33. Parallel Programming IV

Futures, Read-Modify-Write Instructions, Atomic Variables, Idea of
lock-free programming

[C++ Futures: Williams, Kap. 4.21-4.2.3] [C++ Atomic: Williams, Kap. 5.21-5.2.4,
5.2.7] [C++ Lockfree: Williams, Kap. 71.-7.21]

1061

Futures: Motivation

Up to this point, threads have been functions without a result:

void action(some parameters){
}
std: :thread t(action, parameters);

t.join();
// potentially read result written via ref-parameters

1062

Futures: Motivation

Now we would like to have the following

T action(some parameters)q{ main

return value; .
} action

>
std: :thread t(action, parameters); S

value = get_value_from_thread();

1063

We can do this already!

m We make use of the producer/consumer pattern, implemented with
condition variables

m Start the thread with reference to a buffer
m We get the result from the buffer.
m Synchronisation is already implemented

1064

Reminder

template <typename T>
class Buffer {
std: :queue<T> buf;
std: :mutex m;
std::condition_variable cond;
public:
void put(T x){ std::unique_lock<std::mutex> g(m);
buf.push(x);
cond.notify_one();
}
T get(){ std::unique_lock<std::mutex> g(m);
cond.wait(g, [&]{return (!buf.empty());1});
T x = buf.front(); buf.pop(); return x;

}

} 3 1065

Simpler: only one value

template <typename T>
class Buffer {

T value; bool received = false;

std: :mutex m;

std::condition_variable cond;

public:

void put(T x){ std::unique_lock<std::mutex> g(m);
value = x; received = true;
cond.notify_one();

}

T get(){ std::unique_lock<std::mutex> g(m);
cond.wait(g, [&]{return received;});
return value;

}

};

1066

Application

void action(Buffer<int>& c){ main
// some long lasting operation ...
c.put (42); .
} action
>
G
int main(){ ©

Buffer<int> c;

std::thread t(action, std::ref(c));

t.detach(); // no join required for free running thread
// can do some more work here in parallel

int val = c.get();

// use result

return O;

1067

With features of C++11

int action(){ main
// some long lasting operation

return 42;)
} action

int main(Q{ &
std::future<int> f = std::async(action);
// can do some work here in parallel
int val = f.get();
// use result
return O;

1068

Disclaimer

The explanations above are simplified. The real implementation of a
Future can deal with timeouts, exceptions, memory allocators and is
generally written more closely to the unerlying operating system.

1069

33.2 Read-Modify-Write

1070

Example: Atomic Operations in Hardware

CMPXCHG

Compare and Exchange

CMPXCHG mem, reg

«compares the value in Register A
with the value in a memory location
If the two values are equal, the
instruction copies the value in the

second operand to the first operand |
and sets the ZF flag in the flag
regsiters to 1. Otherwise it copies
the value in the first operand to A
register and clears ZF flag to O»

1.2.5 Lock Prefix

«The lock prefix causes certain kinds |

of memory read-modify-write
instructions to occur atomically»

AMDG64 Architecture
Programmer’s Manual

1071

Read-Modify-Write

Concept of Read-Modify-Write: The effect of reading, modifying and writing
back becomes visible at one point in time (happens atomically).

1072

Psudocode for CAS - Compare-And-Swap

bool CAS(int& variable, int& expected, int desired){
if (variable == expected){
variable = desired;
return true;
}
elseq{
expected = variable;
return false;
}
}

atomic

1073

Application example CAS in C++11

We build our own (spin-)lock:

class Spinlock{
std: :atomic<bool> taken {falsel};
public:
void lock(){
bool old = false;
while (!taken.compare_exchange_strong(old=false, true)){}
}
void unlock(){
bool o0ld = true;
assert (taken.compare_exchange_strong(old, false));

}
};

1074

33.3 Lock-Free Programming

deas

1075

Lock-free programming

Data structure is called

m lock-free: at least one thread always makes progress in bounded time
even if other algorithms run concurrently. Implies system-wide progress
but not freedom from starvation.

m wait-free: all threads eventually make progress in bounded time.
Implies freedom from starvation.

1076

Progress Conditions

Non-Blocking Blocking
Everyone makes Wait-free Starvation-free
progress
Someone makes Lock-free Deadlock-free
progress

1077

Implication

m Programming with locks: each thread can block other threads
indefinitely.

m Lock-free: failure or suspension of one thread cannot cause failure or
suspension of another thread !

1078

Lock-free programming: how?

Beobachtung:
m RMW-operations are implemented wait-free by hardware.
m Every thread sees his result of a CAS in bounded time.

Idea of lock-free programming: read the state of a data sructure and
change the data structure atomically if and only if the previously read
state remained unchanged meanwhile.

1079

Example: lock-free stack

Simplified variant of a stack in the following

m pop does not check for an empty stack
m pop does not return a value

1080

(Node)

Nodes:

struct Node {
T value;

Node<T>* next;
Node(T v, Node<T>* nxt): value(v), next(nxt) {}
};

value
next

value
next

value
next

value
next

1081

(Blocking Version)

template <typename T>
class Stack {
Node<T> *top=nullptr;
std: :mutex m;
public:
void push(T val){ guard g(m);
top = new Node<T>(val, top);
%
void pop(){ guard g(m);
Node<T>* old_top = top;
top = top->next;
delete old_top;

top = value

next

value
next

value
next

value
next

1082

Lock-Free

template <typename T>
class Stack {
std: :atomic<Node<T>*> top {nullptr};
public:
void push(T val){
Node<T>* new_node = new Node<T> (val, top);
while (!top.compare_exchange_weak(new_node->next, new_node));

}
void pop(O){
Node<T>* old_top = top;
while (!top.compare_exchange_weak(old_top, old_top->next));
delete old_top;
}
};

1083

Push

void push(T val){
Node<T>* new_node = new Node<T> (val, top);
while (!top.compare_exchange_weak(new_node->next, new_node));

}
2 Threads:

tp—— = o —

1084

Push

void push(T val){
Node<T>* new_node = new Node<T> (val, top);
while (!top.compare_exchange_weak(new_node->next, new_node));

}
2 Threads:

new

tp—— = = —
new

1084

Push

void push(T val){
Node<T>* new_node = new Node<T> (val, top);
while (!top.compare_exchange_weak(new_node->next, new_node));

}
2 Threads:

1084

Push

void push(T val){
Node<T>* new_node = new Node<T> (val, top);
while (!top.compare_exchange_weak(new_node->next, new_node));

}
2 Threads:

new

top - - —
new

1084

Push

void push(T val){
Node<T>* new_node = new Node<T> (val, top);
while (!top.compare_exchange_weak(new_node->next, new_node));

}
2 Threads:

new

top - - —
new

1084

void pop(O{
Node<T>* old_top = top;
while (!top.compare_exchange_weak(old_top, old_top->next));
delete old_top;

}

2 Threads:

top— — — —

1085

void pop(O{
Node<T>* old_top = top;
while (!top.compare_exchange_weak(old_top, old_top->next));
delete old_top;

}

2 Threads:

o
(@

o
o

1085

void pop(O{

Node<T>* old_top = top;
while (!top.compare_exchange_weak(old_top, old_top->next));

delete old_top;
}
2 Threads:

top

1085

void pop(O{
Node<T>* old_top = top;
while (!top.compare_exchange_weak(old_top, old_top->next));
delete old_top;

}

2 Threads:
old

s~:l
top - -

(@]
Q.
M~

1085

void pop(O{
Node<T>* old_top = top;
while (!top.compare_exchange_weak(old_top, old_top->next));
delete old_top;

}

2 Threads:

@]
([@N
~

top

(@)
Q.
M~

1085

Lock-Free Programming — Limits

m Lock-Free Programming is complicated.

m If more than one value has to be changed in an algorithm (example:
queue), it is becoming even more complicated: threads have to “help
each other” in order to make an algorithm lock-free.

m The ABA problem can occur if memory is reused in an algorithm. A
solution of this problem can be quite expensive.

1086

	Parallel Programming IV
	C++ Futures
	Read-Modify-Write
	Lock-Free Programming

