
33. Parallel Programming IV

Futures, Read-Modify-Write Instructions, Atomic Variables, Idea of
lock-free programming
[C++ Futures: Williams, Kap. 4.2.1-4.2.3] [C++ Atomic: Williams, Kap. 5.2.1-5.2.4,
5.2.7] [C++ Lockfree: Williams, Kap. 7.1.-7.2.1]

1061



Futures: Motivation

Up to this point, threads have been functions without a result:
void action(some parameters){

...
}

std::thread t(action, parameters);
...
t.join();
// potentially read result written via ref-parameters

1062



Futures: Motivation

Now we would like to have the following
T action(some parameters){

...
return value;

}

std::thread t(action, parameters);
...
value = get_value_from_thread();

main

action

da
ta

1063



We can do this already!

We make use of the producer/consumer pattern, implemented with
condition variables
Start the thread with reference to a bu�er
We get the result from the bu�er.
Synchronisation is already implemented

1064



Reminder

template <typename T>
class Buffer {

std::queue<T> buf;
std::mutex m;
std::condition_variable cond;

public:
void put(T x){ std::unique_lock<std::mutex> g(m);

buf.push(x);
cond.notify_one();

}
T get(){ std::unique_lock<std::mutex> g(m);

cond.wait(g, [&]{return (!buf.empty());});
T x = buf.front(); buf.pop(); return x;

}
}; 1065



Simpler: only one value

template <typename T>
class Buffer {

T value; bool received = false;
std::mutex m;
std::condition_variable cond;

public:
void put(T x){ std::unique_lock<std::mutex> g(m);

value = x; received = true;
cond.notify_one();

}
T get(){ std::unique_lock<std::mutex> g(m);

cond.wait(g, [&]{return received;});
return value;

}
}; 1066



Application

void action(Buffer<int>& c){
// some long lasting operation ...
c.put(42);

}

int main(){
Buffer<int> c;
std::thread t(action, std::ref(c));
t.detach(); // no join required for free running thread
// can do some more work here in parallel
int val = c.get();
// use result
return 0;

}

main

action

da
ta

1067



With features of C++11

int action(){
// some long lasting operation
return 42;

}

int main(){
std::future<int> f = std::async(action);
// can do some work here in parallel
int val = f.get();
// use result
return 0;

}

main

action

da
ta

1068



Disclaimer

The explanations above are simpli�ed. The real implementation of a
Future can deal with timeouts, exceptions, memory allocators and is
generally written more closely to the unerlying operating system.

1069



33.2 Read-Modify-Write

1070



Example: Atomic Operations in Hardware

1071



Read-Modify-Write

Concept of Read-Modify-Write: The e�ect of reading, modifying and writing
back becomes visible at one point in time (happens atomically).

1072



Psudocode for CAS – Compare-And-Swap

bool CAS(int& variable, int& expected, int desired){
if (variable == expected){

variable = desired;
return true;

}
else{

expected = variable;
return false;

}
}

at
om

ic

1073



Application example CAS in C++11
We build our own (spin-)lock:

class Spinlock{
std::atomic<bool> taken {false};

public:
void lock(){

bool old = false;
while (!taken.compare_exchange_strong(old=false, true)){}

}
void unlock(){

bool old = true;
assert(taken.compare_exchange_strong(old, false));

}
};

1074



33.3 Lock-Free Programming

Ideas

1075



Lock-free programming

Data structure is called
lock-free: at least one thread always makes progress in bounded time
even if other algorithms run concurrently. Implies system-wide progress
but not freedom from starvation.
wait-free: all threads eventually make progress in bounded time.
Implies freedom from starvation.

1076



Progress Conditions

Non-Blocking Blocking

Everyone makes
progress

Wait-free Starvation-free

Someone makes
progress

Lock-free Deadlock-free

1077



Implication

Programming with locks: each thread can block other threads
inde�nitely.
Lock-free: failure or suspension of one thread cannot cause failure or
suspension of another thread !

1078



Lock-free programming: how?

Beobachtung:
RMW-operations are implemented wait-free by hardware.
Every thread sees his result of a CAS in bounded time.

Idea of lock-free programming: read the state of a data sructure and
change the data structure atomically if and only if the previously read
state remained unchanged meanwhile.

1079



Example: lock-free stack

Simpli�ed variant of a stack in the following
pop does not check for an empty stack
pop does not return a value

1080



(Node)

Nodes:
struct Node {

T value;

Node<T>* next;
Node(T v, Node<T>* nxt): value(v), next(nxt) {}

};

value
next

value
next

value
next

value
next

1081



(Blocking Version)

template <typename T>
class Stack {

Node<T> *top=nullptr;
std::mutex m;

public:
void push(T val){ guard g(m);

top = new Node<T>(val, top);
}
void pop(){ guard g(m);

Node<T>* old_top = top;
top = top->next;
delete old_top;

}
};

value
next

value
next

value
next

value
next

top

1082



Lock-Free

template <typename T>
class Stack {

std::atomic<Node<T>*> top {nullptr};
public:

void push(T val){
Node<T>* new_node = new Node<T> (val, top);
while (!top.compare_exchange_weak(new_node->next, new_node));

}
void pop(){

Node<T>* old_top = top;
while (!top.compare_exchange_weak(old_top, old_top->next));
delete old_top;

}
};

1083



Push

void push(T val){
Node<T>* new_node = new Node<T> (val, top);
while (!top.compare_exchange_weak(new_node->next, new_node));

}

2 Threads:

top

new

new

1084



Push

void push(T val){
Node<T>* new_node = new Node<T> (val, top);
while (!top.compare_exchange_weak(new_node->next, new_node));

}

2 Threads:

top

new

new

1084



Push

void push(T val){
Node<T>* new_node = new Node<T> (val, top);
while (!top.compare_exchange_weak(new_node->next, new_node));

}

2 Threads:

top

new

new

1084



Push

void push(T val){
Node<T>* new_node = new Node<T> (val, top);
while (!top.compare_exchange_weak(new_node->next, new_node));

}

2 Threads:

top

new

new

1084



Push

void push(T val){
Node<T>* new_node = new Node<T> (val, top);
while (!top.compare_exchange_weak(new_node->next, new_node));

}

2 Threads:

top

new

new

1084



Pop

void pop(){
Node<T>* old_top = top;
while (!top.compare_exchange_weak(old_top, old_top->next));
delete old_top;

}

2 Threads:

top

old

old old

1085



Pop

void pop(){
Node<T>* old_top = top;
while (!top.compare_exchange_weak(old_top, old_top->next));
delete old_top;

}

2 Threads:

top

old

old

old

1085



Pop

void pop(){
Node<T>* old_top = top;
while (!top.compare_exchange_weak(old_top, old_top->next));
delete old_top;

}

2 Threads:

top

old

old

old

1085



Pop

void pop(){
Node<T>* old_top = top;
while (!top.compare_exchange_weak(old_top, old_top->next));
delete old_top;

}

2 Threads:

top

old

old

1085



Pop

void pop(){
Node<T>* old_top = top;
while (!top.compare_exchange_weak(old_top, old_top->next));
delete old_top;

}

2 Threads:

top

old

old

1085



Lock-Free Programming – Limits

Lock-Free Programming is complicated.
If more than one value has to be changed in an algorithm (example:
queue), it is becoming even more complicated: threads have to “help
each other” in order to make an algorithm lock-free.
The ABA problem can occur if memory is reused in an algorithm. A
solution of this problem can be quite expensive.

1086


	Parallel Programming IV
	C++ Futures
	Read-Modify-Write
	Lock-Free Programming


