29. Flow in Networks

Flow Network, Flow, Maximum Flow Residual Capacity, Remainder Network, Augmenting path

Ford-Fulkerson Algorithm Edmonds-Karp Algorithm

Cuts, Max-Flow Min-Cut Theorem

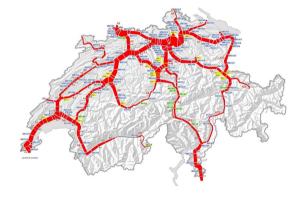
[Ottman/Widmayer, Kap. 9.7, 9.8.1], [Cormen et al, Kap. 26.1-26.3]

Slides redesigned by Manuela Fischer – thank you!

Maximum Traffic Flow

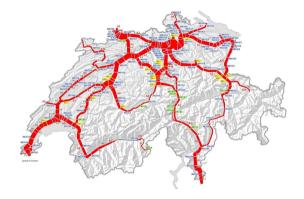
Maximum Traffic Flow

Given: Road Network with capacities



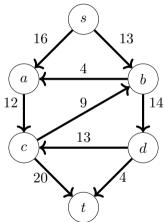
Maximum Traffic Flow

Given: Road Network with capacities



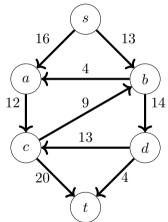
Wanted: Maximum traffic flow between Zurich and Geneva

directed, weighted graph G = (V, E, c) with capacities $c \colon E \to \mathbb{R}^{>0}$



directed, weighted graph G=(V,E,c) with capacities $c\colon E\to\mathbb{R}^{>0}$

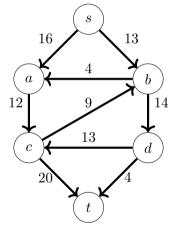
without antiparallel edges:



directed, weighted graph G=(V,E,c) with capacities $c\colon E\to\mathbb{R}^{>0}$

without antiparallel edges:

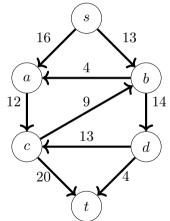
$$(u,v) \in E$$
 v



directed, weighted graph G = (V, E, c) with capacities $c \colon E \to \mathbb{R}^{>0}$

without antiparallel edges:

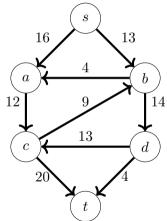
$$(u,v) \in E \Rightarrow (v,u) \notin E$$



directed, weighted graph G = (V, E, c) with capacities $c \colon E \to \mathbb{R}^{>0}$

without antiparallel edges: $(u,v) \in E \Rightarrow (v,u) \notin E$

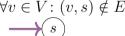
■ source $s \in V$ without ingoing edges:

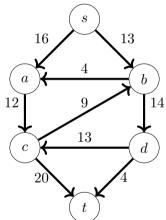


directed, weighted graph G = (V, E, c) with capacities $c \colon E \to \mathbb{R}^{>0}$

without antiparallel edges: $(u,v) \in E \Rightarrow (v,u) \notin E$

■ source $s \in V$ without ingoing edges: $\forall v \in V : (v,s) \notin E$

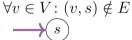




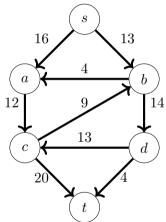
directed, weighted graph G = (V, E, c) with capacities $c \colon E \to \mathbb{R}^{>0}$

without antiparallel edges: $(u,v) \in E \Rightarrow (v,u) \notin E$

source $s \in V$ without ingoing edges: $\forall v \in V : (v, s) \notin E$



■ sink $t \in V$ without outgoing edges:



directed, weighted graph G = (V, E, c) with capacities $c \colon E \to \mathbb{R}^{>0}$

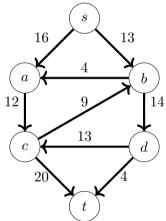
without antiparallel edges:

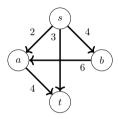
$$(u,v) \in E \Rightarrow (v,u) \notin E$$

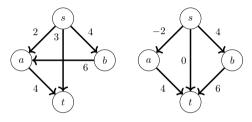
■ source $s \in V$ without ingoing edges: $\forall v \in V : (v, s) \notin E$

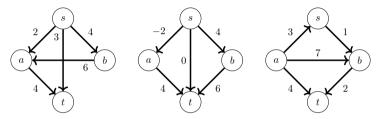
$$\forall v \in V : (v, s) \notin E$$

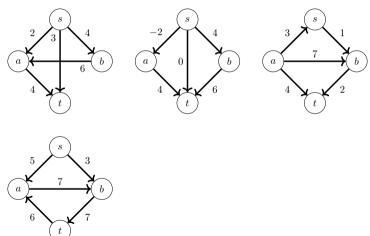
■ sink $t \in V$ without outgoing edges: $\forall v \in V \colon (t,v) \notin E$

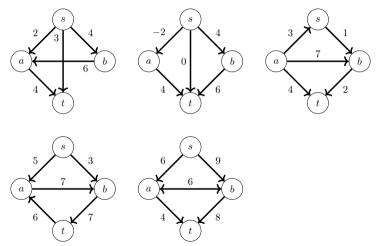


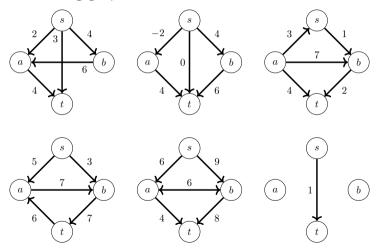


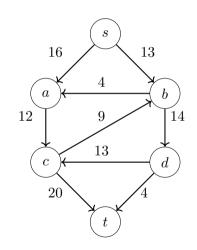


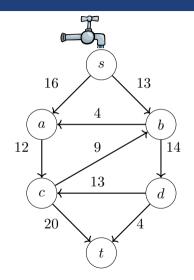


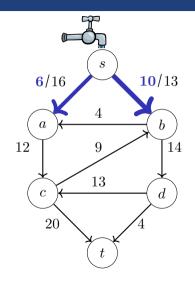


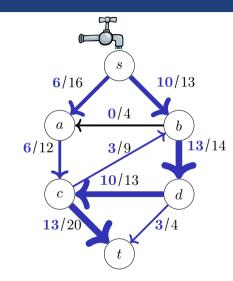


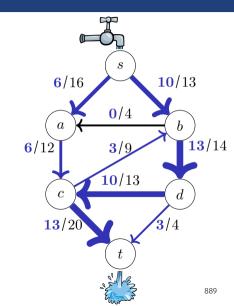






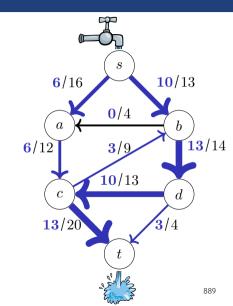




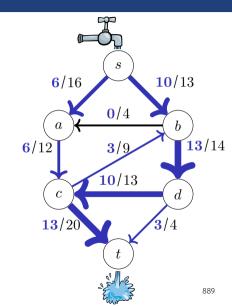


Flow is function $f \colon E \to \mathbb{R}^{\geq 0}$ such that

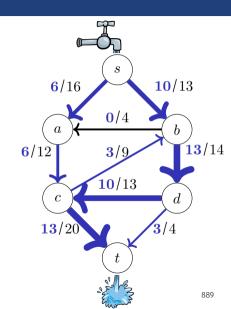
 $\blacksquare \ \, \textbf{Bounded Capacity} \! : \forall e \in E \! : f(e) \leq c(e)$



- $\blacksquare \ \, \textbf{Bounded Capacity} \! : \forall e \in E \! : f(e) \leq c(e)$
- Conservation of flow:

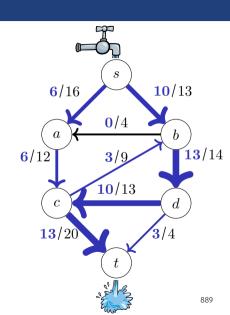


- Bounded Capacity: $\forall e \in E \colon f(e) \leq c(e)$
- Conservation of flow: $\forall v \in V \setminus \{s,t\}$:

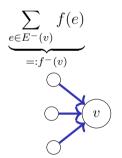


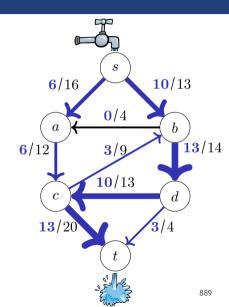
- Bounded Capacity: $\forall e \in E \colon f(e) \leq c(e)$
- Conservation of flow: $\forall v \in V \setminus \{s,t\}$:

$$\sum_{e \in E^-(v)} f(e)$$

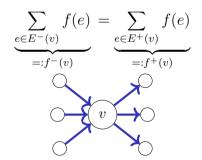


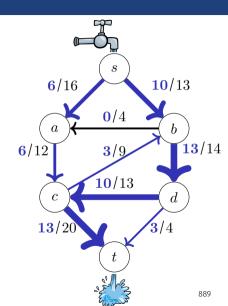
- Bounded Capacity: $\forall e \in E \colon f(e) \leq c(e)$
- Conservation of flow: $\forall v \in V \setminus \{s,t\}$:





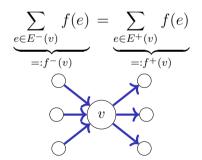
- Bounded Capacity: $\forall e \in E \colon f(e) \leq c(e)$
- Conservation of flow: $\forall v \in V \setminus \{s,t\}$:



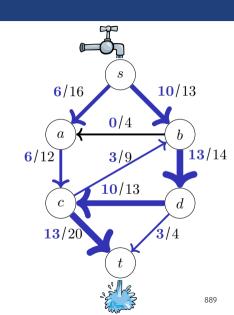


Flow is function $f: E \to \mathbb{R}^{\geq 0}$ such that

- Bounded Capacity: $\forall e \in E \colon f(e) \leq c(e)$
- Conservation of flow: $\forall v \in V \setminus \{s,t\}$:



Size of flow: $|f| := f^+(s) = f^-(t)$

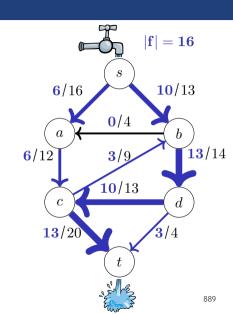


Flow is function $f \colon E \to \mathbb{R}^{\geq 0}$ such that

- Bounded Capacity: $\forall e \in E \colon f(e) \leq c(e)$
- Conservation of flow: $\forall v \in V \setminus \{s,t\}$:

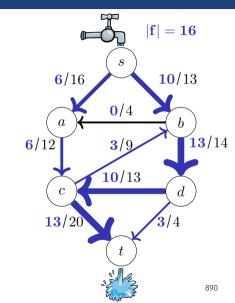
$$\underbrace{\sum_{e \in E^-(v)} f(e)}_{=:f^-(v)} = \underbrace{\sum_{e \in E^+(v)} f(e)}_{=:f^+(v)}$$

Size of flow: $|f| := f^+(s) = f^-(t)$

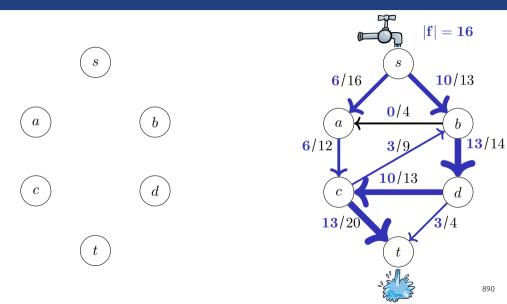


Intuition: Flow as set of paths $s \rightsquigarrow t$

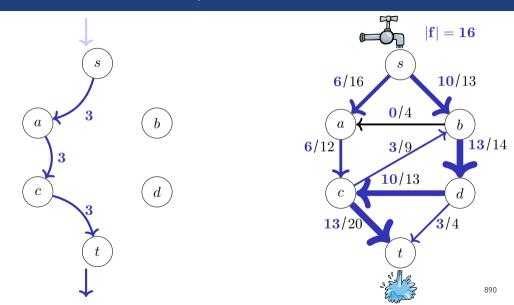
Intuition: Flow as set of paths $s \rightsquigarrow t$



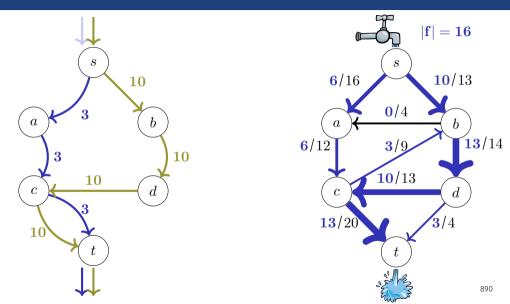
Intuition: Flow as set of paths $s \leadsto t$



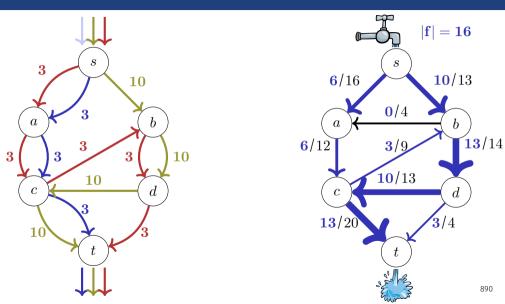
Intuition: Flow as set of paths $s \leadsto t$



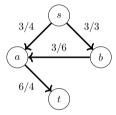
Intuition: Flow as set of paths $s \rightsquigarrow t$

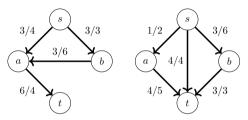


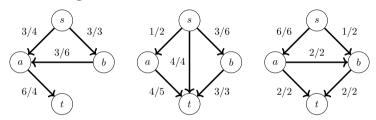
Intuition: Flow as set of paths $s \rightsquigarrow t$

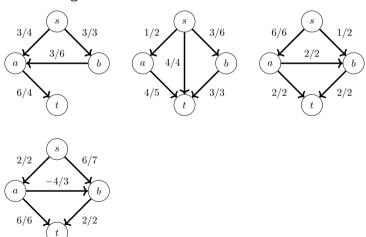


890

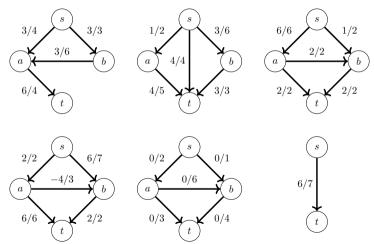




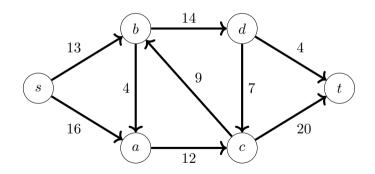




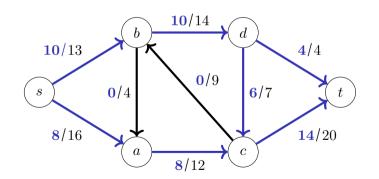




Given: Flow network: G=(V,E,c), directed, positively weighted, without antiparallel edges, with source s and sink t

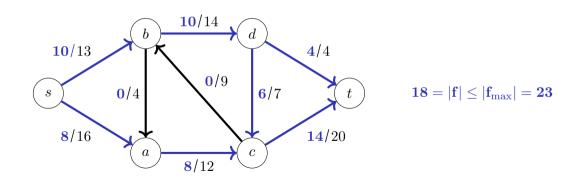


Given: Flow network: G=(V,E,c), directed, positively weighted, without antiparallel edges, with source s and sink t



Wanted: Size $|f_{\text{max}}|$ of the maximum flow in G

Given: Flow network: G=(V,E,c), directed, positively weighted, without antiparallel edges, with source s and sink t



Wanted: Size $|f_{\text{max}}|$ of the maximum flow in G

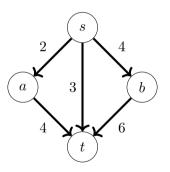
Quiz Maximum Flow

Quiz Maximum Flow

What is the maximum flow in the following flow network?

Quiz Maximum Flow

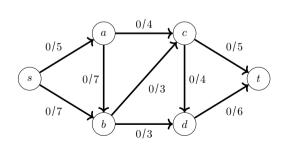
What is the maximum flow in the following flow network?



Residual capacity of an edge e: r(e) := c(e) - f(e)Residual capacity of a path P: $\min_{e \in P} r(e)$

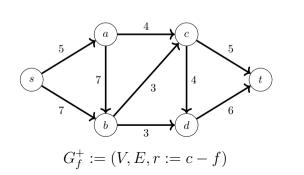
Residual capacity of an edge e: r(e) := c(e) - f(e)Residual capacity of a path P: $\min_{e \in P} r(e)$

Residual capacity of an edge e: r(e) := c(e) - f(e)Residual capacity of a path P: $\min_{e \in P} r(e)$



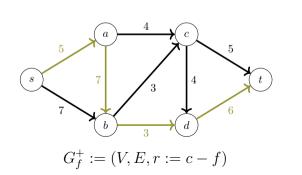
$$|f| = 0$$

Residual capacity of an edge e: r(e) := c(e) - f(e)Residual capacity of a path P: $\min_{e \in P} r(e)$



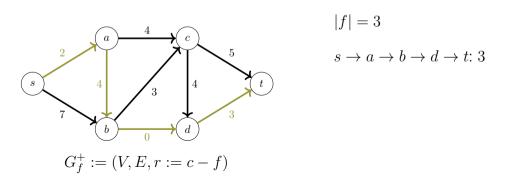
$$|f| = 0$$

Residual capacity of an edge e: r(e) := c(e) - f(e)Residual capacity of a path P: $\min_{e \in P} r(e)$

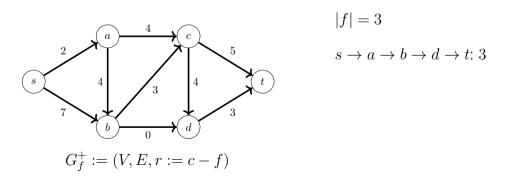


$$|f| = 0$$

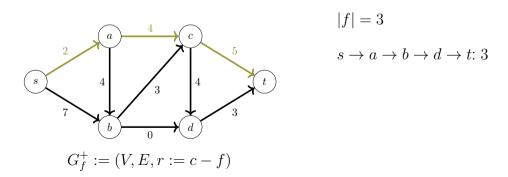
Residual capacity of an edge e: r(e) := c(e) - f(e)Residual capacity of a path P: $\min_{e \in P} r(e)$



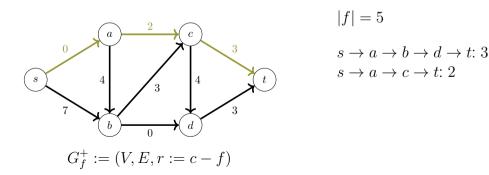
Residual capacity of an edge e: r(e) := c(e) - f(e)Residual capacity of a path P: $\min_{e \in P} r(e)$



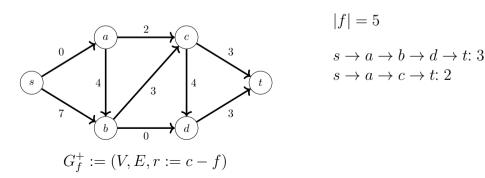
Residual capacity of an edge e: r(e) := c(e) - f(e)Residual capacity of a path P: $\min_{e \in P} r(e)$



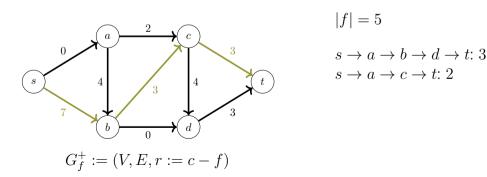
Residual capacity of an edge e: r(e) := c(e) - f(e)Residual capacity of a path P: $\min_{e \in P} r(e)$



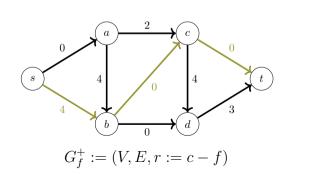
Residual capacity of an edge e: r(e) := c(e) - f(e)Residual capacity of a path P: $\min_{e \in P} r(e)$



Residual capacity of an edge e: r(e) := c(e) - f(e)Residual capacity of a path P: $\min_{e \in P} r(e)$

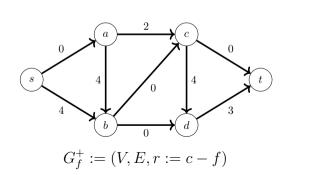


Residual capacity of an edge e: r(e) := c(e) - f(e)Residual capacity of a path P: $\min_{e \in P} r(e)$



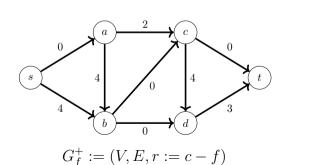
$$\begin{split} |f| &= 8 \\ s \rightarrow a \rightarrow b \rightarrow d \rightarrow t \text{: } 3 \\ s \rightarrow a \rightarrow c \rightarrow t \text{: } 2 \\ s \rightarrow b \rightarrow c \rightarrow t \text{: } 3 \end{split}$$

Residual capacity of an edge e: r(e) := c(e) - f(e)Residual capacity of a path P: $\min_{e \in P} r(e)$



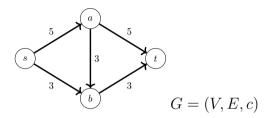
$$\begin{split} |f| &= 8 \\ s \rightarrow a \rightarrow b \rightarrow d \rightarrow t \text{: } 3 \\ s \rightarrow a \rightarrow c \rightarrow t \text{: } 2 \\ s \rightarrow b \rightarrow c \rightarrow t \text{: } 3 \end{split}$$

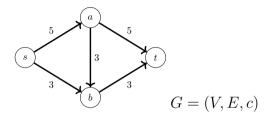
Residual capacity of an edge e: r(e) := c(e) - f(e)Residual capacity of a path P: $\min_{e \in P} r(e)$

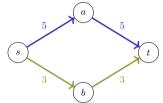


$$\begin{split} |f| &= 8 \\ s \rightarrow a \rightarrow b \rightarrow d \rightarrow t \text{: } 3 \\ s \rightarrow a \rightarrow c \rightarrow t \text{: } 2 \\ s \rightarrow b \rightarrow c \rightarrow t \text{: } 3 \\ \text{but } |f_{\text{max}}| &= 10 \end{split}$$

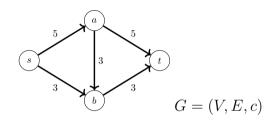
Problem with Greedy

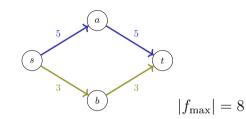


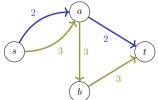




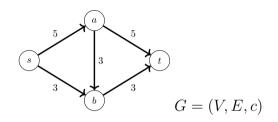
 $|f_{\text{max}}| = 8$

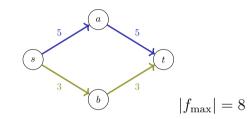


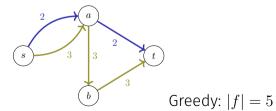


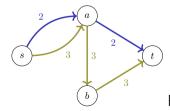


Greedy: |f| = 5

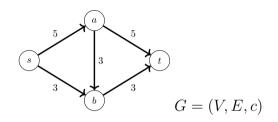


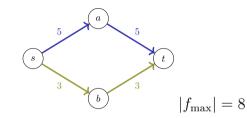


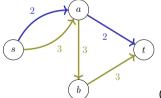


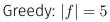


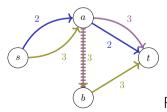
Redirection



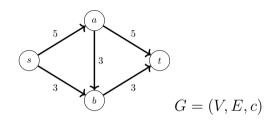


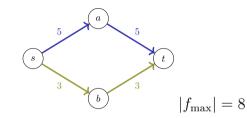


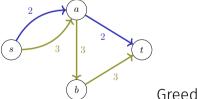


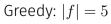


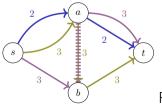
Redirection









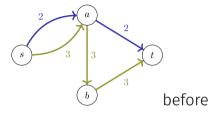


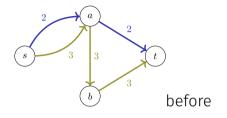
Redirection

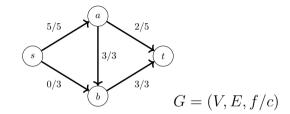
29.1 Flow Algorithms

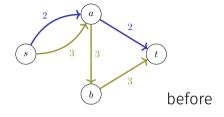
Ford-Fulkerson Algorithm

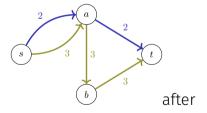
Edmonds-Karp Algorithm

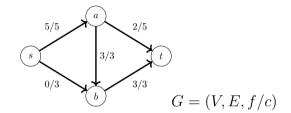


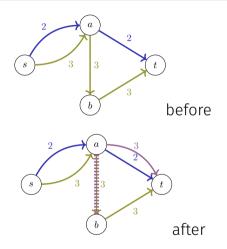


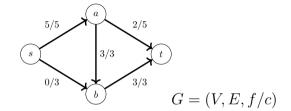


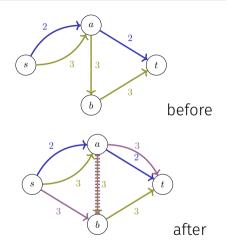


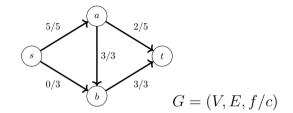




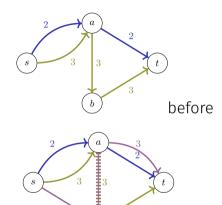


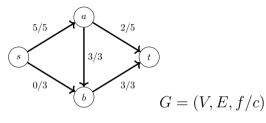


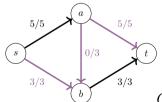




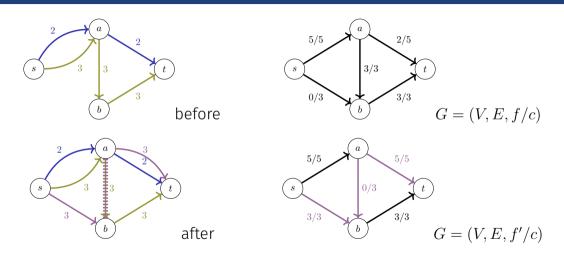
after



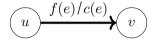


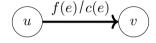


G = (V, E, f'/c)



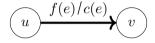
⇒ Umleitung entspricht Verringerung des Flusses durch Kante





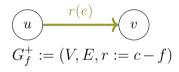
Increment:

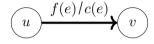
flow through e can be increased by at most r(e) := c(e) - f(e)



Increment:

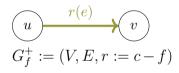
flow through e can be increased by at most r(e) := c(e) - f(e)





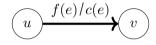
Increment:

flow through e can be increased by at most r(e) := c(e) - f(e)



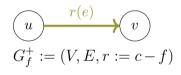
Decrement:

flow through e can be decreased by at most f(e)



Increment:

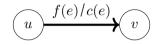
flow through e can be increased by at most r(e) := c(e) - f(e)



Decrement:

flow through e can be decreased by at most f(e)

 \Rightarrow flow through \overleftarrow{e} can be increased by at most f(e)



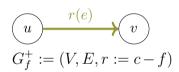
Increment:

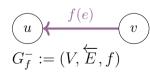
flow through e can be increased by at most r(e) := c(e) - f(e)

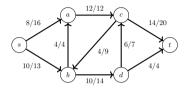
Decrement:

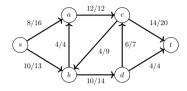
flow through e can be decreased by at most f(e)

 \Rightarrow flow through \overleftarrow{e} can be increased by at most f(e)

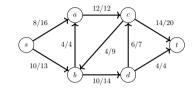


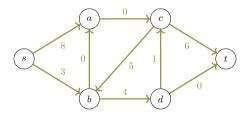




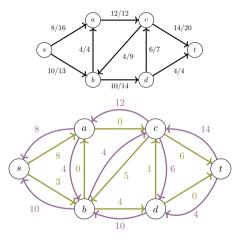


Residual network:
$$G_f := \mathbf{G}_{\mathbf{f}}^+ \cup \mathbf{G}_{\mathbf{f}}^- = (V, E_f, c_f)$$

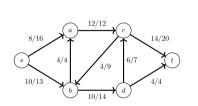


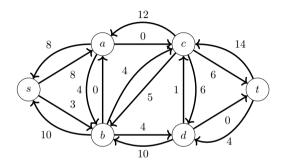


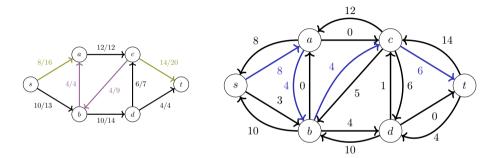
Residual network: $G_f := \mathbf{G}_{\mathbf{f}}^+ \cup \mathbf{G}_{\mathbf{f}}^- = (V, E_f, c_f)$



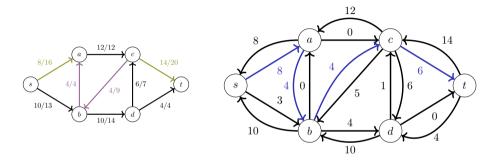
Residual network: $G_f := \mathbf{G}_{\mathbf{f}}^+ \cup \mathbf{G}_{\mathbf{f}}^- = (V, E_f, c_f)$



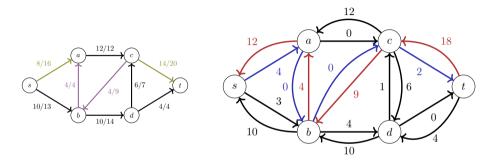




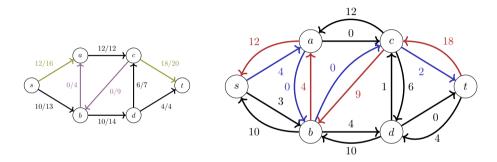
■ Augmenting Path: Find a path $P \colon \mathbf{s} \to \mathbf{t}$ with residual capacity d > 0 in G_f



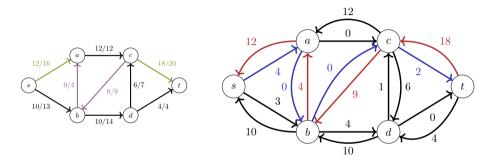
- Augmenting Path: Find a path $P \colon s \to t$ with residual capacity d > 0 in G_f
- lacksquare augment flow along this path for all $e \in P$ by d:



- Augmenting Path: Find a path $P \colon s \to t$ with residual capacity d > 0 in G_f
- **a** augment flow along this path for all $e \in P$ by d:
 - lacktriangle decrease residual capacity $\mathbf{c_f}(\mathbf{e})$ in G_f by d; increase $\mathbf{c_f}(\overleftarrow{e})$ by d



- Augmenting Path: Find a path $P \colon \mathbf{s} \to \mathbf{t}$ with residual capacity d > 0 in G_f
- lacksquare augment flow along this path for all $e \in P$ by d:
 - lacktriangle decrease residual capacity $\mathbf{c_f}(\mathbf{e})$ in G_f by d; increase $\mathbf{c_f}(\overleftarrow{e})$ by d
 - increase flow through $\mathbf{e} \in \mathbf{E}$ by d; decrease through $\overleftarrow{e} \in \mathbf{E}$



- Augmenting Path: Find a path $P \colon \mathbf{s} \to \mathbf{t}$ with residual capacity d > 0 in G_f
- **a** augment flow along this path for all $e \in P$ by d:
 - lacktriangle decrease residual capacity $\mathbf{c_f}(\mathbf{e})$ in G_f by d; increase $\mathbf{c_f}(\overleftarrow{e})$ by d
 - increase flow through $\mathbf{e} \in \mathbf{E}$ by d; decrease through $\overleftarrow{e} \in \mathbf{E}$

900

Algorithm Ford-Fulkerson(G, s, t)

Input: Flow network G = (V, E, c), source s, sink t

 $\textbf{Output:} \ \mathsf{Maximal} \ \mathsf{flow} \ f$

Algorithm Ford-Fulkerson(G, s, t)

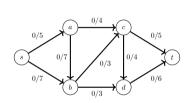
```
Input: Flow network G = (V, E, c), source s, sink t
Output: Maximal flow f
for e \in E do
f(e) \leftarrow 0
while exists positive path P: s \leadsto t in residual network G_f = (V, E_f, c_f) do
```

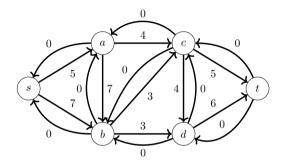
```
Input: Flow network G = (V, E, c), source s, sink t
Output: Maximal flow f
for e \in E do
f(e) \leftarrow 0
while exists positive path P: s \leadsto t in residual network G_f = (V, E_f, c_f) do
    d \leftarrow \min_{e \in P} c_f(e)
```

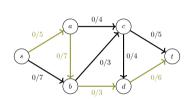
```
Input: Flow network G = (V, E, c), source s, sink t
Output: Maximal flow f
for e \in E do
f(e) \leftarrow 0
while exists positive path P: s \leadsto t in residual network G_f = (V, E_f, c_f) do
    d \leftarrow \min_{e \in P} c_f(e)
    foreach e \in P do
```

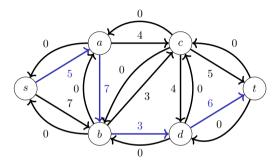
```
Input: Flow network G = (V, E, c), source s, sink t
Output: Maximal flow f
for e \in E do
f(e) \leftarrow 0
while exists positive path P: s \leadsto t in residual network G_f = (V, E_f, c_f) do
    d \leftarrow \min_{e \in P} c_f(e)
    foreach e \in P do
       if e \in E then
      f(e) \leftarrow f(e) + d
```

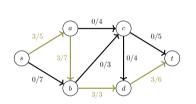
```
Input: Flow network G = (V, E, c), source s, sink t
Output: Maximal flow f
for e \in E do
f(e) \leftarrow 0
while exists positive path P: s \leadsto t in residual network G_f = (V, E_f, c_f) do
   d \leftarrow \min_{e \in P} c_f(e)
   foreach e \in P do
       if e \in E then
```

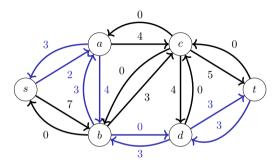


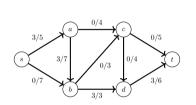


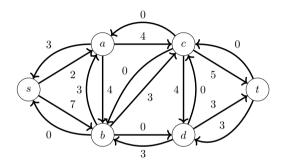


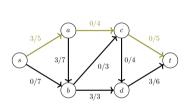


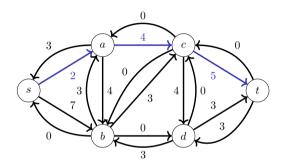


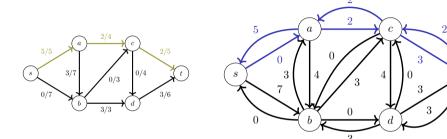


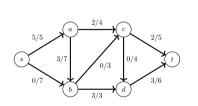


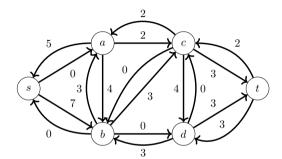


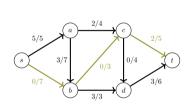


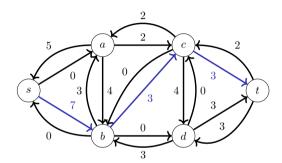


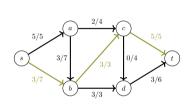


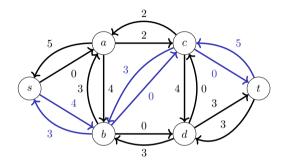


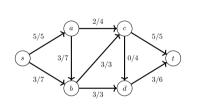


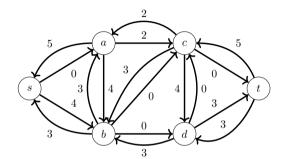


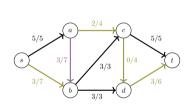


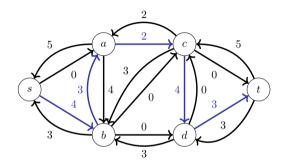


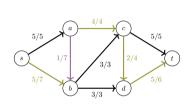


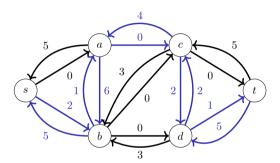


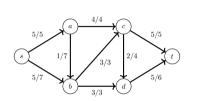


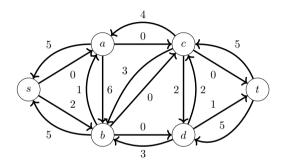


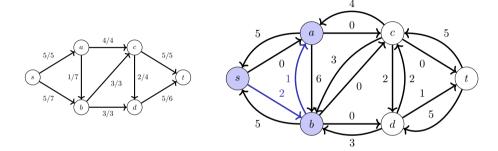




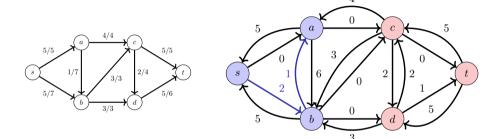




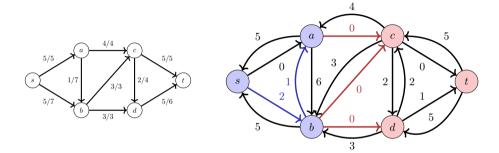




nodes reachable from s

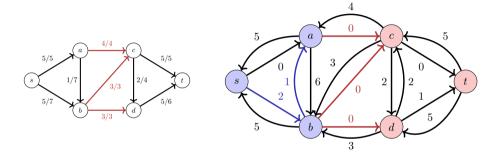


nodes reachable from s nodes not reachable from s



nodes reachable from s nodes not reachable from s

all outgoing edges have residual capacity 0 in \mathcal{G}_f

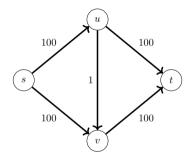


nodes reachable from s nodes not reachable from s

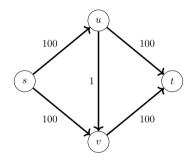
all outgoing edges have residual capacity 0 in G_f \Rightarrow flow fully exhausts capacity on these edges!

Quiz Ford-Fulkerson

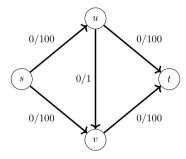
Quiz Ford-Fulkerson

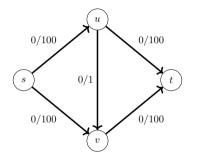


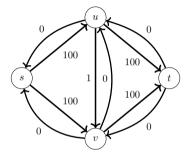
Quiz Ford-Fulkerson

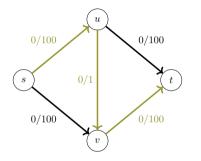


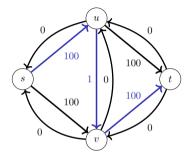
How many iterations does Ford-Fulkerson need in the worst case?

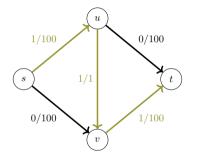


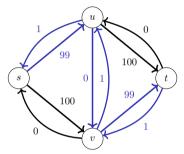


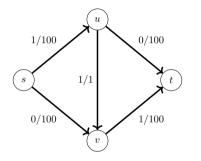


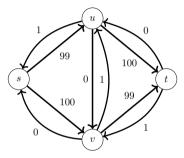


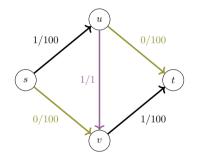


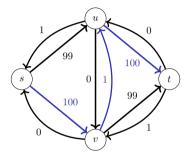


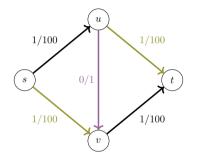


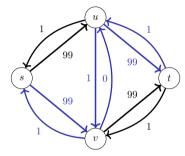


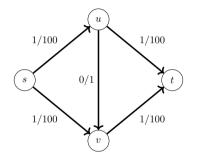


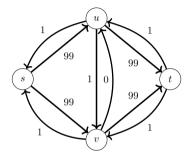


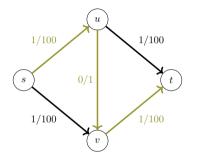


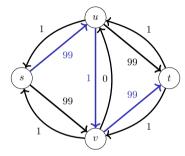


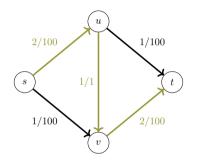


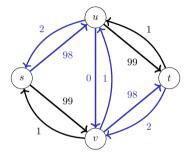


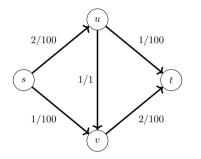


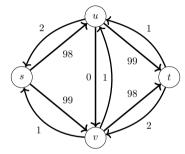


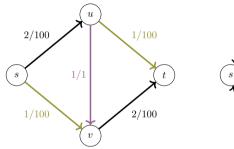


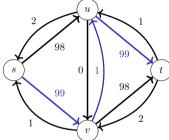


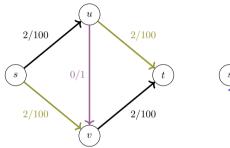


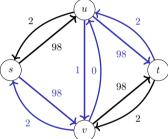


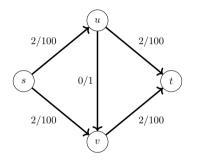


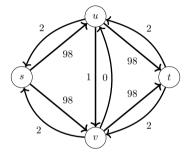


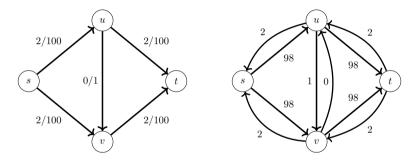




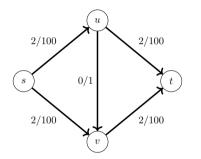


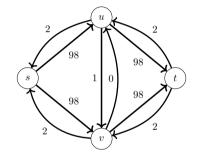




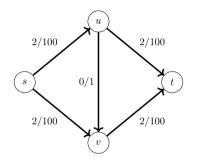


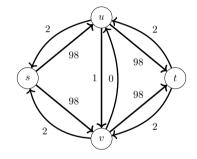
After i iterations: |f| = i





After i iterations: |f| = i \Rightarrow in total $|f_{\max}|$ iterations





After i iterations: |f| = i \Rightarrow in total $|f_{\text{max}}| = 200$ iterations

Running time of each iteration:

Running time of each iteration: search of an augmenting path $s \leadsto t$

Running time of each iteration: search of an augmenting path $s \leadsto t$

$$\Rightarrow$$
 BFS or DFS: $\mathcal{O}(|V| + |E|) = \mathcal{O}(|E|)$

Running time of each iteration: search of an augmenting path $s \leadsto t$

$$\Rightarrow$$
 BFS or DFS: $\mathcal{O}(|V| + |E|) = \mathcal{O}(|E|)$

 $(|V| \le |E|$, because all non-reachable nodes can be ignored.)

Running time of each iteration: search of an augmenting path $s \rightsquigarrow t$

$$\Rightarrow$$
 BFS or DFS: $\mathcal{O}(|V|+|E|)=\mathcal{O}(|E|)$ ($|V|\leq |E|$, because all non-reachable nodes can be ignored.)

Number of iterations:

Running time of each iteration: search of an augmenting path $s \rightsquigarrow t$

$$\Rightarrow$$
 BFS or DFS: $\mathcal{O}(|V| + |E|) = \mathcal{O}(|E|)$

 $(|V| \le |E|$, because all non-reachable nodes can be ignored.)

Number of iterations:

In every step, the size of the flow increases by d > 0.

Running time of each iteration: search of an augmenting path $s \leadsto t$

$$\Rightarrow$$
 BFS or DFS: $\mathcal{O}(|V| + |E|) = \mathcal{O}(|E|)$

 $(|V| \le |E|$, because all non-reachable nodes can be ignored.)

Number of iterations:

In every step, the size of the flow increases by d>0. integer capacities

Running time of each iteration: search of an augmenting path $s \rightsquigarrow t$

$$\Rightarrow$$
 BFS or DFS: $\mathcal{O}(|V| + |E|) = \mathcal{O}(|E|)$

 $(|V| \le |E|$, because all non-reachable nodes can be ignored.)

Number of iterations:

In every step, the size of the flow increases by d > 0. integer capacities \Rightarrow increment by ≥ 1

Running time of each iteration: search of an augmenting path $s \leadsto t$

$$\Rightarrow$$
 BFS or DFS: $\mathcal{O}(|V| + |E|) = \mathcal{O}(|E|)$

 $(|V| \le |E|$, because all non-reachable nodes can be ignored.)

Number of iterations:

In every step, the size of the flow increases by d>0. integer capacities \Rightarrow increment by $\geq 1 \Rightarrow$ at most $|f_{\rm max}|$ iterations

Running time of each iteration: search of an augmenting path $s \leadsto t$

$$\Rightarrow$$
 BFS or DFS: $\mathcal{O}(|V| + |E|) = \mathcal{O}(|E|)$

 $(|V| \le |E|$, because all non-reachable nodes can be ignored.)

Number of iterations:

In every step, the size of the flow increases by d>0. integer capacities \Rightarrow increment by $\geq 1 \Rightarrow$ at most $|f_{\rm max}|$ iterations

$$\Rightarrow \mathcal{O}(|f_{\max}|\cdot|E|)$$
 for flow networks $G=(V,E,c)$ with $c\colon E\to\mathbb{N}^{\geq 1}$

Running time of each iteration: search of an augmenting path $s \leadsto t$

$$\Rightarrow \text{BFS or DFS: } \mathcal{O}(|V| + |E|) = \mathcal{O}(|E|)$$

 $(|V| \le |E|$, because all non-reachable nodes can be ignored.)

Number of iterations:

In every step, the size of the flow increases by d>0. integer capacities \Rightarrow increment by $\geq 1 \Rightarrow$ at most $|f_{\rm max}|$ iterations

$$\Rightarrow \mathcal{O}(|f_{\max}|\cdot|E|)$$
 for flow networks $G=(V,E,c)$ with $c\colon E\to \mathbb{N}^{\geq 1}$

Edmonds-Karp Algorithm: (Variant of Ford-Fulkerson)

Running time of each iteration: search of an augmenting path $s \leadsto t$

$$\Rightarrow$$
 BFS or DFS: $\mathcal{O}(|V|+|E|)=\mathcal{O}(|E|)$

 $(|V| \le |E|$, because all non-reachable nodes can be ignored.)

Number of iterations:

In every step, the size of the flow increases by d>0. integer capacities \Rightarrow increment by $\geq 1 \Rightarrow$ at most $|f_{\rm max}|$ iterations

$$\Rightarrow \mathcal{O}(|f_{\max}|\cdot|E|)$$
 for flow networks $G=(V,E,c)$ with $c\colon E\to \mathbb{N}^{\geq 1}$

Edmonds-Karp Algorithm: (Variant of Ford-Fulkerson) shortest augmenting path (number of edges)

Running time of each iteration: search of an augmenting path $s \leadsto t$

$$\Rightarrow \operatorname{BFS} \ \operatorname{or} \ \operatorname{DFS:} \mathcal{O}(|V| + |E|) = \mathcal{O}(|E|)$$

 $(|V| \le |E|$, because all non-reachable nodes can be ignored.)

Number of iterations:

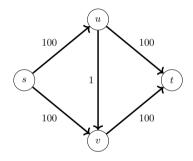
In every step, the size of the flow increases by d>0. integer capacities \Rightarrow increment by $\geq 1 \Rightarrow$ at most $|f_{\rm max}|$ iterations

$$\Rightarrow \mathcal{O}(|f_{\max}|\cdot|E|)$$
 for flow networks $G=(V,E,c)$ with $c\colon E\to \mathbb{N}^{\geq 1}$

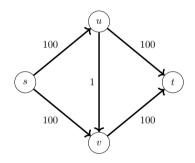
Edmonds-Karp Algorithm: (Variant of Ford-Fulkerson) shortest augmenting path (number of edges) $\Rightarrow \mathcal{O}(|V| \cdot |E|^2)$ (without explanation)

Quiz Edmonds-Karp

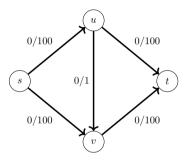
Quiz Edmonds-Karp

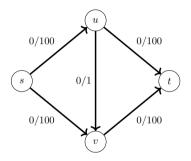


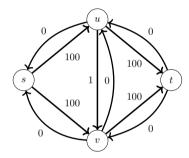
Quiz Edmonds-Karp

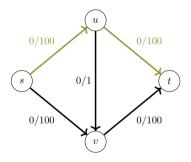


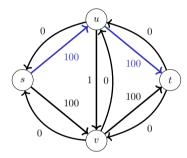
How many iterations does Edmonds-Karp need in the worst case?

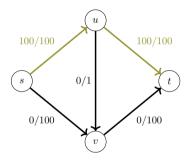


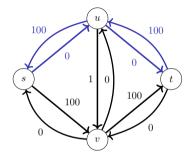


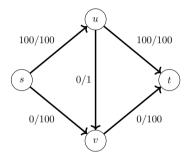


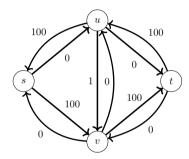


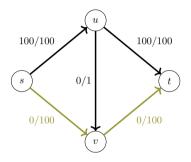


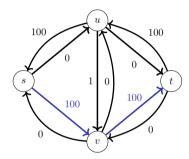


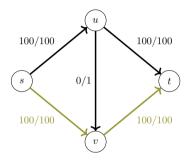


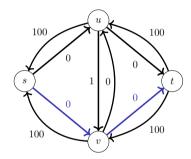


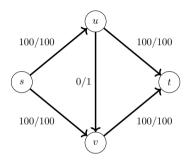


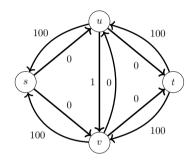








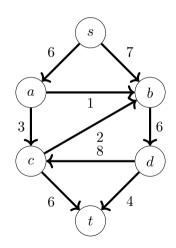


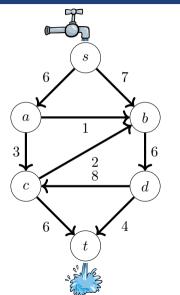


Termination after 2 iterations!

29.2 Max-Flow Min-Cut

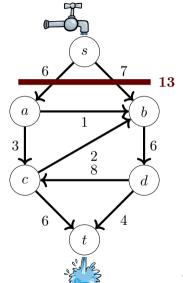
Flows and Cuts: Bottleneck Intuition



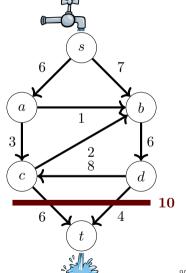


Upper bounds on size of flow:

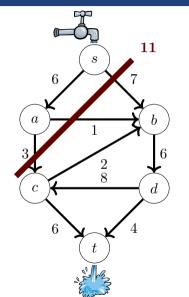
 \blacksquare what can flow out of s: $c^+(s)$



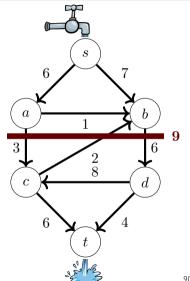
- \blacksquare what can flow out of s: $c^+(s)$
- what can flow into t: $c^-(t)$



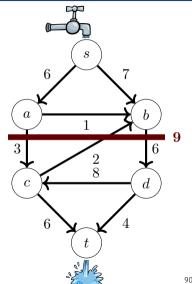
- \blacksquare what can flow out of s: $c^+(s)$
- what can flow into t: $c^-(t)$
- what can flow through arbitrary cut



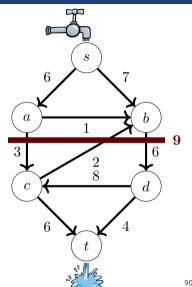
- what can flow out of $s: c^+(s)$
- what can flow into t: $c^-(t)$
- what can flow through arbitrary cut
- what can flow through bottleneck: c_{\min}



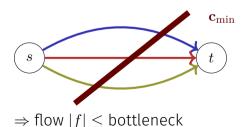
- what can flow out of $s: c^+(s)$
- what can flow into t: $c^-(t)$
- what can flow through arbitrary cut
- what can flow through bottleneck: c_{\min}

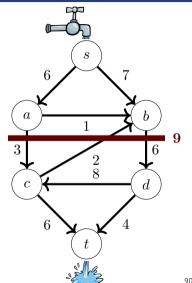


- what can flow out of $s: c^+(s)$
- what can flow into t: $c^-(t)$
- what can flow through arbitrary cut
- what can flow through bottleneck: c_{\min}

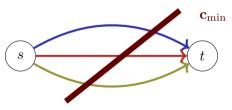


- what can flow out of $s: c^+(s)$
- what can flow into t: $c^-(t)$
- what can flow through arbitrary cut
- what can flow through bottleneck: c_{\min}

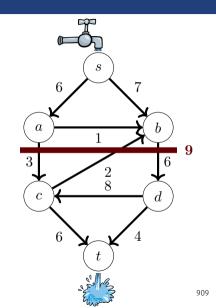


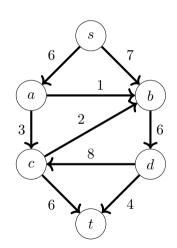


- \blacksquare what can flow out of s: $c^+(s)$
- what can flow into t: $c^-(t)$
- what can flow through arbitrary cut
- lacksquare what can flow through bottleneck: c_{\min}

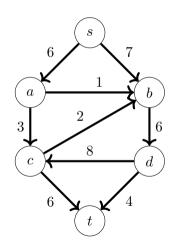


- \Rightarrow flow $|f| \le$ bottleneck
- \Rightarrow maximum flow \leq bottleneck

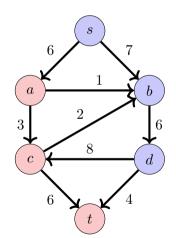




(s,t)-Cut of graph G=(V,E,c):



(s,t)-Cut of graph G=(V,E,c): Partition (\mathbf{S},\mathbf{T}) of V such that $s\in S,t\in T$



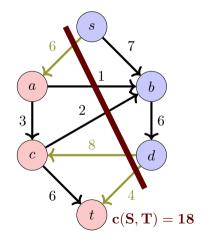
(s,t)-Cut of graph G=(V,E,c): Partition (\mathbf{S},\mathbf{T}) of V such that $s\in S,t\in T$



(s,t)-Cut of graph G=(V,E,c): Partition (\mathbf{S},\mathbf{T}) of V such that $s\in S,t\in T$

Size of cut:

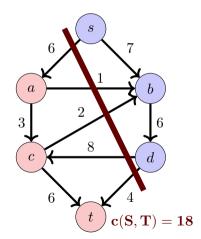
$$c(S,T) := \sum_{\mathbf{e} : \mathbf{S} \to \mathbf{T}} \mathbf{c}(\mathbf{e})$$



(s,t)-Cut of graph G=(V,E,c): Partition (\mathbf{S},\mathbf{T}) of V such that $s\in S,t\in T$

Size of cut:

$$c(S,T) := \sum_{\mathbf{e} : \mathbf{S} \to \mathbf{T}} \mathbf{c}(\mathbf{e})$$

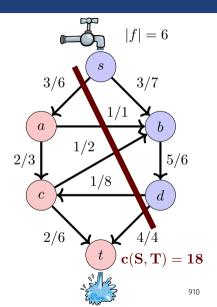


(s,t)-**Cut** of graph G=(V,E,c): Partition (\mathbf{S},\mathbf{T}) of V such that $s\in S,t\in T$

Size of cut:

$$c(S,T) := \sum_{\mathbf{e} : \mathbf{S} \to \mathbf{T}} \mathbf{c}(\mathbf{e})$$

Flow through cut of flow network:



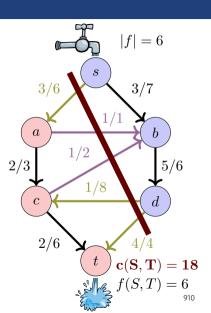
(s,t)-**Cut** of graph G=(V,E,c): Partition (\mathbf{S},\mathbf{T}) of V such that $s\in S,t\in T$

Size of cut:

$$c(S,T) := \sum_{\mathbf{e} : \mathbf{S} \to \mathbf{T}} \mathbf{c}(\mathbf{e})$$

Flow through cut of flow network:

$$f(S,T) := \sum_{\mathbf{e} \colon \mathbf{S} \to \mathbf{T}} \mathbf{f}(\mathbf{e}) - \sum_{\mathbf{e} \colon \mathbf{T} \to \mathbf{S}} \mathbf{f}(\mathbf{e})$$



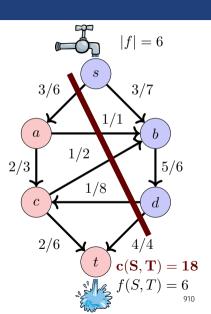
(s,t)-**Cut** of graph G=(V,E,c): Partition (\mathbf{S},\mathbf{T}) of V such that $s\in S,t\in T$

Size of cut:

$$c(S,T) := \sum_{\mathbf{e} : \mathbf{S} \to \mathbf{T}} \mathbf{c}(\mathbf{e})$$

Flow through cut of flow network:

$$f(S,T) := \sum_{\mathbf{e} \colon \mathbf{S} \to \mathbf{T}} \mathbf{f}(\mathbf{e}) - \sum_{\mathbf{e} \colon \mathbf{T} \to \mathbf{S}} \mathbf{f}(\mathbf{e})$$



(s,t)-**Cut** of graph G=(V,E,c): Partition (\mathbf{S},\mathbf{T}) of V such that $s\in S,t\in T$

Size of cut:

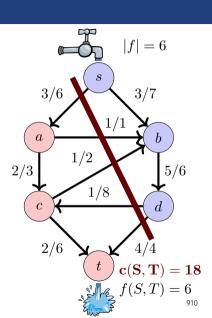
$$c(S,T) := \sum_{\mathbf{e} : \mathbf{S} \to \mathbf{T}} \mathbf{c}(\mathbf{e})$$

Flow through cut of flow network:

$$f(S,T) := \sum_{\mathbf{e} : \mathbf{S} \to \mathbf{T}} \mathbf{f}(\mathbf{e}) - \sum_{\mathbf{e} : \mathbf{T} \to \mathbf{S}} \mathbf{f}(\mathbf{e})$$

Observation:

$$\forall f, S, T \colon |f| = f(S, T) \le c(S, T)$$



(s,t)-**Cut** of graph G=(V,E,c): Partition (\mathbf{S},\mathbf{T}) of V such that $s\in S,t\in T$

Size of cut:

$$c(S,T) := \sum_{\mathbf{e} \colon \mathbf{S} \to \mathbf{T}} \mathbf{c}(\mathbf{e})$$

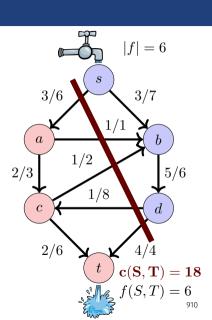
Flow through cut of flow network:

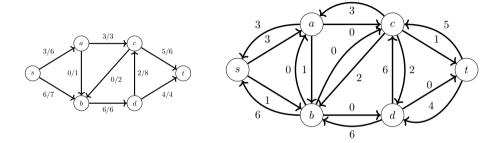
$$f(S,T) := \sum_{\mathbf{e} \colon \mathbf{S} \to \mathbf{T}} \mathbf{f}(\mathbf{e}) - \sum_{\mathbf{e} \colon \mathbf{T} \to \mathbf{S}} \mathbf{f}(\mathbf{e})$$

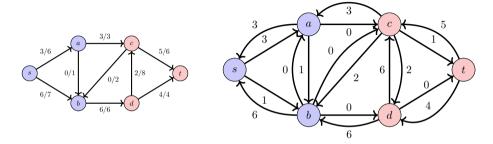
Observation:

$$\forall f, S, T \colon |f| = f(S, T) \le c(S, T)$$

$$\Rightarrow |f_{\max}| \le c_{\min}$$

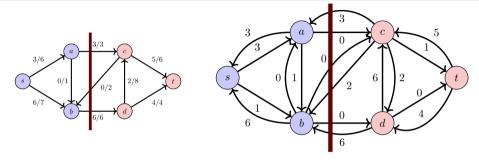






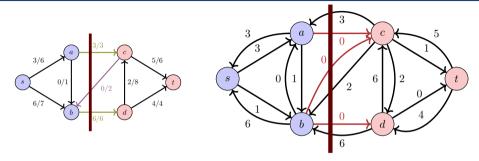
after termination of Ford-Fulkerson/Edmonds-Karp:

lacktriangledown reachable from s, $\mathbf{T} \subseteq \mathbf{V}$ nodes not reachable from s

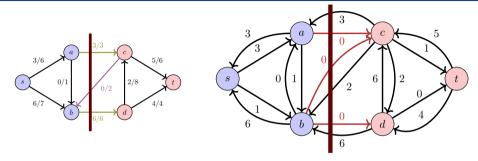


after termination of Ford-Fulkerson/Edmonds-Karp:

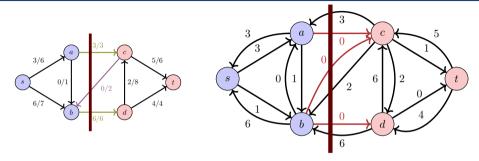
 \blacksquare reachable from s, $\mathbf{T} \subseteq \mathbf{V}$ nodes not reachable from $s \Rightarrow \mathbf{Cut}(\mathbf{S}, \mathbf{T})$



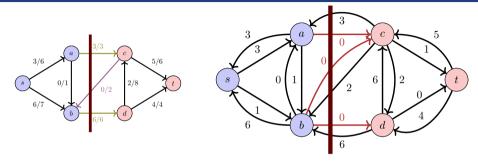
- lacktriangledown reachable from s, $\mathbf{T} \subseteq \mathbf{V}$ nodes not reachable from $s \Rightarrow \mathbf{Cut}(\mathbf{S}, \mathbf{T})$
- lacksquare all outgoing edges e have remaining capacity 0 in G_f



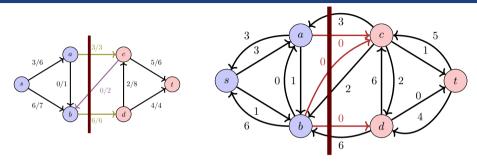
- lacktriangledown reachable from s, $\mathbf{T} \subseteq \mathbf{V}$ nodes not reachable from $s \Rightarrow \mathbf{Cut} \ (\mathbf{S}, \mathbf{T})$
- lacksquare all outgoing edges e have remaining capacity 0 in G_f
- $f(S,T) = \sum_{\mathbf{e} : \mathbf{S} \to \mathbf{T}} \mathbf{f}(\mathbf{e}) \sum_{\mathbf{e} : \mathbf{T} \to \mathbf{S}} \mathbf{f}(\mathbf{e})$



- lacktriangledown reachable from s, $\mathbf{T} \subseteq \mathbf{V}$ nodes not reachable from $s \Rightarrow \mathbf{Cut} \ (\mathbf{S}, \mathbf{T})$
- lacksquare all outgoing edges e have remaining capacity 0 in G_f
- $f(S,T) = \sum_{\mathbf{e} : \mathbf{S} \to \mathbf{T}} \mathbf{f}(\mathbf{e}) \sum_{\mathbf{e} : \mathbf{T} \to \mathbf{S}} \mathbf{f}(\mathbf{e}) = \sum_{\mathbf{e} : \mathbf{S} \to \mathbf{T}} \mathbf{c}(\mathbf{e})$



- lacktriangledown reachable from s, $\mathbf{T} \subseteq \mathbf{V}$ nodes not reachable from $s \Rightarrow \mathbf{Cut} \ (\mathbf{S}, \mathbf{T})$
- lacksquare all outgoing edges e have remaining capacity 0 in G_f
- $f(S,T) = \sum_{\mathbf{e} : \mathbf{S} \to \mathbf{T}} \mathbf{f}(\mathbf{e}) \sum_{\mathbf{e} : \mathbf{T} \to \mathbf{S}} \mathbf{f}(\mathbf{e}) = \sum_{\mathbf{e} : \mathbf{S} \to \mathbf{T}} \mathbf{c}(\mathbf{e}) = \mathbf{c}(\mathbf{S}, \mathbf{T})$



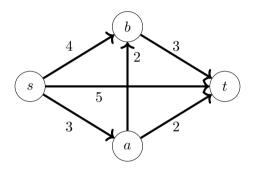
- \blacksquare reachable from s, $\mathbf{T} \subseteq \mathbf{V}$ nodes not reachable from $s \Rightarrow \mathbf{Cut} \ (\mathbf{S}, \mathbf{T})$
- lacksquare all outgoing edges e have remaining capacity 0 in G_f
- $f(S,T) = \sum_{\mathbf{e} : \mathbf{S} \to \mathbf{T}} \mathbf{f}(\mathbf{e}) \sum_{\mathbf{e} : \mathbf{T} \to \mathbf{S}} \mathbf{f}(\mathbf{e}) = \sum_{\mathbf{e} : \mathbf{S} \to \mathbf{T}} \mathbf{c}(\mathbf{e}) = \mathbf{c}(\mathbf{S}, \mathbf{T})$ ⇒ $|f_{\text{max}}| = c_{\text{min}}$

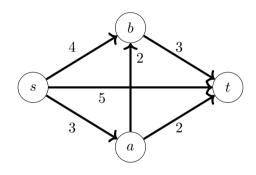
Max-Flow Min-Cut Theorem

Max-Flow Min-Cut Theorem

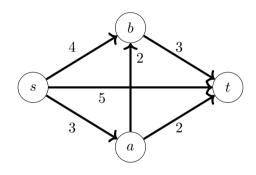
For a flow f in a flow network G=(V,E,c) with source s and sink t, the following statements are equivalent:

- 1. f is a maximum flow in G
- 2. The residual network G_f does not provide any augmenting paths
- 3. |f| = c(S,T) for a cut (S,T) of G.





What is the minimum cut?



What is the minimum cut? What is the maximum flow?

- Maximum Rate:
 - water in sewage system
 - cars in traffic

- Maximum Rate:
 - water in sewage system
 - cars in traffic
 - current in electrical networks

- Maximum Rate:
 - water in sewage system
 - cars in traffic
 - current in electrical networks
 - components on conveyors

Maximum Rate:

- water in sewage system
- cars in traffic
- current in electrical networks
- components on conveyors
- information flow in communication networks

- Maximum Rate:
 - water in sewage system
 - cars in traffic
 - current in electrical networks
 - components on conveyors
 - information flow in communication networks
- Scheduling

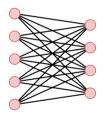
- Maximum Rate:
 - water in sewage system
 - cars in traffic
 - current in electrical networks
 - components on conveyors
 - information flow in communication networks
- Scheduling
- Bipartite Matching

- Maximum Rate:
 - water in sewage system
 - cars in traffic
 - current in electrical networks
 - components on conveyors
 - information flow in communication networks
- Scheduling
- Bipartite Matching
- Image Segmentation

29.4 Maximales Bipartites Matching

Notation

A graph where V can be partitioned into disjoint sets U and W such that each $e \in E$ provides a node in U and a node in W is called **bipartite**.

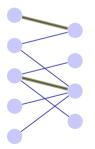


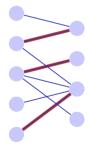
Application: maximal bipartite matching

Given: bipartite undirected graph G = (V, E).

Matching $M: M \subseteq E$ such that $|\{m \in M: v \in m\}| \le 1$ for all $v \in V$.

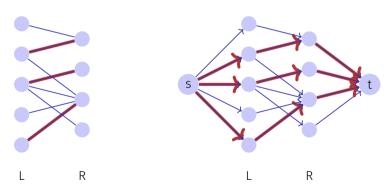
Maximal Matching M: Matching M, such that $|M| \ge |M'|$ for each matching M'.





Corresponding flow network

Construct a flow network that corresponds to the partition L,R of a bipartite graph with source s and sink t, with directed edges from s to t, from t to t and from t to t. Each edge has capacity 1.



■ Definitions: flow networks, flow, cut

- Definitions: flow networks, flow, cut
- Concepts: Redirection, remainder network, augmenting path

- Definitions: flow networks, flow, cut
- Concepts: Redirection, remainder network, augmenting path
- Algorithms

- Definitions: flow networks, flow, cut
- Concepts: Redirection, remainder network, augmenting path
- Algorithms
 - Greedy: incorrect!

- Definitions: flow networks, flow, cut
- Concepts: Redirection, remainder network, augmenting path
- Algorithms
 - Greedy: incorrect!
 - Ford-Fulkerson: $\mathcal{O}(|f_{\max}|\cdot|E|)$ Greedy augmenting paths in remainder network

- Definitions: flow networks, flow, cut
- Concepts: Redirection, remainder network, augmenting path
- Algorithms
 - Greedy: incorrect!
 - Ford-Fulkerson: $\mathcal{O}(|f_{\max}|\cdot|E|)$ Greedy augmenting paths in remainder network
 - Edmonds-Karp: $\mathcal{O}(|V|\cdot|E|^2)$ Ford-Fulkerson with shortest augmenting paths (number of edges)

- Definitions: flow networks, flow, cut
- Concepts: Redirection, remainder network, augmenting path
- Algorithms
 - Greedy: incorrect!
 - Ford-Fulkerson: $\mathcal{O}(|f_{\max}|\cdot|E|)$ Greedy augmenting paths in remainder network
 - Edmonds-Karp: $\mathcal{O}(|V| \cdot |E|^2)$ Ford-Fulkerson with shortest augmenting paths (number of edges)
- Max Flow = Min Cut

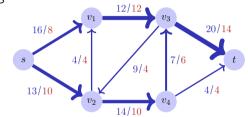
29.5 Appendix: Some Formal Things

Flow: Formulation with Skew Symmetry

A **Flow** $f: V \times V \to \mathbb{R}$ fulfills the following conditions:

- Bounded Capacity: For all $u, v \in V$: $f(u, v) \le c(u, v)$.
- Skew Symmetry: For all $u, v \in V$: f(u, v) = -f(v, u).
- **Conservation of flow**: For all $u \in V \setminus \{s, t\}$:

$$\sum_{v \in V} f(u, v) = 0.$$



Value of the flow: $|f| = \sum_{v \in V} f(s, v)$. Here |f| = 18.

Cuts

- **Capacity** of an (s,t)--cut: $c(S,T) = \sum_{v \in S, v' \in T} c(v,v')$
- Minimal cut: cut with minimal capacity.
- Flow over the cut: $f(S,T) = \sum_{v \in S, v' \in T} f(v,v')$

Generally: Let $U, U' \subseteq V$

$$f(U, U') := \sum_{\substack{u \in U \\ u' \in U'}} f(u, u'), \qquad f(u, U') := f(\{u\}, U')$$

Then

- |f| = f(s, V)
- f(U,U) = 0
- f(U,U') = -f(U',U)
- $f(X \cup Y, Z) = f(X, Z) + f(Y, Z), \text{ if } X \cap Y = \emptyset.$
- f(R,V) = 0 if $R \cap \{s,t\} = \emptyset$. [flow conversation!]

How large can a flow possibly be?

$$f(S,T) = f(S,V) - \underbrace{f(S,S)}_{0} = f(S,V)$$

$$= f(s,V) + f(\underbrace{S - \{s\}}_{\not \ni t,\not\ni s}, V) = |f|.$$

$$\Rightarrow |f| \le \sum_{v \in S, v' \in T} c(v,v') = c(S,T)$$

Rest Network

Rest network G_f provided by the edges with positive rest capacity:

$$G_f := (V, E_f, c_f)$$

$$c_f(u, v) := c(u, v) - f(u, v) \quad \forall u, v \in V$$

$$E_f := \{(u, v) \in V \times V | c_f(u, v) > 0\}$$

- Increase of the flow along some edge possible, when flow can be increased along the edge,i.e. if f(u,v) < c(u,v). Rest capacity $c_f(u,v) = c(u,v) - f(u,v) > 0$.
- Increase of flow **against the direction** of the edge possible, if flow can be reduced along the edge, i.e. if f(u,v) > 0. Rest capacity $c_f(v,u) = f(u,v) > 0$.

The increased flow is a flow

Theorem 32

Let G=(V,E,c) be a flow network with source s and sink t and f a flow in G. Let G_f be the corresponding rest networks and let f' be a flow in G_f . Then $f \oplus f'$ with

$$(f \oplus f')(u,v) = f(u,v) + f'(u,v)$$

defines a flow in G with value |f| + |f'|.

Proof

 $f \oplus f'$ defines a flow in G:

capacity limit

$$(f \oplus f')(u,v) = f(u,v) + \underbrace{f'(u,v)}_{\leq c(u,v) - f(u,v)} \leq c(u,v)$$

skew symmetry

$$(f \oplus f')(u, v) = -f(v, u) + -f'(v, u) = -(f \oplus f')(v, u)$$

■ flow conservation $u \in V - \{s, t\}$:

$$\sum_{v \in V} (f \oplus f')(u, v) = \sum_{v \in V} f(u, v) + \sum_{v \in V} f'(u, v) = 0$$

Proof

Value of $f \oplus f'$

$$|f \oplus f'| = (f \oplus f')(s, V)$$

$$= \sum_{u \in V} f(s, u) + f'(s, u)$$

$$= f(s, V) + f'(s, V)$$

$$= |f| + |f'|$$

927

Augmenting Paths

expansion path p: simple path from s to t in the rest network G_f . **Rest capacity** $c_f(p) = \min\{c_f(u,v) : (u,v) \text{ edge in } p\}$

Theorem 33

The mapping $f_p: V \times V \to \mathbb{R}$,

$$f_p(u,v) = \begin{cases} c_f(p) & \text{if } (u,v) \text{ edge in } p \\ -c_f(p) & \text{if } (v,u) \text{ edge in } p \\ 0 & \text{otherwise} \end{cases}$$

provides a flow in G_f with value $|f_p| = c_f(p) > 0$.

 f_p is a flow (easy to show). there is one and only one $u \in V$ with $(s, u) \in p$. Thus $|f_p| = \sum_{v \in V} f_p(s, v) = f_p(s, u) = c_f(p)$.

Max-Flow Min-Cut Theorem

Theorem 34

Let f be a flow in a flow network G=(V,E,c) with source s and sink t. The following statements aare equivalent:

- 1. f is a maximal flow in G
- 2. The rest network G_f does not provide any expansion paths
- 3. It holds that |f| = c(S,T) for a cut (S,T) of G.

Proof

- $(3) \Rightarrow (1)$: It holds that $|f| \leq c(S,T)$ for all cuts S,T. From |f| = c(S,T) it follows that |f| is maximal.
- (1) \Rightarrow (2): f maximal Flow in G. Assumption: G_f has some expansion path $|f \oplus f_p| = |f| + |f_p| > |f|$. Contradiction.

$\mathsf{Proof}\left(2\right) \Rightarrow \left(3\right)$

Assumption: G_f has no expansion path

Define $S = \{v \in V : \text{ there is a path } s \leadsto v \text{ in } G_f\}.$

$$(S,T):=(S,V\setminus S)$$
 is a cut: $s\in S,t\in T.$

Let $u \in S$ and $v \in T$. Then $c_f(u, v) = 0$, also $c_f(u, v) = c(u, v) - f(u, v) = 0$. Somit f(u, v) = c(u, v).

Thus

$$|f| = f(S,T) = \sum_{u \in S} \sum_{v \in T} f(u,v) = \sum_{u \in S} \sum_{v \in T} c(u,v) = C(S,T).$$

931

Edmonds-Karp Algorithm

Theorem 35

When the Edmonds-Karp algorithm is applied to some integer valued flow network G=(V,E) with source s and sink t then the number of flow increases applied by the algorithm is in $\mathcal{O}(|V|\cdot|E|)$.

 \Rightarrow Overal asymptotic runtime: $\mathcal{O}(|V| \cdot |E|^2)$

[Without proof]

Edmonds-Karp Algorithmus

Theorem 36

Wenn der Edmonds-Karp Algorithmus auf Flussnetzwerk G=(V,E) mit Quelle s und Senke t angewendet wird, dann wächst für jeden Knoten $v\in V\setminus \{s,t\}$ die Distanz $\delta_f(s,v)$ des kürzesten Pfades von s nach v im Restnetzwerk G_f monoton mit jeder Flusserhöhung.

Beweis

Also $(u, v) \notin E_f$.

Annahme: Distanz $\delta_f(s,v)$ wird bei Flusserhöhung $f \to f'$ kleiner für ein v: $\delta_f(s,v) < \delta_{f'}(s,v)$ Sei $p=s \leadsto u \to v$ kürzester Pfad von s nach v in $G_{f'}$, so dass $(u,v) \in E_{f'}$ und $\delta_{f'}(s,u) = \delta_{f'}(s,v) - 1$. Es gilt $\delta_{f'}(s,u) \geq \delta_f(s,u)$. Wenn $(u,v) \in E_f$: $\delta_f s, v \leq \delta_f(s,u) + 1 \leq \delta_{f'}(s,u) + 1 = \delta_{f'}(s,v)$ Widerspruch.

Integer number theorem

Theorem 37

If the capacities of a flow network are integers, then the maximal flow generated by the Ford-Fulkerson method provides integer numbers for each f(u,v), $u,v\in V$.

[without proof]

Consequence: Ford-Fulkerson generates for a flow network that corresponds to a bipartite graph a maximal matching $M = \{(u, v) : f(u, v) = 1\}.$