9. Sorting I

Mergesort, Quicksort

251



9.1 Mergesort

[Ottman/Widmayer, Kap. 2.4, Cormen et al, Kap. 2.3],
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Divide and Conquer!

m Assumption: two halves of the array A are already sorted.

m Minimum of A can be evaluated with a single element comparison.
m Iteratively: merge the two presorted halves of A in O(n).
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Algorithm Merge(A, I, m, )

Input:  Array A with length n, indexes 1 <[ <m <r <n.
All,...,m], Aljm+1,...,r] sorted
Output: A[l,...,r] sorted
B < new Array(r — [+ 1)
i1l j+m+1 k<1
while : < m and j <r do
if Afi] < A[j] then B[k] + Ali]; i<+ i+ 1
else Blk]« Alj];j«+j+1
k<« k+1;
while i <mdo B[k]« Ali]; i<+ i+ 1, k+ k+1
while j <rdo Blk|«+ Aljl;j«j+ L k+k+1
9 for k + [ tor do Alk] + B[k — 1+ 1]

o oA W

o ~
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Correctness

Hypothesis: after k iterations of the loop in line 3 BI[1,..., k| is sorted and
Blk] < Ali], if i <m and B[k] < A[j] if j <.

Proof by induction:

Base case: the empty array BJ[1,...,0] is trivially sorted.

Induction step (k — k + 1):

m wlog Afi] < A[j],i <m,j <.

m B[l,...,k] is sorted by hypothesis and B[k] < A[i].

m After Blk + 1] < A[i] B[1,...,k+ 1] is sorted.

B Bk+1]=A[]) < Ali +1](ifi +1 <m)and Bk + 1] < A[j]ifj <r.
m k<« k+1,i<+ i+ 1: Statement holds again.
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Analysis (Merge)

If: array A with length n, indexes 1 <l <r <n. m = [(l+7r)/2] and
All,...,m], Aijm+1,...,r] sorted.

Then: in the call of Merge(A, 1, m,r) a number of ©(r —1) key movements
and comparisons are executed.

Proof: straightforward(Inspect the algorithm and count the operations.)
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Algorithm (recursive 2-way) Mergesort(A, [, r)

Input: Array A with lengthn. 1 <1 <r<n
Output: A[l,...,r] sorted.

if [ <7 then
m < [(I+7)/2] // middle position
Mergesort(A,l, m) // sort lower half

Mergesort(A,m +1,r) // sort higher half
Merge(A,l,m,r) // Merge subsequences

259



Recursion equation for the number of comparisons and key movements:

() =7(|5])+ 7(| 5 ) + 0)
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Recursion equation for the number of comparisons and key movements:

T(n) = T( m) T( {ZJ) +6(n) € B(nlogn)
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Algorithm StraightMergesort(A)

Avoid recursion: merge sequences of length 1,2,4, ... directly

Input:  Array A with length n
Output: Array A sorted

length < 1
while length < n do // lterate over lengths n
r <0
while 7 + length < n do // lterate over subsequences
l+r+1

m < |+ length — 1
r < min(m + length, n)
Merge(A, I, m, )

~ length < length - 2
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Like the recursive variant, the straight 2-way mergesort always executes a
number of ©(nlogn) key comparisons and key movements.
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Natural 2-way mergesort

Observation: the variants above do not make use of any presorting and
always execute O(nlogn) memory movements.

How can partially presorted arrays be sorted better?
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Natural 2-way mergesort

Observation: the variants above do not make use of any presorting and
always execute O(nlogn) memory movements.

How can partially presorted arrays be sorted better?

® Recursive merging of previously sorted parts (runs) of A.
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Algorithm NaturalMergesort(A)

Input:  Array A with length n >0

Output: Array A sorted

repeat

r<0

while r < n do

l—r+1

m < I; while m < n and A[m + 1] > A[m]| do m < m+1

if m < n then
r< m+1; while r <nand A[r+1] > A[rJdo r < r+1
Merge(A, I, m, r);

else
L. r<n

until [ =1
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Is it also asymptotically better than StraightMergesort on average?
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Is it also asymptotically better than StraightMergesort on average?

ONo. Given the assumption of pairwise distinct keys, on average there are n/2
positions ¢ with k; > k; 41, 1.e. n/2 runs. Only one iteration is saved on average.

Natural mergesort executes in the worst case and on average a number of
©(nlogn) comparisons and memory movements.
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9.2 Quicksort

[Ottman/Widmayer, Kap. 2.2, Cormen et al, Kap. 7]
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What is the disadvantage of Mergesort?
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Quicksort

What is the disadvantage of Mergesort?

Requires additional ©(n) storage for merging.
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Requires additional ©(n) storage for merging.

How could we reduce the merge costs?

Make sure that the left part contains only smaller elements than the
right part.
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What is the disadvantage of Mergesort?

Requires additional ©(n) storage for merging.

How could we reduce the merge costs?

Make sure that the left part contains only smaller elements than the
right part.

Pivot and Partition!
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1. Choose a (an arbitrary) pivot p
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1. Choose a (an arbitrary) pivot p

2. Partition A in two parts, one part L with the elements with Afi] < p
and another part 72 with A[i] > p
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1. Choose a (an arbitrary) pivot p

2. Partition A in two parts, one part L with the elements with Afi] < p
and another part 72 with A[i] > p

3. Quicksort: Recursion on parts L and R

Pl || === | >|>]>]>
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1. Choose a (an arbitrary) pivot p

2. Partition A in two parts, one part L with the elements with Afi] < p
and another part i with Afi] > p

3. Quicksort: Recursion on parts L and R

<|l<|l<s|<|<s|p|>|>]|>]|>

1 T n
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Algorithm Partition(A, 1, p)

Input: Array A, that contains the pivot p in Al,...,7] at least once.
Output: Array A partitioned in [I,...,r] around p. Returns position of p.
while [ < r do
while A[l] < p do
Ll 1+
while A[r] > p do
|l r+r—1
swap(A[l], Alr])
if A[l] = Alr| then
Ll 1+

return |-1
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Algorithm Quicksort(A,l,r)

Input: Array A with length n. 1 <[ <r <n.
Output: Array A, sorted in A[l,...,7].

if [ <r then

Choose pivot p € A[l,...,7]

k < Partition(A,l,r,p)

Quicksort(A4,l,k —1)

Quicksort(A,k+ 1,7)
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Analysis: number comparisons

Worst case.
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Analysis: number comparisons

Worst case. Pivot = min or max; number comparisons:

Tn)=T(n—1)+c-n, T(1)=d = T(n) € O(n?
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Analysis: number swaps

Result of a call to partition (pivot 3):

2 1 3 6 8 5 7 9 4

@ How many swaps have taken place?
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Analysis: number swaps

Result of a call to partition (pivot 3):
2 1 3 6 8 5 7 9 4
@ How many swaps have taken place?

® 2. The maximum number of swaps is given by the number of keys in the
smaller part.
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Analysis: number swaps

Thought experiment
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Analysis: number swaps

Thought experiment
m Each key from the smaller part pays a coin when it is being swapped.
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Analysis: number swaps

Thought experiment

m Each key from the smaller part pays a coin when it is being swapped.

m After a key has paid a coin the domain containing the key decreases to
half its previous size.
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Analysis: number swaps

Thought experiment

m Each key from the smaller part pays a coin when it is being swapped.

m After a key has paid a coin the domain containing the key decreases to
half its previous size.

m Every key needs to pay at most logn coins. But there are only n keys.
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Analysis: number swaps

Thought experiment

m Each key from the smaller part pays a coin when it is being swapped.

m After a key has paid a coin the domain containing the key decreases to
half its previous size.

m Every key needs to pay at most logn coins. But there are only n keys.
Consequence: there are O(nlogn) key swaps in the worst case.
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Randomized Quicksort

Despite the worst case running time of ©(n?), quicksort is used practically

very often.
Reason: quadratic running time unlikely provided that the choice of the

pivot and the pre-sorting are not very disadvantageous.
Avoidance: randomly choose pivot. Draw uniformly from [, r].
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Analysis (randomized quicksort)

Expected number of compared keys with input length n:

T(n) = (n— 1)+ = 3 (T(k — 1) + T(n — k)), T(0) = T(1) = 0

"=
Claim T'(n) < 4nlogn.
Proof by induction:
Base case straightforward for n = 0 (with 0log 0 := 0) and for n = 1.

Hypothesis: T'(n) < 4nlogn for some n.
Induction step: (n — 1 — n)
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Analysis (randomized quicksort)

2n71 H 2n71
T =n—14— TkY<n-—-1+ — 4klog k
() =n=1+ 23 T() S0 =1+ 3 dklog

k=0
n/2 n—1
=n—1+> 4k logk + Y  4klogk
k=1 <logn—1 k=n/2+1 <logn
8 n/2 n—1
<n-—-1+4-— (logn—l)Zk—i—logn Z k
" k=1 k=n/2+1
8 nn—1) n/n
=n—1+—(( . - — 1
o=t (ogm) 2 - 3(5+1))

=4nlogn —4logn — 3 < 4dnlogn

|
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Analysis (randomized quicksort)

Theorem 13

On average randomized quicksort requires O(nlogn) comparisons.
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Practical Considerations

Worst case recursion depth n — 1°. Then also a memory consumption of
O(n).

Can be avoided: recursion only on the smaller part. Then guaranteed
O(log n) worst case recursion depth and memory consumption.

9stack overflow possible!
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Quicksort with logarithmic memory consumption

Input: Array A with length n. 1 <[ <r <n.
Output: Array A, sorted between [ and 7.
while [ < r do
Choose pivot p € Al,...,7]
k <« Partition(A4, 1, r, p)
if k—1 <r—k then

Quicksort(A[l, ...,k —1])
l+—k+1
else

Quicksort(Alk + 1,...,7])
L r«—k—1

The call of Quicksort(A[l, ..., r]) in the original algorithm has moved to iteration (tail
recursion!): the if-statement became a while-statement.
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Practical Considerations.

m Practically the pivot is often the median of three elements. For example:
Median3(A[l], Alr], A[|l + r/2]]).

m There is a variant of quicksort that requires only constant storage. Idea:
store the old pivot at the position of the new pivot.

m Complex divide-and-conquer algorithms often use a trivial (©(n?))
algorithm as base case to deal with small problem sizes.
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9.3 Appendix

Derivation of some mathematical formulas

283



logn! € ©(nlogn)

n n
logn! = Zlogi < Zlogn =nlogn
i=1 i=1

[n/2]
Zlogz— Z logi + Z log i
[n/2|+1
[n/2]
> Z log 2 + Z log—
[n/2]+1
= ([n/2] =2+ 1)+ (n —[n/2])(logn — 1)
—— ————
>n/2-1 >n/2

n
> —1 -2
5 logn
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n") |

[n/2]
nlogn > Z log 2 + Z log ¢
i=|n/2]+1

= Zlogi + {nJ log 2
i=1 2

n
> Zlogi—i—n/Z— 1=logn!'+n/2-1
i=1

nt — gnlogan > 9log, n! 2n/2 L 2n/2—1

|
= 'r% < 27T ) o pl e o(n™) = O(n™)\Q(n")
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[Even n! € o((n/c)")V0 < c< el

Konvergenz oder Divergenz von f, = (n%n.
Ratio Test

\ e (2) " L
e

fo (Lﬂ)"ﬂ nl n+1

C

because (1 + %)n — e. Even the series 37, f,, converges / diverges for
cse
f,, diverges for ¢ = e, because (Stirling): n! ~ \/27m(g)n.
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[ Ratio Test]

Ratio test for a sequence (fy)nen: If % — A, then the sequence f, and
the series 37, f;

m converge, if A < 1 and
m diverge, if A > 1.
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[ Ratio Test Derivation ]

Ratio test is implied by Geometric Series

Sn(T) = ZT = ﬁ
=0
converges forn — co ifand only if -1 <r < 1.
let0 < A< 1:
Ve >03ng : fne1/fn < A+eVn>ng
=3e > 0,3Ing : for1/fr < p<1¥n>ng
Thus

o (o]
S fa < fags >, u"™  konvergiert.

n=no n=no

(Analogously for divergence)
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L'Hospital’s rule

Theorem 14

Let f,g: RT — R differentiable functions with ¢'(x) # 0 Va > 0.

If
lim f(z) = lim g(z) =0,
or
lim f(z) = £ooand lim g(z) = oo,
then

lim fa) lim fz)

if the limit of f'(x)/g'(x) exists
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L'Hospital’s rule

Es gilt log"(n) € o(n), because with f(z) = log*(z), g(n) = z, we can
apply L'Hospital's rule and get

f@) _ o S o)

logh(x)
lim = lim —

After k iterations we get

I
1
lim 28 @) _ i md —o.

T—00 €x T—00 ap
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