9. Sorting I

Mergesort, Quicksort

251

9.1 Mergesort

[Ottman/Widmayer, Kap. 2.4, Cormen et al, Kap. 2.3],

252

Divide and Conquer!

m Assumption: two halves of the array A are already sorted.

m Minimum of A can be evaluated with a single element comparison.
m Iteratively: merge the two presorted halves of A in O(n).

253

254

254

254

254

254

254

254

254

Merge
1 4 7 9 16 2 3 10 1M1 12
1 2 3 4 7 9 0 N

254

Merge
1 4 7 9 16 2 3 10 1M1 12
1 2 3 4 7 9 0 11 12

254

254

Algorithm Merge(A, I, m,)

Input: Array A with length n, indexes 1 <[<m <r <n.
All,...,m], Aljm+1,...,r] sorted
Output: A[l,...,r] sorted
B < new Array(r — [+ 1)
i1l j+m+1 k<1
while : < m and j <r do
if Afi] < A[j] then B[k] + Ali]; i<+ i+ 1
else Blk]« Alj];j«+j+1
k<« k+1;
while i <mdo B[k]« Ali]; i<+ i+ 1, k+ k+1
while j <rdo Blk|«+ Aljl;j«j+ L k+k+1
9 for k + [tor do Alk] + B[k — 1+ 1]

o oA W

o ~

255

Correctness

Hypothesis: after k iterations of the loop in line 3 BI[1,..., k| is sorted and
Blk] < Ali], if i <m and B[k] < A[j] if j <.

Proof by induction:

Base case: the empty array BJ[1,...,0] is trivially sorted.

Induction step (k — k + 1):

m wlog Afi] < A[j],i <m,j <.

m B[l,...,k] is sorted by hypothesis and B[k] < A[i].

m After Blk + 1] < A[i] B[1,...,k+ 1] is sorted.

B Bk+1]=A[]) < Ali +1](ifi +1 <m)and Bk + 1] < A[j]ifj <r.
m k<« k+1,i<+ i+ 1: Statement holds again.

256

Analysis (Merge)

If: array A with length n, indexes 1 <l <r <n. m = [(l+7r)/2] and
All,...,m], Aijm+1,...,r] sorted.

Then: in the call of Merge(A, 1, m,r) a number of ©(r —1) key movements
and comparisons are executed.

Proof: straightforward(Inspect the algorithm and count the operations.)

257

5 2 6 1 8 4 3 9

5 2 6 1 8 4 3 9
Split

5 2 6 1 8 4 3 9
Split

s 26 1]ls 4 3 9]

5 2 6 1 8 4 3 9
Split

s 26 1]ls 4 3 9]

Split

5 2 6 1 8 4 3 9

s 26 1]ls 4 3 9] zpt:
B EEG 5 ”
Split

BB R EYEY

5 2 6 1 8 4 3 9

s 26 1]ls 4 3 9] zpt:
B EEG 5 ”
Split

BB R EYEY

5 2 6 1 8 4 3 9

s 26 1]ls 4 3 9] zpt:
B EEG 5 ”
Split

e e e Merge
2 5|1 6|4 8| 3 9

5 2 6 1 8 4 3 9
Split

s 26 1]ls 4 3 9]

Split

5 2]6 1]/8 4|3 9]

Split

e e e Merge
2 5|1 6|4 8| 3 9

Merge

5 2 6 1 8 4 3 9
Split

s 26 1]ls 4 3 9]

Split

5 2]6 1]/8 4|3 9]

Split

e e e Merge
2 5|1 6|4 8| 3 9
17 2 5 6|3 4 8 9

Merge

5 2 6 1 8 4 3 9

Split
s 26 1]ls 4 3 9]

Split
5 2]6 1]/8 4|3 9]

Split
N N N Merge
2 501 6|4 8|3 9
r&ﬁr&ﬁ Merge
1 215 6|3 4 8 9

Merge

5

2

6 1 8

4 3

9

E

1) 8

3 9]

]5 2H6 1H8 4H3 9 |

1
1
1

N(—N

oo(—oo

O <— O

Split
Split
Split
Merge
Merge

Merge

258

Algorithm (recursive 2-way) Mergesort(A, [, r)

Input: Array A with lengthn. 1 <1 <r<n
Output: A[l,...,r] sorted.

if [<7 then
m < [(I+7)/2] // middle position
Mergesort(A,l, m) // sort lower half

Mergesort(A,m +1,r) // sort higher half
Merge(A,l,m,r) // Merge subsequences

259

Recursion equation for the number of comparisons and key movements:

() =7(|5])+ 7(| 5) + 0)

260

Recursion equation for the number of comparisons and key movements:

T(n) = T(m) T({ZJ) +6(n) € B(nlogn)

260

Algorithm StraightMergesort(A)

Avoid recursion: merge sequences of length 1,2,4, ... directly

Input: Array A with length n
Output: Array A sorted

length < 1
while length < n do // lterate over lengths n
r <0
while 7 + length < n do // lterate over subsequences
l+r+1

m < |+ length — 1
r < min(m + length, n)
Merge(A, I, m,)

~ length < length - 2

261

Like the recursive variant, the straight 2-way mergesort always executes a
number of ©(nlogn) key comparisons and key movements.

262

Natural 2-way mergesort

Observation: the variants above do not make use of any presorting and
always execute O(nlogn) memory movements.

How can partially presorted arrays be sorted better?

263

Natural 2-way mergesort

Observation: the variants above do not make use of any presorting and
always execute O(nlogn) memory movements.

How can partially presorted arrays be sorted better?

® Recursive merging of previously sorted parts (runs) of A.

263

Natural 2-way mergesort

Natural 2-way mergesort

5562 « 8|5 fo7][]

Natural 2-way mergesort

54l

2 4 5 6 8 3 7 9 1

Natural 2-way mergesort

5562 4 8|5 fo7]

Tzzzgéﬂ 3 79

Natural 2-way mergesort

Natural 2-way mergesort

Natural 2-way mergesort

Algorithm NaturalMergesort(A)

Input: Array A with length n >0

Output: Array A sorted

repeat

r<0

while r < n do

l—r+1

m < I; while m < n and A[m + 1] > A[m]| do m < m+1

if m < n then
r< m+1; while r <nand A[r+1] > A[rJdo r < r+1
Merge(A, I, m, r);

else
L. r<n

until [=1

265

Is it also asymptotically better than StraightMergesort on average?

266

Is it also asymptotically better than StraightMergesort on average?

ONo. Given the assumption of pairwise distinct keys, on average there are n/2
positions ¢ with k; > k; 41, 1.e. n/2 runs. Only one iteration is saved on average.

Natural mergesort executes in the worst case and on average a number of
©(nlogn) comparisons and memory movements.

266

9.2 Quicksort

[Ottman/Widmayer, Kap. 2.2, Cormen et al, Kap. 7]

267

What is the disadvantage of Mergesort?

268

Quicksort

What is the disadvantage of Mergesort?

Requires additional ©(n) storage for merging.

268

What is the disadvantage of Mergesort?

Requires additional ©(n) storage for merging.

How could we reduce the merge costs?

268

What is the disadvantage of Mergesort?

Requires additional ©(n) storage for merging.

How could we reduce the merge costs?

Make sure that the left part contains only smaller elements than the
right part.

268

What is the disadvantage of Mergesort?

Requires additional ©(n) storage for merging.

How could we reduce the merge costs?

Make sure that the left part contains only smaller elements than the
right part.

Pivot and Partition!

268

269

1. Choose a (an arbitrary) pivot p

269

1. Choose a (an arbitrary) pivot p

2. Partition A in two parts, one part L with the elements with Afi] < p
and another part 72 with A[i] > p

269

1. Choose a (an arbitrary) pivot p

2. Partition A in two parts, one part L with the elements with Afi] < p
and another part 72 with A[i] > p

3. Quicksort: Recursion on parts L and R

Pl || === | >|>]>]>

269

1. Choose a (an arbitrary) pivot p

2. Partition A in two parts, one part L with the elements with Afi] < p
and another part i with Afi] > p

3. Quicksort: Recursion on parts L and R

<|l<|l<s|<|<s|p|>|>]|>]|>

1 T n

269

Algorithm Partition(A, 1, p)

Input: Array A, that contains the pivot p in Al,...,7] at least once.
Output: Array A partitioned in [I,...,r] around p. Returns position of p.
while [< r do
while A[l] < p do
Ll 1+
while A[r] > p do
|l r+r—1
swap(A[l], Alr])
if A[l] = Alr| then
Ll 1+

return |-1

270

Algorithm Quicksort(A,l,r)

Input: Array A with length n. 1 <[<r <n.
Output: Array A, sorted in A[l,...,7].

if [<r then

Choose pivot p € A[l,...,7]

k < Partition(A,l,r,p)

Quicksort(A4,l,k —1)

Quicksort(A,k+ 1,7)

n

Quicksort (arbitrary pivot)

Quicksort (arbitrary pivot)

Quicksort (arbitrary pivot)

Quicksort (arbitrary pivot)

2|1 3 6 [8[5]7 9 4

Quicksort (arbitrary pivot)

Quicksort (arbitrary pivot)

Quicksort (arbitrary pivot)

5

w

—_

~

(@)}

Quicksort (arbitrary pivot)

4
N
w
~
ul
(0¢]

~
\O
(@]

Quicksort (arbitrary pivot)

Quicksort (arbitrary pivot)

24568791

5 @
N .
w W
~ O
(€2 BN 0 o)
o [a]
H E
O O
(@) R

272

Analysis: number comparisons

Worst case.

273

Analysis: number comparisons

Worst case. Pivot = min or max; number comparisons:

Tn)=T(n—1)+c-n, T(1)=d = T(n) € O(n?

273

Analysis: number swaps

Result of a call to partition (pivot 3):

2 1 3 6 8 5 7 9 4

@ How many swaps have taken place?

274

Analysis: number swaps

Result of a call to partition (pivot 3):
2 1 3 6 8 5 7 9 4
@ How many swaps have taken place?

® 2. The maximum number of swaps is given by the number of keys in the
smaller part.

274

Analysis: number swaps

Thought experiment

275

Analysis: number swaps

Thought experiment
m Each key from the smaller part pays a coin when it is being swapped.

275

Analysis: number swaps

Thought experiment

m Each key from the smaller part pays a coin when it is being swapped.

m After a key has paid a coin the domain containing the key decreases to
half its previous size.

275

Analysis: number swaps

Thought experiment

m Each key from the smaller part pays a coin when it is being swapped.

m After a key has paid a coin the domain containing the key decreases to
half its previous size.

m Every key needs to pay at most logn coins. But there are only n keys.

275

Analysis: number swaps

Thought experiment

m Each key from the smaller part pays a coin when it is being swapped.

m After a key has paid a coin the domain containing the key decreases to
half its previous size.

m Every key needs to pay at most logn coins. But there are only n keys.
Consequence: there are O(nlogn) key swaps in the worst case.

275

Randomized Quicksort

Despite the worst case running time of ©(n?), quicksort is used practically

very often.
Reason: quadratic running time unlikely provided that the choice of the

pivot and the pre-sorting are not very disadvantageous.
Avoidance: randomly choose pivot. Draw uniformly from [, r].

276

Analysis (randomized quicksort)

Expected number of compared keys with input length n:

T(n) = (n— 1)+ = 3 (T(k — 1) + T(n — k)), T(0) = T(1) = 0

"=
Claim T'(n) < 4nlogn.
Proof by induction:
Base case straightforward for n = 0 (with 0log 0 := 0) and for n = 1.

Hypothesis: T'(n) < 4nlogn for some n.
Induction step: (n — 1 — n)

277

Analysis (randomized quicksort)

2n71 H 2n71
T =n—14— TkY<n-—-1+ — 4klog k
() =n=1+ 23 T() S0 =1+ 3 dklog

k=0
n/2 n—1
=n—1+> 4k logk + Y 4klogk
k=1 <logn—1 k=n/2+1 <logn
8 n/2 n—1
<n-—-1+4-— (logn—l)Zk—i—logn Z k
" k=1 k=n/2+1
8 nn—1) n/n
=n—1+—((. - — 1
o=t (ogm) 2 - 3(5+1))

=4nlogn —4logn — 3 < 4dnlogn

|

278

Analysis (randomized quicksort)

Theorem 13

On average randomized quicksort requires O(nlogn) comparisons.

279

Practical Considerations

Worst case recursion depth n — 1°. Then also a memory consumption of
O(n).

Can be avoided: recursion only on the smaller part. Then guaranteed
O(log n) worst case recursion depth and memory consumption.

9stack overflow possible!

280

Quicksort with logarithmic memory consumption

Input: Array A with length n. 1 <[<r <n.
Output: Array A, sorted between [and 7.
while [< r do
Choose pivot p € Al,...,7]
k <« Partition(A4, 1, r, p)
if k—1 <r—k then

Quicksort(A[l, ...,k —1])
l+—k+1
else

Quicksort(Alk + 1,...,7])
L r«—k—1

The call of Quicksort(A[l, ..., r]) in the original algorithm has moved to iteration (tail
recursion!): the if-statement became a while-statement.

281

Practical Considerations.

m Practically the pivot is often the median of three elements. For example:
Median3(A[l], Alr], A[|l + r/2]]).

m There is a variant of quicksort that requires only constant storage. Idea:
store the old pivot at the position of the new pivot.

m Complex divide-and-conquer algorithms often use a trivial (©(n?))
algorithm as base case to deal with small problem sizes.

282

9.3 Appendix

Derivation of some mathematical formulas

283

logn! € ©(nlogn)

n n
logn! = Zlogi < Zlogn =nlogn
i=1 i=1

[n/2]
Zlogz— Z logi + Z log i
[n/2|+1
[n/2]
> Z log 2 + Z log—
[n/2]+1
= ([n/2] =2+ 1)+ (n —[n/2])(logn — 1)
—— ————
>n/2-1 >n/2

n
> —1 -2
5 logn

284

n") |

[n/2]
nlogn > Z log 2 + Z log ¢
i=|n/2]+1

= Zlogi + {nJ log 2
i=1 2

n
> Zlogi—i—n/Z— 1=logn!'+n/2-1
i=1

nt — gnlogan > 9log, n! 2n/2 L 2n/2—1

|
= 'r% < 27T) o pl e o(n™) = O(n™)\Q(n")

285

[Even n! € o((n/c)")V0 < c< el

Konvergenz oder Divergenz von f, = (n%n.
Ratio Test

\ e (2) " L
e

fo (Lﬂ)"ﬂ nl n+1

C

because (1 + %)n — e. Even the series 37, f,, converges / diverges for
cse
f,, diverges for ¢ = e, because (Stirling): n! ~ \/27m(g)n.

286

[Ratio Test]

Ratio test for a sequence (fy)nen: If % — A, then the sequence f, and
the series 37, f;

m converge, if A < 1 and
m diverge, if A > 1.

287

[Ratio Test Derivation]

Ratio test is implied by Geometric Series

Sn(T) = ZT = ﬁ
=0
converges forn — co ifand only if -1 <r < 1.
let0 < A< 1:
Ve >03ng : fne1/fn < A+eVn>ng
=3e > 0,3Ing : for1/fr < p<1¥n>ng
Thus

o (o]
S fa < fags >, u"™ konvergiert.

n=no n=no

(Analogously for divergence)
288

L'Hospital’s rule

Theorem 14

Let f,g: RT — R differentiable functions with ¢'(x) # 0 Va > 0.

If
lim f(z) = lim g(z) =0,
or
lim f(z) = £ooand lim g(z) = oo,
then

lim fa) lim fz)

if the limit of f'(x)/g'(x) exists

289

L'Hospital’s rule

Es gilt log"(n) € o(n), because with f(z) = log*(z), g(n) = z, we can
apply L'Hospital's rule and get

f@) _ o S o)

logh(x)
lim = lim —

After k iterations we get

I
1
lim 28 @) _ i md —o.

T—00 €x T—00 ap

290

	Sorting II
	Mergesort
	Quicksort
	Appendix

