$$= (\underbrace{\lfloor n/2 \rfloor}_{>n/2 - 1} - 2 + 1) + (\underbrace{n - \lfloor n/2 \rfloor}_{\ge n/2})(\log n - 1)$$

$$> \frac{n}{2} \log n - 2.$$

$[n! \in o(n^n)]$

$$n \log n \ge \sum_{i=1}^{\lfloor n/2 \rfloor} \log 2i + \sum_{i=\lfloor n/2 \rfloor+1}^{n} \log i$$

$$= \sum_{i=1}^{n} \log i + \lfloor \frac{n}{2} \rfloor \log 2$$

$$> \sum_{i=1}^{n} \log i + n/2 - 1 = \log n! + n/2 - 1$$

$$n^{n} = 2^{n \log_{2} n} \ge 2^{\log_{2} n!} \cdot 2^{n/2} \cdot 2^{-1} = n! \cdot 2^{n/2 - 1}$$

$$\Rightarrow \frac{n!}{n^{n}} \le 2^{-n/2 + 1} \xrightarrow{n \to \infty} 0 \Rightarrow n! \in o(n^{n}) = \mathcal{O}(n^{n}) \setminus \Omega(n^{n})$$

[Even $n! \in o((n/c)^n) \, \forall \, 0 < c < e$]

Konvergenz oder Divergenz von $f_n = \frac{n!}{(n/c)^n}$. Ratio Test

$$\frac{f_{n+1}}{f_n} = \frac{(n+1)!}{\left(\frac{n+1}{c}\right)^{n+1}} \cdot \frac{\left(\frac{n}{c}\right)^n}{n!} = c \cdot \left(\frac{n}{n+1}\right)^n \longrightarrow c \cdot \frac{1}{e} \leqslant 1 \text{ if } c \leqslant e$$

because $\left(1+\frac{1}{n}\right)^n \to e$. Even the series $\sum_{i=1}^n f_n$ converges / diverges for $c \le e$.

 f_n diverges for c=e, because (Stirling): $n! \approx \sqrt{2\pi n} \left(\frac{n}{e}\right)^n$.

[Ratio Test]

Ratio test for a sequence $(f_n)_{n\in\mathbb{N}}$: If $\frac{f_{n+1}}{f_n} \xrightarrow[n\to\infty]{} \lambda$, then the sequence f_n and the series $\sum_{i=1}^n f_i$

- \blacksquare converge, if $\lambda < 1$ and
- diverge, if $\lambda > 1$.

[Ratio Test Derivation]

Ratio test is implied by Geometric Series

$$S_n(r) := \sum_{i=0}^n r^i = \frac{1 - r^{n+1}}{1 - r}.$$

converges for $n \to \infty$ if and only if -1 < r < 1.

Let $0 \le \lambda < 1$:

$$\forall \varepsilon > 0 \,\exists n_0 : f_{n+1}/f_n < \lambda + \varepsilon \,\forall n \ge n_0$$

$$\Rightarrow \exists \varepsilon > 0, \exists n_0 : f_{n+1}/f_n \le \mu < 1 \,\forall n \ge n_0$$

Thus

$$\sum_{n=n_0}^{\infty} f_n \leq f_{n_0} \cdot \sum_{n=n_0}^{\infty} \cdot \mu^{n-n_0}$$
 konvergiert.

(Analogously for divergence)

L'Hospital's rule

Theorem 14

Let $f, g : \mathbb{R}^+ \to \mathbb{R}$ differentiable functions with $g'(x) \neq 0 \ \forall x > 0$.

$$\lim_{x \to \infty} f(x) = \lim_{x \to \infty} g(x) = 0,$$

or

$$\lim_{x\to\infty}f(x)=\pm\infty \ {\rm and}\ \lim_{x\to\infty}g(x)=\pm\infty,$$

then

$$\lim_{x \to \infty} \frac{f(x)}{g(x)} = \lim_{x \to \infty} \frac{f'(x)}{g'(x)}$$

if the limit of f'(x)/g'(x) exists

L'Hospital's rule

Example

Es gilt $\log^k(n) \in o(n)$, because with $f(x) = \log^k(x)$, g(n) = x, we can apply L'Hospital's rule and get

$$\lim_{x \to \infty} \frac{\log^k(x)}{x} = \lim_{x \to \infty} \frac{f(x)}{g(x)} = \lim_{x \to \infty} \frac{f'(x)}{g'(x)} = \lim_{x \to \infty} k \frac{\log^{k-1}(x)}{x}$$

After k iterations we get

$$\lim_{x \to \infty} \frac{\log^k(x)}{x} = \lim_{x \to \infty} k! \frac{1}{x} = 0.$$