
30. Parallel Programming I

Moore’s Law, Hardware Architectures, Parallel Execution , Multi-Threading,
Parallelism and Concurrency, C++ Threads, Scalability: Amdahl and
Gustafson , Scheduling
[Task-Scheduling: Cormen et al, Kap. 27] [Concurrency, Scheduling:
Williams, Kap. 1.1 – 1.2]

936

Motivation: Paint a Picture (1 Artist)

Model: sequential execution

937

Motivation: Paint a Picture (4 Artists)

Model: parallel execution

938

Motivation: Paint a Picture (4 Artists, 3 Brushes)

P P P

Model: concurrent execution

939

Motivation: Paint a Picture (4 Artists, 1 Brush)

P

Model: concurrent execution

940

Models

Sequential: the program is executed step-by-step in the prescribed
order
Parallel: tasks are executed in parallel. No synchronisation necessary,
enough resources available.
Concurrent: Tasks are executed in parallel. But there is a need for
synchronisation: tasks have to be interrupted.

941

Why Parallelism and Concurrency?

Reactive / Interactive / Multi-User- Systems particularly graphical user
interfaces⇒ Concurrency
Computation-heavy tasks, like data processing and analysis, where
performance is important⇒ Parallelism
Natural parallelism / concurrency: distributed systems, device drivers.

942

A Bit of Technical Background: CPUs
Today’s typical computers (desktops, phones, ...) o�er (at least)
CPU: central processing unit, general-purpose computation device
GPU: graphics processing unit, incredibly e�cient for linear- algebra
computations (games, graphics; machine learning).

Today’s CPUs are typically multi-core:
Each core is essentially a dedicated CPU that can execute code
Examples:

Intel i7-8700K has 6 cores (from 2017)
Intel i9-12900KF has 16 cores (from 2021)
AMD Ryzen 9 5950X has 16 cores (from 2020)
Apple M1 Max has 10 cores (from 2021)

Intel i7 (2017)
943

Moore’s Law

Gordon E. Moore (1929)

Observation by Gordon E. Moore:
The number of transistors on integrated circuits
doubles approximately every two years.

944

ou
rw
or
ld
in
da
ta
.o
rg
,h

tt
ps

:/
/e

n.
wi

ki
pe

di
a.

or
g/

wi
ki

/T
ra

ns
is

to
r_

co
un

t

945

https://en.wikipedia.org/wiki/Transistor_count

For a long time...

the sequential execution became faster ("Instruction Level Parallelism",
"Pipelining", Higher Frequencies)
more and smaller transistors = more performance
programmers simply waited for the next processor generation to
improve the performance of their programs.

946

Today

the frequency of processors does not increase signi�cantly and more
(heat dissipation problems)
the instruction level parallelism does not increase signi�cantly any more
the execution speed is dominated by memory access times (but caches
still become larger and faster)

947

ht
tp

s:
//

gi
th

ub
.c

om
/k

ar
lr

up
p/

mi
cr

op
ro

ce
ss

or
-

tr
en

d-
da

ta

948

https://github.com/karlrupp/microprocessor-trend-data

Multicore

Use transistors for more compute cores
Parallelism in the software

⇒ programmers have to write parallel programs to bene�t from new
hardware

949

(Simpli�ed) Assumption: Computing Model

CPU CPU CPU

Mem

Bus

Shared Memory

Independent Computing Cores

950

30.1 Multi-Threading, Parallelism and Concurrency

951

Processes and Threads

Process: instance of a program

each process has a separate context, even a separate address space (”can
only see its own memory“)
OS manages processes (resource control, scheduling, synchronisation)

Thread: thread of execution of a program

Threads share the address space
fast context switch between threads

952

Why Multithreading?

Avoid “polling” resources (�les, network, keyboard)
Interactivity (e.g. responsivity of GUI programs)
Several applications / clients in parallel
Parallelism (performance!)

953

Multithreading conceptually

Thread 1

Thread 2

Thread 3

Single Core

Thread 1

Thread 2

Thread 3

Multi Core

954

Thread switch on one core (Preemption)

thread 1 thread 2

idle
busy

Store State t1
Interrupt

Load State t2

busyidle

Store State t2
Interrupt

Load State t1
busy

idle

955

Parallelism vs. Concurrency

Parallelism: Use extra resources to solve a problem faster
Concurrency: Correctly and e�ciently manage access to shared
resources
The notions overlap. With parallel computations there is nearly always a
need to synchronise.

Parallelism

Work

Resources

Concurrency

Requests

Resources

956

Thread Safety

Thread Safety means that in a concurrent application of a program this
always yields the desired results.
Many optimisations (Hardware, Compiler) target towards the correct
execution of a sequential program.
Concurrent programs need an annotation that switches o� certain
optimisations selectively.

957

30.2 C++ Threads

958

C++11 Threads

#include <iostream>
#include <thread>

void hello(){
std::cout << "hello\n";

}

int main(){
// create and launch thread t
std::thread t(hello);
// wait for termination of t
t.join();
return 0;

}

create thread

hello

join

959

C++11 Threads

void hello(int id){
std::cout << "hello from " << id << "\n";

}

int main(){
std::vector<std::thread> tv(3);
int id = 0;
for (auto & t:tv)

t = std::thread(hello, ++id);
std::cout << "hello from main \n";
for (auto & t:tv)

t.join();
return 0;

}

create threads

join

960

Nondeterministic Execution!

One execution:
hello from main
hello from 2
hello from 1
hello from 0

Other execution:
hello from 1
hello from main
hello from 0
hello from 2

Other execution:
hello from main
hello from 0
hello from hello from 1
2

961

Technical Detail

To let a thread continue as background thread:
void background();

void someFunction(){
...
std::thread t(background);
t.detach();
...

} // no problem here, thread is detached

962

More Technical Details

With allocating a thread, reference parameters are copied, except
explicitly std::ref is provided at the construction.
Can also run Functor or Lambda-Expression on a thread
In exceptional circumstances, joining threads should be executed in a
catch block

More background and details in chapter 2 of the book C++ Concurrency in Action,
Anthony Williams, Manning 2012. also available online at the ETH library.

963

What can (not) be Parallelized

int pow8(int b){
int b2 = b * b;
int b4 = b2 * b2;
return b4 * b4;

}

int main(){
int x;
std::cin >> x;
x = pow8(x);
std::cout << x;

}

Program computes x8

All parts of the program must be
executed in �xed order

Input→ Computation→ Output
b2→ b4→ b8

No two computations are
independent
and must all be executed
sequentially

964

What can (not) be Parallelized

int pow8(int b){
int b2 = b * b;
int b4 = b2 * b2;
return b4 * b4;

}

int main(){
std::vector<int> v =;
for (int& x : v)

x = pow8(x);
...

}

Program computes x8 for each
x ∈ v
The computation of x8

i does not
depend on the computation of x8

j .
We can parallelise the
computation of all x8

Parallelisation can reduce runtime
if

the computation to be
parallelised runs long enough)
su�cient CPUs are available

965

What can (not) be Parallelized

int main(){
std::vector<int> v =;
for (int& x : v)

x = pow8(x);
...

}

Example is obviously parallelisable
Solche Probleme nennt man
emberassingly parallel

Many problems and algorithms are di�erent:
can be parallelized but that requires a deeper analyis
need preprocessing or postprocessing in order to decompose the problem
into parallelisable subproblems or to combine the partial results,
respectively.

Example: Matrix-Multiplication, Mergesort 966

30.3 Scalability: Amdahl and Gustafson

967

Scalability

In parallel Programming:
Speedup when increasing number p of processors
What happens if p→∞?
Program scales linearly: Linear speedup.

968

Parallel Performance

Given a �xed amount of computing work W (number computing steps)
T1: Sequential execution time
Tp: Parallel execution time on p CPUs
Perfection: Tp = T1/p

Performance loss: Tp > T1/p (usual case)
Sorcery: Tp < T1/p

969

Parallel Speedup

Parallel speedup Sp on p CPUs:

Sp = W/Tp
W/T1

= T1

Tp
.

Perfection: linear speedup Sp = p

Performance loss: sublinear speedup Sp < p (the usual case)
Sorcery: superlinear speedup Sp > p

E�ciency:Ep = Sp/p

970

Reachable Speedup?
Parallel Program

Parallel Part Seq. Part

80% 20%

T1 = 10

T8 = 10 · 0.8
8 + 10 · 0.2 = 1 + 2 = 3

S8 = T1

T8
= 10

3 ≈ 3.3 < 8 (!)

971

Amdahl’s Law: Ingredients

Computational work W falls into two categories
Paralellisable part Wp

Not parallelisable, sequential part Ws

Assumption: W can be processed sequentially by one processor inW time
units (T1 = W):

T1 = Ws +Wp

Tp ≥ Ws +Wp/p

972

Amdahl’s Law

Sp = T1

Tp
≤ Ws +Wp

Ws + Wp

p

973

Amdahl’s Law

With sequential, not parallelizable fraction λ: Ws = λW , Wp = (1− λ)W :

Sp ≤
1

λ+ 1−λ
p

Thus
S∞ ≤

1
λ

974

Illustration Amdahl’s Law

p = 1

t

Ws

Wp

p = 2

Ws

Wp

p = 4

Ws

Wp

T1

975

Amdahl’s Law is bad news

All non-parallel parts of a program can cause problems

976

Gustafson’s Law

Fix the time of execution
Vary the problem size.
Assumption: the sequential part stays constant, the parallel part
becomes larger

977

Illustration Gustafson’s Law

p = 1

t

Ws

Wp

p = 2

Ws

Wp Wp

p = 4

Ws

Wp Wp Wp Wp

T

978

Gustafson’s Law
Work that can be executed by one processor in time T :

Ws +Wp = T

Work that can be executed by p processors in time T :

Ws + p ·Wp = λ · T + p · (1− λ) · T

Speedup:

Sp = Ws + p ·Wp

Ws +Wp

= p · (1− λ) + λ

= p− λ(p− 1)

979

Amdahl vs. Gustafson

Amdahl Gustafson

p = 4 p = 4

980

Amdahl vs. Gustafson

The laws of Amdahl and Gustafson are models of speedup for
parallelization.
Amdahl assumes a �xed relative sequential portion, Gustafson assumes a
�xed absolute sequential part (that is expressed as portion of the workW1
and that does not increase with increasing work).
The two models do not contradict each other but describe the runtime
speedup of di�erent problems and algorithms.

981

30.4 Scheduling

982

Example: Fibonacci

int fib_task(int x){
if (x < 2) {

return x;
} else {

auto f1 = std::async(fib_task, x-1);
auto f2 = std::async(fib_task, x-2);
return f1.get() + f2.get();

}
}

983

Task-Graph

f(4)

f(3) f(2)

f(2) f(1) f(1) f(0)

f(1) f(0)

•

•

•

•
984

Question

Each Node (task) takes 1 time unit.
Arrows depict dependencies.
Minimal execution time when number of
processors =∞?

critical path

985

Performance Model

p processors
Dynamic scheduling
Tp: Execution time on p processors

986

Performance Model

Tp: Execution time on p processors
T1: Work: time for executing total work on
one processor
T1/Tp: Speedup

987

Performance Model

T∞: Span: critical path, execution time on
∞ processors. Longest path from root to
sink.
T1/T∞: Parallelism: wider is better
Lower bounds:

Tp ≥ T1/p Work law
Tp ≥ T∞ Span law

988

Greedy Scheduler

Greedy scheduler: at each time it schedules as many as availbale tasks.

Theorem 38
On an ideal parallel computer with p processors, a greedy scheduler
executes a multi-threaded computation with work T1 and span T∞ in
time

Tp ≤ T1/p+ T∞

989

Example
Assume p = 2.

Tp = 5 Tp = 4

990

Proof of the Theorem

Assume that all tasks provide the same amount of work.

Complete step: p tasks are available.

incomplete step: less than p steps available.

Assume that number of complete steps larger than bT1/pc. Executed work
≥ bT1/pc · p + p = T1 − T1 mod p + p > T1. Contradiction. Therefore maximally
bT1/pc complete steps.
We now consider the graph of tasks to be done. Any maximal (critical) path starts
with a node t with deg−(t) = 0. An incomplete step executes all available tasks t
with deg−(t) = 0 and thus decreases the length of the span. Number incomplete
steps thus limited by T∞.

991

Consequence

if p� T1/T∞, i.e. T∞ � T1/p, then

Tp ≤ T1/p+ T∞ ⇒ Tp . T1/p

Fibonacci
T1(n)/T∞(n) = Θ(φn/n). For moderate sizes of n we can use a lot of
processors yielding linear speedup.

992

Example: Parallelism of Mergesort

Work (sequential runtime) of Mergesort
T1(n) = Θ(n log n).
Span T∞(n) = Θ(n)
Parallelism T1(n)/T∞(n) = Θ(log n)
(Maximally achievable speedup with
p =∞ processors)

split

merge

993

	Parallel Programming I
	Multi-Threading, Parallelism and Concurrency
	C++ Threads
	Scalability: Amdahl and Gustafson
	Scheduling

