
30. Parallel Programming I

Moore’s Law, Hardware Architectures, Parallel Execution , Multi-Threading,
Parallelism and Concurrency, C++ Threads, Scalability: Amdahl and
Gustafson , Scheduling
[Task-Scheduling: Cormen et al, Kap. 27] [Concurrency, Scheduling:
Williams, Kap. 1.1 – 1.2]
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Motivation: Paint a Picture (1 Artist)

Model: sequential execution
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Motivation: Paint a Picture (4 Artists)

Model: parallel execution
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Motivation: Paint a Picture (4 Artists, 3 Brushes)

P P P

Model: concurrent execution
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Motivation: Paint a Picture (4 Artists, 1 Brush)

P

Model: concurrent execution
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Models

Sequential: the program is executed step-by-step in the prescribed
order
Parallel: tasks are executed in parallel. No synchronisation necessary,
enough resources available.
Concurrent: Tasks are executed in parallel. But there is a need for
synchronisation: tasks have to be interrupted.
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Why Parallelism and Concurrency?

Reactive / Interactive / Multi-User- Systems particularly graphical user
interfaces⇒ Concurrency
Computation-heavy tasks, like data processing and analysis, where
performance is important⇒ Parallelism
Natural parallelism / concurrency: distributed systems, device drivers.
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A Bit of Technical Background: CPUs
Today’s typical computers (desktops, phones, ...) o�er (at least)
CPU: central processing unit, general-purpose computation device
GPU: graphics processing unit, incredibly e�cient for linear- algebra
computations (games, graphics; machine learning).

Today’s CPUs are typically multi-core:
Each core is essentially a dedicated CPU that can execute code
Examples:

Intel i7-8700K has 6 cores (from 2017)
Intel i9-12900KF has 16 cores (from 2021)
AMD Ryzen 9 5950X has 16 cores (from 2020)
Apple M1 Max has 10 cores (from 2021)

Intel i7 (2017)
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Moore’s Law

Gordon E. Moore (1929)

Observation by Gordon E. Moore:
The number of transistors on integrated circuits
doubles approximately every two years.
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For a long time...

the sequential execution became faster ("Instruction Level Parallelism",
"Pipelining", Higher Frequencies)
more and smaller transistors = more performance
programmers simply waited for the next processor generation to
improve the performance of their programs.
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Today

the frequency of processors does not increase signi�cantly and more
(heat dissipation problems)
the instruction level parallelism does not increase signi�cantly any more
the execution speed is dominated by memory access times (but caches
still become larger and faster)
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Multicore

Use transistors for more compute cores
Parallelism in the software

⇒ programmers have to write parallel programs to bene�t from new
hardware
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(Simpli�ed) Assumption: Computing Model

CPU CPU CPU

Mem

Bus

Shared Memory

Independent Computing Cores
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30.1 Multi-Threading, Parallelism and Concurrency
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Processes and Threads

Process: instance of a program

each process has a separate context, even a separate address space (”can
only see its own memory“)
OS manages processes (resource control, scheduling, synchronisation)

Thread: thread of execution of a program

Threads share the address space
fast context switch between threads
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Why Multithreading?

Avoid “polling” resources (�les, network, keyboard)
Interactivity (e.g. responsivity of GUI programs)
Several applications / clients in parallel
Parallelism (performance!)
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Multithreading conceptually

Thread 1

Thread 2

Thread 3

Single Core

Thread 1

Thread 2

Thread 3

Multi Core
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Thread switch on one core (Preemption)

thread 1 thread 2

idle
busy

Store State t1
Interrupt

Load State t2

busyidle

Store State t2
Interrupt

Load State t1
busy

idle
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Parallelism vs. Concurrency

Parallelism: Use extra resources to solve a problem faster
Concurrency: Correctly and e�ciently manage access to shared
resources
The notions overlap. With parallel computations there is nearly always a
need to synchronise.

Parallelism

Work

Resources

Concurrency

Requests

Resources

956



Thread Safety

Thread Safety means that in a concurrent application of a program this
always yields the desired results.
Many optimisations (Hardware, Compiler) target towards the correct
execution of a sequential program.
Concurrent programs need an annotation that switches o� certain
optimisations selectively.
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30.2 C++ Threads
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C++11 Threads

#include <iostream>
#include <thread>

void hello(){
std::cout << "hello\n";

}

int main(){
// create and launch thread t
std::thread t(hello);
// wait for termination of t
t.join();
return 0;

}

create thread

hello

join
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C++11 Threads

void hello(int id){
std::cout << "hello from " << id << "\n";

}

int main(){
std::vector<std::thread> tv(3);
int id = 0;
for (auto & t:tv)

t = std::thread(hello, ++id);
std::cout << "hello from main \n";
for (auto & t:tv)

t.join();
return 0;

}

create threads

join
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Nondeterministic Execution!

One execution:
hello from main
hello from 2
hello from 1
hello from 0

Other execution:
hello from 1
hello from main
hello from 0
hello from 2

Other execution:
hello from main
hello from 0
hello from hello from 1
2
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Technical Detail

To let a thread continue as background thread:
void background();

void someFunction(){
...
std::thread t(background);
t.detach();
...

} // no problem here, thread is detached
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More Technical Details

With allocating a thread, reference parameters are copied, except
explicitly std::ref is provided at the construction.
Can also run Functor or Lambda-Expression on a thread
In exceptional circumstances, joining threads should be executed in a
catch block

More background and details in chapter 2 of the book C++ Concurrency in Action,
Anthony Williams, Manning 2012. also available online at the ETH library.
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What can (not) be Parallelized

int pow8(int b){
int b2 = b * b;
int b4 = b2 * b2;
return b4 * b4;

}

int main(){
int x;
std::cin >> x;
x = pow8(x);
std::cout << x;

}

Program computes x8

All parts of the program must be
executed in �xed order

Input→ Computation→ Output
b2→ b4→ b8

No two computations are
independent
and must all be executed
sequentially
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What can (not) be Parallelized

int pow8(int b){
int b2 = b * b;
int b4 = b2 * b2;
return b4 * b4;

}

int main(){
std::vector<int> v = ....;
for (int& x : v)

x = pow8(x);
...

}

Program computes x8 for each
x ∈ v
The computation of x8

i does not
depend on the computation of x8

j .
We can parallelise the
computation of all x8

Parallelisation can reduce runtime
if

the computation to be
parallelised runs long enough)
su�cient CPUs are available
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What can (not) be Parallelized

int main(){
std::vector<int> v = ....;
for (int& x : v)

x = pow8(x);
...

}

Example is obviously parallelisable
Solche Probleme nennt man
emberassingly parallel

Many problems and algorithms are di�erent:
can be parallelized but that requires a deeper analyis
need preprocessing or postprocessing in order to decompose the problem
into parallelisable subproblems or to combine the partial results,
respectively.

Example: Matrix-Multiplication, Mergesort 966



30.3 Scalability: Amdahl and Gustafson
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Scalability

In parallel Programming:
Speedup when increasing number p of processors
What happens if p→∞?
Program scales linearly: Linear speedup.
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Parallel Performance

Given a �xed amount of computing work W (number computing steps)
T1: Sequential execution time
Tp: Parallel execution time on p CPUs
Perfection: Tp = T1/p

Performance loss: Tp > T1/p (usual case)
Sorcery: Tp < T1/p
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Parallel Speedup

Parallel speedup Sp on p CPUs:

Sp = W/Tp
W/T1

= T1

Tp
.

Perfection: linear speedup Sp = p

Performance loss: sublinear speedup Sp < p (the usual case)
Sorcery: superlinear speedup Sp > p

E�ciency:Ep = Sp/p
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Reachable Speedup?
Parallel Program

Parallel Part Seq. Part

80% 20%

T1 = 10

T8 = 10 · 0.8
8 + 10 · 0.2 = 1 + 2 = 3

S8 = T1

T8
= 10

3 ≈ 3.3 < 8 (!)
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Amdahl’s Law: Ingredients

Computational work W falls into two categories
Paralellisable part Wp

Not parallelisable, sequential part Ws

Assumption: W can be processed sequentially by one processor inW time
units (T1 = W ):

T1 = Ws +Wp

Tp ≥ Ws +Wp/p
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Amdahl’s Law

Sp = T1

Tp
≤ Ws +Wp

Ws + Wp

p
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Amdahl’s Law

With sequential, not parallelizable fraction λ: Ws = λW , Wp = (1− λ)W :

Sp ≤
1

λ+ 1−λ
p

Thus
S∞ ≤

1
λ
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Illustration Amdahl’s Law

p = 1

t

Ws

Wp

p = 2

Ws

Wp

p = 4

Ws

Wp

T1
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Amdahl’s Law is bad news

All non-parallel parts of a program can cause problems
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Gustafson’s Law

Fix the time of execution
Vary the problem size.
Assumption: the sequential part stays constant, the parallel part
becomes larger
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Illustration Gustafson’s Law

p = 1

t

Ws

Wp

p = 2

Ws

Wp Wp

p = 4

Ws

Wp Wp Wp Wp

T
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Gustafson’s Law
Work that can be executed by one processor in time T :

Ws +Wp = T

Work that can be executed by p processors in time T :

Ws + p ·Wp = λ · T + p · (1− λ) · T

Speedup:

Sp = Ws + p ·Wp

Ws +Wp

= p · (1− λ) + λ

= p− λ(p− 1)
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Amdahl vs. Gustafson

Amdahl Gustafson

p = 4 p = 4
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Amdahl vs. Gustafson

The laws of Amdahl and Gustafson are models of speedup for
parallelization.
Amdahl assumes a �xed relative sequential portion, Gustafson assumes a
�xed absolute sequential part (that is expressed as portion of the workW1
and that does not increase with increasing work).
The two models do not contradict each other but describe the runtime
speedup of di�erent problems and algorithms.
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30.4 Scheduling

982



Example: Fibonacci

int fib_task(int x){
if (x < 2) {

return x;
} else {

auto f1 = std::async(fib_task, x-1);
auto f2 = std::async(fib_task, x-2);
return f1.get() + f2.get();

}
}

983



Task-Graph

f(4)

f(3) f(2)

f(2) f(1) f(1) f(0)

f(1) f(0)

•

•

•

•
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Question

Each Node (task) takes 1 time unit.
Arrows depict dependencies.
Minimal execution time when number of
processors =∞?

critical path
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Performance Model

p processors
Dynamic scheduling
Tp: Execution time on p processors
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Performance Model

Tp: Execution time on p processors
T1: Work: time for executing total work on
one processor
T1/Tp: Speedup
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Performance Model

T∞: Span: critical path, execution time on
∞ processors. Longest path from root to
sink.
T1/T∞: Parallelism: wider is better
Lower bounds:

Tp ≥ T1/p Work law
Tp ≥ T∞ Span law
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Greedy Scheduler

Greedy scheduler: at each time it schedules as many as availbale tasks.

Theorem 38
On an ideal parallel computer with p processors, a greedy scheduler
executes a multi-threaded computation with work T1 and span T∞ in
time

Tp ≤ T1/p+ T∞
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Example
Assume p = 2.

Tp = 5 Tp = 4
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Proof of the Theorem

Assume that all tasks provide the same amount of work.

Complete step: p tasks are available.

incomplete step: less than p steps available.

Assume that number of complete steps larger than bT1/pc. Executed work
≥ bT1/pc · p + p = T1 − T1 mod p + p > T1. Contradiction. Therefore maximally
bT1/pc complete steps.
We now consider the graph of tasks to be done. Any maximal (critical) path starts
with a node t with deg−(t) = 0. An incomplete step executes all available tasks t
with deg−(t) = 0 and thus decreases the length of the span. Number incomplete
steps thus limited by T∞.

991



Consequence

if p� T1/T∞, i.e. T∞ � T1/p, then

Tp ≤ T1/p+ T∞ ⇒ Tp . T1/p

Fibonacci
T1(n)/T∞(n) = Θ(φn/n). For moderate sizes of n we can use a lot of
processors yielding linear speedup.
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Example: Parallelism of Mergesort

Work (sequential runtime) of Mergesort
T1(n) = Θ(n log n).
Span T∞(n) = Θ(n)
Parallelism T1(n)/T∞(n) = Θ(log n)
(Maximally achievable speedup with
p =∞ processors)

split

merge
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