32. Parallel Programming I

Deadlock and Starvation , Producer-Consumer , The concept of the
monitor , Condition Variables [Deadlocks : Williams, Kap. 3.2.4-3.2.5]
[Condition Variables: Williams, Kap. 4.1]

1036

Deadlock Motivation

class BankAccount {
int balance = 0;
std::recursive_mutex m;
using guard = std::lock_guard<std::recursive_mutex>;

public:
void withdraw(int amount) { guard g(m); ... }
void deposit(int amount){ guard g(m); ... }

void transfer(int amount, BankAccount& to){
guard g(m);
withdraw(amount) ; Problem?
to.deposit (amount) ;

1037

Deadlock Motivation

Suppose BankAccount instances x and y

Thread 1: x.transfer(l,y); Thread 2: y.transfer(1,x);
acquire lock for x 4— [i (.\

withdraw from x “\ acquire lock fory 4= E‘
acquire lock fory ‘\‘ withdraw fromy »

.~ *~-acquire lock forx

S e
~
iy
i -

1038

Deadlock

Deadlock: two or more processes are mutu-
ally blocked because each process waits for _
another of these processes to proceed. (LD

1039

Threads and Resources

t T

m Grafically ¥ and Resources (Locks)

m Thread ¢ attempts to acquire resource a: t q

m Resource b is held by thread ¢: 54 b

1040

Deadlock — Detection

A deadlock for threads ¢, ..., t, occurs when the graph describing the

relation of the n threads and resources rq, ..., r,, contains a cycle.
wants
2 > 71 & T4
T2 tl

/

1041

Techniques

m Deadlock detection detects cycles in the dependency graph. Deadlocks
can in general not be healed: releasing locks generally leads to
inconsistent state

m Deadlock avoidance amounts to techniques to ensure a cycle can never
arise

m Coarser granularity “one lock for all”
m Two-phase locking with retry mechanism
m Lock Hierarchies
[
[|

Resource Ordering

1042

Back to the Example

class BankAccount {
int id; // account number, also used for locking order
std::recursive_mutex m;

public:

void transfer(int amount, BankAccount& to){
if (id < to.id){
guard g(m); guard h(to.m);
withdraw(amount); to.deposit(amount);
} else {
guard g(to.m); guard h(m);
withdraw(amount); to.deposit(amount) ;

3

}; 1043

C++11 Style

class BankAccount {

std: :recursive_mutex m;
using guard = std::lock_guard<std::recursive_mutex>;

public:

void transfer(int amount, BankAccount& to){
std::lock(m,to.m); // lock order done by C++
// tell the guards that the lock is already taken:
guard g(m,std::adopt_lock); guard h(to.m,std::adopt_lock);
withdraw(amount) ;
to.deposit (amount) ;

1044

By the way...

class BankAccount {
int balance = 0;
std::recursive_mutex m;
using guard = std::lock_guard<std::recursive_mutex>;

public:
void withdraw(int amount) { guard g(m); ... }
void deposit(int amount){ guard g(m); ... }

void transfer(int amount, BankAccount& to){

withdraw(amount) ; -
to.deposit (amount) ; This would have worked here also. But

} then for a very short amount of time,
}; money disappears, which does not seem

acceptable (transient inconsistency!) s

Starvation und Livelock

Starvation: the repeated but unsuccessful at- ﬁ
tempt to acquire a resource that was recently LU L)

(transiently) free. _\ [_

Livelock: competing processes are able to %
detect a potential deadlock but make no @ ‘“@
progress while trying to resolve it. — {g

1046

Politelock

1047

Producer-Consumer Problem

Two (or more) processes, producers and consumers of data should
become decoupled by some data structure.

Fundamental Data structure for building pipelines in software.

t, —— 4

1048

Sequential implementation (unbounded buffer)

class BufferS {
std::queue<int> buf;
public:
void put(int x){
buf.push(x) ;

} \\(e
aot®

int get({
while (buf.empty()){} // wait until data arrive
int x = buf.front();
buf.pop();
return x;

1049

How about this?

class Buffer {
std::recursive_mutex m;
using guard = std::lock_guard<std::recursive_mutex>;
std::queue<int> buf;
public:
void put(int x){ guard g(m);
buf.push(x);
}
int get(O{ guard g(m);
while (buf.empty()){}
int x = buf.front();
buf.pop();
return Xx;

oead\

} 5 1050

Well, then this?

void put(int x){
guard g(m);
buf.push(x);
}
int get(){
m.lock();
while (buf.empty()){
m.unlock();
m.lock();
}
int x = buf.front();
buf.pop();
m.unlock();
return x;

Ok this works, but it wastes CPU time.

1051

Better?

void put(int x){
guard g(m);
buf.push(x) ;
}
int get(){
m.lock();
while (buf.empty()){
m.unlock();
std::this_thread::sleep_for(std::chrono::milliseconds(10));
m.lock();

}

int x = buf.front(); buf.pop();

m.unlock();

return x;

} 1052

Ok a little bit better, limits reactivity
though.

Moral

We do not want to implement waiting on a condition ourselves.
There already is a mechanism for this: condition variables.
The underlying concept is called Monitor.

1053

Monitor

Monitor abstract data structure equipped
with a set of operations that run in mutual
exclusion and that can be synchronized.

Invented by CA.R. Hoare and Per Brinch Per nc
Hansen (cf. Monitors - An Operating System ~ CAR.Hoare, Hansen
Structuring Concept, C.A.R. Hoare 1974) 1934 (1938-2007)

1054

Monitors vs. Locks

shared

shared

monitor

monitor

1055

Monitor and Conditions

Monitors provide, in addition to mutual exclusion, the following
mechanism:
Waiting on conditions: If a condition does not hold, then

B Release the monitor lock
m Wait for the condition to become true
m Check the condition when a signal is raised

Signalling: Thread that might make the condition true:
m Send signal to potentially waiting threads

1056

Condition Variables

#include <mutex>
#include <condition_variable>

class Buffer {
std::queue<int> buf;

std: :mutex m;
// need unique_lock guard for conditions
using guard = std::unique_lock<std::mutex>;
std::condition_variable cond;

public:

};

1057

Condition Variables

class Buffer {
public:
void put(int x){
guard g(m);

buf .push(x) ;
cond.notify_one();

}
int get({
guard g(m);
cond.wait(g, [&]l{return !buf.empty();});
int x = buf.front(); buf.pop();
return x;
}

1058

Technical Details

m A thread that waits using cond.wait runs at most for a short time on a
core. After that it does not utilize compute power and “sleeps”.

m The notify (or signal-) mechanism wakes up sleeping threads that
subsequently check their conditions.

B cond.notify_one signals one waiting thread
B cond.notify_all signals all waiting threads. Required when waiting
thrads wait potentially on different conditions.

1059

Technical Details

m Many other programming langauges offer
the same kind of mechanism. The
checking of conditions (in a loop!) has to
be usually implemented by the
programmer.

Java Example

synchronized long get() {
long x;
while (isEmpty())
try {

wait ();

} catch (InterruptedException e)
x = doGet();
return x;

}

synchronized put(long x){
doPut(x);

notify ();
}

1060

	Parallel Programming III
	Deadlock
	Producer-Consumer Problem
	Monitor Concept
	Condition Variables

