29. Flow in Networks

Flow Network, Flow, Maximum Flow
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Ford-Fulkerson Algorithm
Edmonds-Karp Algorithm

Cuts, Max-Flow Min-Cut Theorem

[Ottman/Widmayer, Kap. 9.7, 9.81], [Cormen et al, Kap. 26.1-26.3]

Slides redesigned by Manuela Fischer - thank you!
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Greedy Algorithm?

Residual capacity of an edge e: r(¢) := c(e) — f(e)
Residual capacity of a path P: min.cp r(e)

Greedy: Starting with f(e) = 0 for all e € E, as long as there exists a path
s ~» t with remaining capacity d > 0, increase flow along this path by d.

f1=38

s—=a—>b—>d—1t3
s—a—c—t 2
s—>b—=c—1t3

but | fimax| = 10
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29.1 Flow Algorithms

Ford-Fulkerson Algorithm

Edmonds-Karp Algorithm
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3/3

G=(V.E, []c)

= Umleitung entspricht Verringerung des Flusses durch Kante 897
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C fle)lc(e) C

m Increment: r(e)
flow through e can be increased by at most @—>@

r(e) :==c(e) — f(e) G :=(V,E,r:=c—f)

m Decrement:

flow through e can be decreased by at most f(e)
f(e) <>‘ @

= flow through ‘€ can be increased by at
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Algorithm Ford-Fulkerson(G, s, t)

Input: Flow network G = (V| E, ¢), source s, sink ¢
Output: Maximal flow f

for e € E do
L fle) <0
while exists positive path P: s ~ t in residual network Gy = (V, E¢,cy) do
d < minecp cy(e)
foreach e € P do
if e € I then
 fle) « fle)+d
else
L f@) — f(e) —d
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Example Ford-Fulkerson

nodes reachable from s
nodes not reachable from s

all outgoing edges have residual capacity 0 in G
= flow fully exhausts capacity on these edges!
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Running Time Analysis of Ford-Fulkerson

Running time of each iteration: search of an augmenting path s ~ ¢
= BFS or DFS: O(|V| + |E|) = O(|E|)
(|V| < |E|, because all non-reachable nodes can be ignored.)

Number of iterations:
In every step, the size of the flow increases by d > 0.
integer capacities = increment by > 1 = at most | fu.x| iterations

= O(| fmax| - | E]) for flow networks G = (V, E, ¢) with ¢: E — N=!

Edmonds-Karp Algorithm: (Variant of Ford-Fulkerson)

shortest augmenting path (number of edges) = O(|V| - | E|?) (without

explanation)
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How many iterations does Edmonds-Karp need in the worst case?
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100/100 100/100

Termination after 2 iterations!
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Flows and Cuts: Bottleneck Intuition

Upper bounds on size of flow:

m what can flow out of s: ¢*(s)

m what can flow into ¢: ¢ (t)

m what can flow through arbitrary cut

m what can flow through bottleneck: ¢,

Cmin

= flow | f| < bottleneck
= maximum flow < bottleneck
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Maximum Flow and Minimum Cut

after termination of Ford-Fulkerson/Edmonds-Karp:
m reachable from s, T € V nodes not reachable from s = Cut (S, T)
m all outgoing edges e have remaining capacity 0 in G
mf(S,T)=>c s rfle) =2 rsfle)=>c s rcle)=c(S,T)

= | fmax| = Cmin
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Max-Flow Min-Cut Theorem

Max-Flow Min-Cut Theorem

For a flow f in a flow network G = (V E, ¢) with source s and sink ¢, the
following statements are equivalent:

1. fisa maximum flow in G
2. The residual network Gy does not provide any augmenting paths
3. |f| =¢(S,T) foracut (S,T) of G.
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What is the minimum cut?
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What is the minimum cut?
What is the maximum flow?
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Application Examples

m Maximum Rate:

water in sewage system

cars in traffic

current in electrical networks

components on conveyors

information flow in communication networks

m Scheduling
m Bipartite Matching
m Image Segmentation
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29.4 Maximales Bipartites Matching
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A graph where V' can be partitioned into disjoint sets U and W such that
each e € E provides a node in U and a node in W is called bipartite.
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Application: maximal bipartite matching

Given: bipartite undirected graph G = (V. E).
Matching M: M C E'suchthat |[{me M :vem}| <1lforallveV.

Maximal Matching M: Matching M, such that |M| > |M’| for each matching
M.

XY
NAV
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Corresponding flow network

Construct a flow network that corresponds to the partition L, R of a
bipartite graph with source s and sink ¢, with directed edges from s to L,
from L to R and from R to ¢. Each edge has capacity 1.
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m Definitions: flow networks, flow, cut
m Concepts: Redirection, remainder network, augmenting path
m Algorithms
m Greedy: incorrect!
m Ford-Fulkerson: O(| fmax| - |E|)
Greedy augmenting paths in remainder network
® Edmonds-Karp: O(|V] - |E|?)
Ford-Fulkerson with shortest augmenting paths (number of edges)

m Max Flow = Min Cut
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29.5 Appendix: Some Formal Things
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Flow: Formulation with Skew Symmetry

AFlow f : V x V — R fulfills the following
conditions:

m Bounded Capacity:

Forallu,v € Vi f(u,v) < c(u,v).
m Skew Symmetry:

Forallu,v € Vi f(u,v) = —f(v,u).
m Conservation of flow:

Forallu e V'\ {s,t}: Value of the flow:
[fl=2Xvev f(s,0).
Zf(%v):o- Here ]f|i18.

veV
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m Capacity of an (s, t)—-cut: ¢(S,T) = Y eswer (v, V)
® Minimal cut: cut with minimal capacity.
m Flow over the cut: (S, 1) = X cser f(v,0)

Generally: Let U, U’ CV
fOUY) =30 flu),  fu,U):= f({u},U)

uEU
u' ey’
Then
m(f[=f(s,V)
m f(UU)=0

m f(UU)=-fU,U)
mf(XUY,Z)=f(X,Z)+ f( Z),if XNY =0.
mf(R,V)=0ifRN {s t} = 0. [flow conversation!]
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How large can a flow possibly be?

f(SvT):f(SaV)_f(Sv‘S’):f(S7V)
0

=f(sV)+ (S —A{s},V) =[]

= [fl< Y clv))=¢(S,T)

‘\
te=23 923



Rest Network

Rest network G provided by the edges with positive rest capacity:

Gp= (V. Ey,cp)
cr(u,v) = c(u,v) — f(u,v) Yu,v eV
E; = {(u,v) € V x Vlcs(u,v) >0}

m Increase of the flow along some edge possible, when flow can be
increased along the edge,i.e. if f(u,v) < c¢(u,v).
Rest capacity c¢¢(u, v) = ¢(u,v) — f(u,v) > 0.

m Increase of flow against the direction of the edge possible, if flow can
be reduced along the edge, i.e. if f(u,v) > 0.
Rest capacity c¢(v,u) = f(u,v) > 0.
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The increased flow is a flow

Theorem 32

Let G = (V, E,c) be a flow network with source s and sink t and f a flow
in G. Let Gy be the corresponding rest networks and let f" be a flow in
Gy. Then f & f" with

(f & f)(u,v) = flu,v) + f'(u,v)

defines a flow in G with value |f| + |f/|.
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f @ f' defines a flow in G-
m capacity limit

(f D f/>(uv U) = f(ua ’U) + f,(u7 U) < C(u’ U)

m skew symmetry
(f D f/)(uv U) = _f(vau) + —f/(U,U) = _(f D f/)<vvu)
m flow conservationu € V — {s,t}:

S(fe M) => flu,v)+ > f(u,v) =0

veV veV veV
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Value of f & f/

fefl=(af)sV)
=Y f(s,u)+ f'(s,u)

ueV
=f(s,V)+ f'(s,V)
= [f[+[/]
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Augmenting Paths

expansion path p: simple path from s to ¢ in the rest network Gy.
Rest capacity c¢;(p) = min{cy(u,v) : (u,v) edge in p}

Theorem 33

The mapping f,: V xV = R,

cr(p)  if (u,v) edge in p
fo(u,v) = ¢ —c¢(p) if (v,u) edge inp
0 otherwise

provides a flow in Gy with value |f,| = c¢(p) > 0.

f, is a flow (easy to show). there is one and only one u € V with (s,u) € p.
Thus ‘fp| = ZUEV fp(S,’U) = fp(sau’) = Cf(p) 08



Max-Flow Min-Cut Theorem

Theorem 34

Let f be a flow in a flow network G = (V, E, ¢) with source s and sink t.
The following statementsa are equivalent:

1. fis a maximal flow in G
2. The rest network Gy does not provide any expansion paths
3. It holds that |f| = ¢(S,T) for a cut (S,T) of G.
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m(3)= (1)
It holds that |f| < ¢(S,T) for all cuts S, T. From |f| = ¢(S, T) it follows
that | f] is maximal.

m (1) = (2):
f maximal Flow in G. Assumption: G has some expansion path
If® f,l =1fl+1/f»| > |f|. Contradiction.
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Proof (2) = (3)

Assumption: Gy has no expansion path

Define S = {v € V : thereis a path s ~» v in G¢}.

(S, T):=(S,V\S)isacut s S;teT.

Letuw € Sand v € T. Then ¢s(u,v) =0, also ¢¢(u,v) = c(u,v) — f(u,v) = 0.
Somit f(u,v) = c(u,v).

Thus
If] = Zquv ZZc(u,v):C’(S,T).

ueS veT ueS veT
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Edmonds-Karp Algorithm

Theorem 35

When the Edmonds-Karp algorithm is applied to some integer valued
flow network G = (V, E) with source s and sink t then the number of
flow increases applied by the algorithm is in O(|V| - |E|).

= Overal asymptotic runtime: O(|V| - |E|?)
[Without proof]
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Edmonds-Karp Algorithmus

Theorem 36

Wenn der Edmonds-Karp Algorithmus auf Flussnetzwerk G = (V, E) mit
Quelle s und Senke t angewendet wird, dann wachst fur jeden Knoten
v e V\{s,t} die Distanz 6;(s,v) des Rurzesten Pfades von s nach v im
Restnetzwerk Gy monoton mit jeder Flusserhohung.

933



Beweis

Annahme: Distanz é,(s,v) wird bei Flusserhohung f — f” kleiner fur ein v:
dr(s,v) < dp(s,v)

Sei p = s ~» u — v kurzester Pfad von s nach v in G/, so dass (u,v) € Ep
und 6 (s,u) = dp(s,v) — 1. Es gilt d (s, u) > 64(s, u).

Wenn (u,v) € Ef: dfs,v < d(s,u) +1 < dp(s,u)+1=0p(s,v) Widerspruch.
Also (u,v) & Ej.
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Integer number theorem

Theorem 37

If the capacities of a flow network are integers, then the maximal flow
generated by the Ford-Fulkerson method provides integer numbers for
each f(u,v), u,v € V.

[without proof]
Consequence: Ford-Fulkerson generates for a flow network that
corresponds to a bipartite graph a maximal matching

M = {(u,v): f(u,v) =1}
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