29. Flow in Networks

Flow Network, Flow, Maximum Flow
Residual Capacity, Remainder Network, Augmenting path

Ford-Fulkerson Algorithm
Edmonds-Karp Algorithm

Cuts, Max-Flow Min-Cut Theorem

[Ottman/Widmayer, Kap. 9.7, 9.81], [Cormen et al, Kap. 26.1-26.3]

Slides redesigned by Manuela Fischer - thank you!

885

Maximum Traffic Flow

886

Maximum Traffic Flow

Given: Road Network with capacities

886

Maximum Traffic Flow

Given: Road Network with capacities

Wanted: Maximum traffic flow between Zurich and Geneva

886

Flow Network

887

Flow Network

directed, weighted graph G = (V, E, ¢) with capacities ¢: E — R>°

887

Flow Network

directed, weighted graph G = (V, E, ¢) with capacities ¢: E — R>°
m without antiparallel edges:

887

Flow Network

directed, weighted graph G = (V, E, ¢) with capacities ¢: E — R>°

m without antiparallel edges:
(u,v) € E

887

Flow Network

directed, weighted graph G = (V, E, ¢) with capacities ¢: E — R>°

m without antiparallel edges:
(u,v) € E = (v,u) ¢ £

887

Flow Network

directed, weighted graph G = (V, E, ¢) with capacities ¢: E — R>°

m without antiparallel edges:
(u,v) € E = (v,u) ¢ £

m source s € V without ingoing edges:

887

Flow Network

directed, weighted graph G = (V, E, ¢) with capacities ¢: E — R>°

m without antiparallel edges:
(u,v) € E = (v,u) ¢ £

m source s € V without ingoing edges:
YoeV: (v,s) ¢ E

887

Flow Network

directed, weighted graph G = (V, E, ¢) with capacities ¢: E — R>°

m without antiparallel edges:
(u,v) € E = (v,u) ¢ £

m source s € V without ingoing edges:
YoeV: (v,s) ¢ E

m sink ¢ € V without outgoing edges:

887

Flow Network

directed, weighted graph G = (V, E, ¢) with capacities ¢: E — R>°

m without antiparallel edges:
(u,v) € E = (v,u) ¢ £

m source s € V without ingoing edges:
YoeV: (v,s) ¢ E

m sink ¢ € V without outgoing edges:
YoeV: (t,v) ¢ E

887

Quiz Flow Network

888

Quiz Flow Network

Which of the following graphs are flow networks?

888

Quiz Flow Network

Which of the following graphs are flow networks?

888

Quiz Flow Network

Which of the following graphs are flow networks?

888

Quiz Flow Network

Which of the following graphs are flow networks?

888

Quiz Flow Network

Which of the following graphs are flow networks?

888

Quiz Flow Network

Which of the following graphs are flow networks?

888

Quiz Flow Network

Which of the following graphs are flow networks?

888

Flow in Flow Network

889

Flow in Flow Network

Flow in Flow Network

Flow is function f: E — R=Y such that

Flow in Flow Network

Flow is function f: E — R=Y such that

Flow in Flow Network

Flow is function f: E — R=Y such that

889

Flow in Flow Network

Flow is function f: E — R=Y such that

Flow in Flow Network

Flow is function f: E — R=Y such that
m Bounded Capacity: Ve € E: f(e) < c(e)

Flow in Flow Network

Flow is function f: E — R=Y such that
m Bounded Capacity: Ve € E: f(e) < c(e)
m Conservation of flow:

Flow in Flow Network

Flow is function f: E — R=Y such that
m Bounded Capacity: Ve € E: f(e) < c(e)
m Conservation of flow: Vv € V' \ {s,}:

©

Flow in Flow Network

Flow is function f: E — R=Y such that
m Bounded Capacity: Ve € E: f(e) < c(e)
m Conservation of flow: Vv € V' \ {s,}:

> fle)

ecE~(v)

Flow in Flow Network

Flow is function f: E — R=Y such that
m Bounded Capacity: Ve € E: f(e) < c(e)
m Conservation of flow: Vv € V' \ {s,}:
> fle)
ecE~(v)

—f~(v)

Flow in Flow Network

Flow is function f: E — R=Y such that
m Bounded Capacity: Ve € E: f(e) < c(e)
m Conservation of flow: Vv € V' \ {s,}:
Y. fley= > fle
ecE~(v) e€ET(v)

=:f~(v) =1 (v)

Flow in Flow Network

Flow is function f: E — R=Y such that
m Bounded Capacity: Ve € E: f(e) < c(e)
m Conservation of flow: Vv € V' \ {s,}:

> fle)= > fle)

ecE—(v) e€ET(v)

=f~(v) =+ ()

Size of flow: |f| := f*(s) = f~ (1)

Flow in Flow Network

Flow is function f: E — R=Y such that
m Bounded Capacity: Ve € E: f(e) < c(e)
m Conservation of flow: Vv € V' \ {s,}:

> fle)= > fle)

ecE—(v) e€ET(v)

=f~(v) =+ ()

Size of flow: |f| := f*(s) = f~ (1)

Intuition: Flow as set of paths s ~ ¢

890

Intuition: Flow as set of paths s ~ ¢

Intuition: Flow as set of paths s ~ ¢

)

& ©
» ©

Intuition: Flow as set of paths s ~ ¢

Intuition: Flow as set of paths s ~ ¢

Intuition: Flow as set of paths s ~ ¢

891

Which of the following are flows?

891

Which of the following are flows?

891

Which of the following are flows?

891

Which of the following are flows?

891

Which of the following are flows?

891

Which of the following are flows?

891

Which of the following are flows?

891

Maximal Flow

892

Maximal Flow

Given: Flow network: G = (V, E, ¢), directed, positively weighted,
without antiparallel edges, with source s and sink ¢

892

Maximal Flow

Given: Flow network: G = (V, E, ¢), directed, positively weighted,
without antiparallel edges, with source s and sink ¢

10/14

8/12

Wanted: Size | fiax| Of the maximum flow in G 892

Maximal Flow

Given: Flow network: G = (V, E, ¢), directed, positively weighted,
without antiparallel edges, with source s and sink ¢

10/14

18 = |f] < [fnax| = 23

8/12

Wanted: Size | fiax| Of the maximum flow in G 892

Quiz Maximum Flow

893

Quiz Maximum Flow

What is the maximum flow in the following flow network?

893

Quiz Maximum Flow

What is the maximum flow in the following flow network?

893

Greedy Algorithm?

894

Greedy Algorithm?

Residual capacity of an edge e: r(¢) := c(e) — f(e)
Residual capacity of a path P: min.cp r(e)

894

Greedy Algorithm?

Residual capacity of an edge e: r(¢) := c(e) — f(e)
Residual capacity of a path P: min.cp r(e)

Greedy: Starting with f(e) = 0 for all e € E, as long as there exists a path
s ~» t with remaining capacity d > 0, increase flow along this path by d.

894

Greedy Algorithm?

Residual capacity of an edge e: r(¢) := c(e) — f(e)
Residual capacity of a path P: min.cp r(e)

Greedy: Starting with f(e) = 0 for all e € E, as long as there exists a path
s ~» t with remaining capacity d > 0, increase flow along this path by d.

[f1=0

894

Greedy Algorithm?

Residual capacity of an edge e: r(¢) := c(e) — f(e)
Residual capacity of a path P: min.cp r(e)

Greedy: Starting with f(e) = 0 for all e € E, as long as there exists a path
s ~» t with remaining capacity d > 0, increase flow along this path by d.

[f1=0

894

Greedy Algorithm?

Residual capacity of an edge e: r(¢) := c(e) — f(e)
Residual capacity of a path P: min.cp r(e)

Greedy: Starting with f(e) = 0 for all e € E, as long as there exists a path
s ~» t with remaining capacity d > 0, increase flow along this path by d.

[f1=0

894

Greedy Algorithm?

Residual capacity of an edge e: r(¢) := c(e) — f(e)
Residual capacity of a path P: min.cp r(e)

Greedy: Starting with f(e) = 0 for all e € E, as long as there exists a path
s ~» t with remaining capacity d > 0, increase flow along this path by d.

[fl1=3

s—=a—>b—>d—1t3

894

Greedy Algorithm?

Residual capacity of an edge e: r(¢) := c(e) — f(e)
Residual capacity of a path P: min.cp r(e)

Greedy: Starting with f(e) = 0 for all e € E, as long as there exists a path
s ~» t with remaining capacity d > 0, increase flow along this path by d.

[fl1=3

s—=a—>b—>d—1t3

894

Greedy Algorithm?

Residual capacity of an edge e: r(¢) := c(e) — f(e)
Residual capacity of a path P: min.cp r(e)

Greedy: Starting with f(e) = 0 for all e € E, as long as there exists a path
s ~» t with remaining capacity d > 0, increase flow along this path by d.

[fl1=3

s—=a—>b—>d—1t3

894

Greedy Algorithm?

Residual capacity of an edge e: r(¢) := c(e) — f(e)
Residual capacity of a path P: min.cp r(e)

Greedy: Starting with f(e) = 0 for all e € E, as long as there exists a path
s ~» t with remaining capacity d > 0, increase flow along this path by d.

If1=5

s—=a—>b—>d—1t3
s—a—c—t 2

894

Greedy Algorithm?

Residual capacity of an edge e: r(¢) := c(e) — f(e)
Residual capacity of a path P: min.cp r(e)

Greedy: Starting with f(e) = 0 for all e € E, as long as there exists a path
s ~» t with remaining capacity d > 0, increase flow along this path by d.

If1=5

s—=a—>b—>d—1t3
s—a—c—t 2

894

Greedy Algorithm?

Residual capacity of an edge e: r(¢) := c(e) — f(e)
Residual capacity of a path P: min.cp r(e)

Greedy: Starting with f(e) = 0 for all e € E, as long as there exists a path
s ~» t with remaining capacity d > 0, increase flow along this path by d.

If1=5

s—=a—>b—>d—1t3
s—a—c—t 2

894

Greedy Algorithm?

Residual capacity of an edge e: r(¢) := c(e) — f(e)
Residual capacity of a path P: min.cp r(e)

Greedy: Starting with f(e) = 0 for all e € E, as long as there exists a path
s ~» t with remaining capacity d > 0, increase flow along this path by d.

f1=38

s—=a—>b—>d—1t3
s—a—c—t 2
s—>b—=c—1t3

894

Greedy Algorithm?

Residual capacity of an edge e: r(¢) := c(e) — f(e)
Residual capacity of a path P: min.cp r(e)

Greedy: Starting with f(e) = 0 for all e € E, as long as there exists a path
s ~» t with remaining capacity d > 0, increase flow along this path by d.

f1=38

s—=a—>b—>d—1t3
s—a—c—t 2
s—>b—=c—1t3

894

Greedy Algorithm?

Residual capacity of an edge e: r(¢) := c(e) — f(e)
Residual capacity of a path P: min.cp r(e)

Greedy: Starting with f(e) = 0 for all e € E, as long as there exists a path
s ~» t with remaining capacity d > 0, increase flow along this path by d.

f1=38

s—=a—>b—>d—1t3
s—a—c—t 2
s—>b—=c—1t3

but | fimax| = 10

894

Problem with Greedy

895

Problem with Greedy

895

Problem with Greedy

895

Problem with Greedy

Greedy: |f| =5

895

Problem with Greedy

|fmaX| =38

Redirection

895

Problem with Greedy

|fmaX| =38

Redirection

895

Problem with Greedy

|fmaX| =38

Redirection

895

29.1 Flow Algorithms

Ford-Fulkerson Algorithm

Edmonds-Karp Algorithm

896

Redirection using flow decrement

897

Redirection using flow decrement

897

Redirection using flow decrement

897

Redirection using flow decrement

897

Redirection using flow decrement

897

Redirection using flow decrement

897

Redirection using flow decrement

897

Redirection using flow decrement

3/3

G=(V.E, []c)

= Umleitung entspricht Verringerung des Flusses durch Kante 897

ldea: Flow increments and decrements

898

Idea: Flow increments and decrements

898

Idea: Flow increments and decrements

C fle)lc(e) C

m Increment:
flow through e can be increased by at most

r(e) = c(e) = f(e)

898

Idea: Flow increments and decrements

C fle)lc(e) C

m Increment: r(e)
flow through e can be increased by at most @—>@

r(e) :==c(e) — f(e) G :=(V,E,r:=c—f)

898

Idea: Flow increments and decrements

C fle)lc(e) C

m Increment: r(e)
flow through e can be increased by at most @—>@

r(e) == c(e) — f(e) G :=(V,E,r:=c—f)

m Decrement:
flow through e can be decreased by at most

f(e)

898

Idea: Flow increments and decrements

C fle)lc(e) C

m Increment: r(e)
flow through e can be increased by at most @—>@

r(e) == c(e) — f(e) G :=(V,E,r:=c—f)

m Decrement:
flow through e can be decreased by at most

f(e)

= flow through ‘€ can be increased by at
most f(e)

898

Idea: Flow increments and decrements

C fle)lc(e) C

m Increment: r(e)
flow through e can be increased by at most @—>@

r(e) :==c(e) — f(e) G :=(V,E,r:=c—f)

m Decrement:

flow through e can be decreased by at most f(e)
f(e) <>‘ @

= flow through ‘€ can be increased by at
most f(e)

898

Residual Network

899

Residual Network

12/12

10/14

899

Residual Network

12/12

10/14

Residual network: G := G, UG, = (V,E},¢;)

899

Residual Network

Residual network: Gy := G, UG, = (V, Ey,¢y)

899

Residual Network

Residual network: Gy := G, UG, = (V, Ey,¢y)

899

Ford-Fulkerson: Flow augmentation

900

Ford-Fulkerson: Flow augmentation

(D)
8/16 14/20
10/13 4/4
OnrraO

900

Ford-Fulkerson: Flow augmentation

®m Augmenting Path: Find a path P: s — t with residual capacity d > 0 in
Gy

900

Ford-Fulkerson: Flow augmentation

®m Augmenting Path: Find a path P: s — t with residual capacity d > 0 in
Gy
m augment flow along this path for all e € P by d:

900

Ford-Fulkerson: Flow augmentation

®m Augmenting Path: Find a path P: s — t with residual capacity d > 0 in
Gy
m augment flow along this path for all e € P by d:

m decrease residual capacity c¢(e) in G by d; increase cf(<e_,) by d

900

Ford-Fulkerson: Flow augmentation

®m Augmenting Path: Find a path P: s — t with residual capacity d > 0 in
Gy
m augment flow along this path for all e € P by d:

m decrease residual capacity c¢(e) in G by d; increase cf(<e_,) by d

m increase flow through e € E by d; decrease through @ ¢ E o

Ford-Fulkerson: Flow augmentation

®m Augmenting Path: Find a path P: s — t with residual capacity d > 0 in
Gy
m augment flow along this path for all e € P by d:

m decrease residual capacity c¢(e) in G by d; increase cf(<e_,) by d

m increase flow through e € E by d; decrease through @ ¢ E o

P, L . U, o " -y L Y . R

Algorithm Ford-Fulkerson(G, s, t)

Input: Flow network G = (V| E, ¢), source s, sink ¢
Output: Maximal flow f

901

Algorithm Ford-Fulkerson(G, s, t)

Input: Flow network G = (V| E, ¢), source s, sink ¢
Output: Maximal flow f

for e € F do
. f(e)«0

901

Algorithm Ford-Fulkerson(G, s, t)

Input: Flow network G = (V| E, ¢), source s, sink ¢
Output: Maximal flow f

for e € F do
. f(e)«0

while exists positive path P: s ~ t in residual network Gy = (V, E¢,cy) do

901

Algorithm Ford-Fulkerson(G, s, t)

Input: Flow network G = (V| E, ¢), source s, sink ¢
Output: Maximal flow f

for e € E do

L f(e) <0
while exists positive path P: s ~ t in residual network Gy = (V, E¢,cy) do
d < minecp cy(e)

901

Algorithm Ford-Fulkerson(G, s, t)

Input: Flow network G = (V| E, ¢), source s, sink ¢
Output: Maximal flow f

for e € E do
L fle) <0
while exists positive path P: s ~ t in residual network Gy = (V, E¢,cy) do
d < minecp cy(e)
foreach e € P do

901

Algorithm Ford-Fulkerson(G, s, t)

Input: Flow network G = (V| E, ¢), source s, sink ¢
Output: Maximal flow f

for e € E do
L fle) <0
while exists positive path P: s ~ t in residual network Gy = (V, E¢,cy) do
d < minecp cy(e)
foreach e € P do
if e € I then

 fle) « fle)+d

901

Algorithm Ford-Fulkerson(G, s, t)

Input: Flow network G = (V| E, ¢), source s, sink ¢
Output: Maximal flow f

for e € E do
L fle) <0
while exists positive path P: s ~ t in residual network Gy = (V, E¢,cy) do
d < minecp cy(e)
foreach e € P do
if e € I then
 fle) « fle)+d
else
L f@) — f(e) —d

901

Example Ford-Fulkerson

902

Example Ford-Fulkerson

902

Example Ford-Fulkerson

902

Example Ford-Fulkerson

902

Example Ford-Fulkerson

902

Example Ford-Fulkerson

902

Example Ford-Fulkerson

902

Example Ford-Fulkerson

902

Example Ford-Fulkerson

902

Example Ford-Fulkerson

902

Example Ford-Fulkerson

902

Example Ford-Fulkerson

902

Example Ford-Fulkerson

902

Example Ford-Fulkerson

902

Example Ford-Fulkerson

nodes reachable from s

902

Example Ford-Fulkerson

nodes reachable from s
nodes not reachable from s

902

Example Ford-Fulkerson

nodes reachable from s
nodes not reachable from s

all outgoing edges have residual capacity 0 in G

902

Example Ford-Fulkerson

nodes reachable from s
nodes not reachable from s

all outgoing edges have residual capacity 0 in G
= flow fully exhausts capacity on these edges!

902

Quiz Ford-Fulkerson

903

Quiz Ford-Fulkerson

903

Quiz Ford-Fulkerson

How many iterations does Ford-Fulkerson need in the worst case?

903

904

904

904

Solution

904

904

904

904

904

904

904

904

904

904

Solution

904

904

After i iterations: |f| =i

904

After i iterations: |f| =i
= in total | fuax| iterations

904

After i iterations: |f| =i
= In total | fuax| = 200 iterations

904

Running Time Analysis of Ford-Fulkerson

905

Running Time Analysis of Ford-Fulkerson

Running time of each iteration:

905

Running Time Analysis of Ford-Fulkerson

Running time of each iteration: search of an augmenting path s ~ ¢

905

Running Time Analysis of Ford-Fulkerson

Running time of each iteration: search of an augmenting path s ~ ¢
= BFS or DFS: O(|V| + |E|) = O(|E|)

905

Running Time Analysis of Ford-Fulkerson

Running time of each iteration: search of an augmenting path s ~ ¢
= BFS or DFS: O(|V| + |E|) = O(|E|)
(|V| < |E|, because all non-reachable nodes can be ignored.)

905

Running Time Analysis of Ford-Fulkerson

Running time of each iteration: search of an augmenting path s ~ ¢
= BFS or DFS: O(|V| + |E|) = O(|E|)
(|V| < |E|, because all non-reachable nodes can be ignored.)

Number of iterations:

905

Running Time Analysis of Ford-Fulkerson

Running time of each iteration: search of an augmenting path s ~ ¢
= BFS or DFS: O(|V| + |E|) = O(|E|)
(|V| < |E|, because all non-reachable nodes can be ignored.)

Number of iterations:
In every step, the size of the flow increases by d > 0.

905

Running Time Analysis of Ford-Fulkerson

Running time of each iteration: search of an augmenting path s ~ ¢
= BFS or DFS: O(|V| + |E|) = O(|E|)
(|V| < |E|, because all non-reachable nodes can be ignored.)

Number of iterations:
In every step, the size of the flow increases by d > 0.
integer capacities

905

Running Time Analysis of Ford-Fulkerson

Running time of each iteration: search of an augmenting path s ~ ¢
= BFS or DFS: O(|V| + |E|) = O(|E|)
(|V| < |E|, because all non-reachable nodes can be ignored.)

Number of iterations:
In every step, the size of the flow increases by d > 0.
integer capacities = increment by > 1

905

Running Time Analysis of Ford-Fulkerson

Running time of each iteration: search of an augmenting path s ~ ¢
= BFS or DFS: O(|V| + |E|) = O(|E|)
(|V| < |E|, because all non-reachable nodes can be ignored.)

Number of iterations:
In every step, the size of the flow increases by d > 0.
integer capacities = increment by > 1 = at most | fu.x| iterations

905

Running Time Analysis of Ford-Fulkerson

Running time of each iteration: search of an augmenting path s ~ ¢
= BFS or DFS: O(|V| + |E|) = O(|E|)
(|V| < |E|, because all non-reachable nodes can be ignored.)

Number of iterations:
In every step, the size of the flow increases by d > 0.
integer capacities = increment by > 1 = at most | fu.x| iterations

= O(| fmax| - | E]) for flow networks G = (V, E, ¢) with ¢: E — N=!

905

Running Time Analysis of Ford-Fulkerson

Running time of each iteration: search of an augmenting path s ~ ¢
= BFS or DFS: O(|V| + |E|) = O(|E|)
(|V| < |E|, because all non-reachable nodes can be ignored.)

Number of iterations:
In every step, the size of the flow increases by d > 0.
integer capacities = increment by > 1 = at most | fu.x| iterations

= O(| fmax| - | E]) for flow networks G = (V, E, ¢) with ¢: E — N=!

Edmonds-Karp Algorithm: (Variant of Ford-Fulkerson)

905

Running Time Analysis of Ford-Fulkerson

Running time of each iteration: search of an augmenting path s ~ ¢
= BFS or DFS: O(|V| + |E|) = O(|E|)
(|V| < |E|, because all non-reachable nodes can be ignored.)

Number of iterations:
In every step, the size of the flow increases by d > 0.
integer capacities = increment by > 1 = at most | fu.x| iterations

= O(| fmax| - | E]) for flow networks G = (V, E, ¢) with ¢: E — N=!

Edmonds-Karp Algorithm: (Variant of Ford-Fulkerson)
shortest augmenting path (number of edges)

905

Running Time Analysis of Ford-Fulkerson

Running time of each iteration: search of an augmenting path s ~ ¢
= BFS or DFS: O(|V| + |E|) = O(|E|)
(|V| < |E|, because all non-reachable nodes can be ignored.)

Number of iterations:
In every step, the size of the flow increases by d > 0.
integer capacities = increment by > 1 = at most | fu.x| iterations

= O(| fmax| - | E]) for flow networks G = (V, E, ¢) with ¢: E — N=!

Edmonds-Karp Algorithm: (Variant of Ford-Fulkerson)

shortest augmenting path (number of edges) = O(|V| - | E|?) (without

explanation)
905

Quiz Edmonds-Karp

906

Quiz Edmonds-Karp

906

Quiz Edmonds-Karp

How many iterations does Edmonds-Karp need in the worst case?

906

907

907

907

907

907

100/100

100/100

907

100/100

100/100

907

100/100

100/100

907

100/100

100/100

100/100 100/100

Termination after 2 iterations!

907

29.2 Max-Flow Min-Cut

908

Flows and Cuts: Bottleneck Intuition

909

Flows and Cuts: Bottleneck Intuition

Flows and Cuts: Bottleneck Intuition

Upper bounds on size of flow:

909

Flows and Cuts: Bottleneck Intuition

Upper bounds on size of flow:
m what can flow out of s: ¢*(s)

Flows and Cuts: Bottleneck Intuition

Upper bounds on size of flow:
m what can flow out of s: ¢*(s)
m what can flow into ¢: ¢ (t)

Flows and Cuts: Bottleneck Intuition

Upper bounds on size of flow:

m what can flow out of s: ¢*(s)

m what can flow into ¢: ¢ (t)

m what can flow through arbitrary cut

909

Flows and Cuts: Bottleneck Intuition

Upper bounds on size of flow:

m what can flow out of s: ¢*(s)

m what can flow into ¢: ¢ (t)

m what can flow through arbitrary cut

m what can flow through bottleneck: ¢,

Flows and Cuts: Bottleneck Intuition

Upper bounds on size of flow:

m what can flow out of s: ¢*(s)

m what can flow into ¢: ¢ (t)

m what can flow through arbitrary cut

m what can flow through bottleneck: ¢,

Flows and Cuts: Bottleneck Intuition

Upper bounds on size of flow:

m what can flow out of s: ¢*(s)

m what can flow into ¢: ¢ (t)

m what can flow through arbitrary cut

m what can flow through bottleneck: ¢,

Cmin

Flows and Cuts: Bottleneck Intuition

Upper bounds on size of flow:

m what can flow out of s: ¢*(s)

m what can flow into ¢: ¢ (t)

m what can flow through arbitrary cut

m what can flow through bottleneck: ¢,

Cmin

= flow | f| < bottleneck

Flows and Cuts: Bottleneck Intuition

Upper bounds on size of flow:

m what can flow out of s: ¢*(s)

m what can flow into ¢: ¢ (t)

m what can flow through arbitrary cut

m what can flow through bottleneck: ¢,

Cmin

= flow | f| < bottleneck
= maximum flow < bottleneck

910

Cut

(s,t)-Cut of graph G = (V, E, ¢):

Cut

(s,t)-Cut of graph G = (V, E, ¢): Partition
(S,T) of Vsuchthatse S;teT

910

Cut

(s,t)-Cut of graph G = (V, E, ¢): Partition
(S,T) of Vsuchthatse S;teT

910

Cut

(s,t)-Cut of graph G = (V, E, ¢): Partition
(S,T) of Vsuchthatse S;teT

Size of cut:
C<Sa T) = Ze: S—T C(G)

Cut

(s,t)-Cut of graph G = (V, E, ¢): Partition
(S,T) of Vsuchthatse S;teT

Size of cut:
C<Sa T) = Ze: S—T C(G)

Cut

(s,t)-Cut of graph G = (V, E, ¢): Partition
(S,T) of Vsuchthatse S;teT

Size of cut:
C<Sa T) = Ze: S—T C(Q)

Flow through cut of flow network:

Cut

(s,t)-Cut of graph G = (V, E, ¢): Partition
(S,T) of Vsuchthatse S;teT

Size of cut:
C<Sa T) = Ze: S—T C(G)

Flow through cut of flow network:
f(S7 T) = ZOZ S—T f(e) - Ze: T—S f(e)

Cut

(s,t)-Cut of graph G = (V, E, ¢): Partition
(S,T) of Vsuchthatse S;teT

Size of cut:
C<Sa T) = Ze: S—T C(Q)

Flow through cut of flow network:
f(S7 T) = ZC: S—T f<e) - ZCZ T—S f(e)

Cut

(s,t)-Cut of graph G = (V, E, ¢): Partition
(S,T) of Vsuchthatse S;teT

Size of cut:
C<Sa T) = Ze: S—T C(Q)

Flow through cut of flow network:
f(S7 T) = ZC: S—T f<e) - ZCZ T—S f(e)

Observation:
VS, T | f] = f(S,T) < (S, T)

Cut

(s,t)-Cut of graph G = (V, E, ¢): Partition
(S,T) of Vsuchthatse S;teT

Size of cut:
C<Sa T) = Ze: S—T C(Q)

Flow through cut of flow network:
f(S7 T) = ZC: S—T f<e) - ZCZ T—S f(e)

Observation:
VS, T | f] = f(S,T) < (S, T)

= |fmax| S Cmin

Maximum Flow and Minimum Cut

M

Maximum Flow and Minimum Cut
<3

after termination of Ford-Fulkerson/Edmonds-Karp:

M

Maximum Flow and Minimum Cut
RN

after termination of Ford-Fulkerson/Edmonds-Karp:
m reachable from s, T € V nodes not reachable from s

M

Maximum Flow and Minimum Cut

after termination of Ford-Fulkerson/Edmonds-Karp:
m reachable from s, T € V nodes not reachable from s = Cut (S, T)

M

Maximum Flow and Minimum Cut

after termination of Ford-Fulkerson/Edmonds-Karp:

m reachable from s, T € V nodes not reachable from s = Cut (S, T)
m all outgoing edges e have remaining capacity 0 in G

M

Maximum Flow and Minimum Cut

after termination of Ford-Fulkerson/Edmonds-Karp:

m reachable from s, T € V nodes not reachable from s = Cut (S, T)
m all outgoing edges e have remaining capacity 0 in G
mf(S,T)=>c s rfle)—Xe rosfle)

aMm

Maximum Flow and Minimum Cut

after termination of Ford-Fulkerson/Edmonds-Karp:

m reachable from s, T € V nodes not reachable from s = Cut (S, T)
m all outgoing edges e have remaining capacity 0 in G
mf(S,T)=>c s rfle) = Xe rosfle) =>c s rcle)

M

Maximum Flow and Minimum Cut

after termination of Ford-Fulkerson/Edmonds-Karp:

m reachable from s, T € V nodes not reachable from s = Cut (S, T)
m all outgoing edges e have remaining capacity 0 in G
mf(S,T)=>c s rfle) =2 rsfle)=>c s rcle)=c(S,T)

M

Maximum Flow and Minimum Cut

after termination of Ford-Fulkerson/Edmonds-Karp:
m reachable from s, T € V nodes not reachable from s = Cut (S, T)
m all outgoing edges e have remaining capacity 0 in G
mf(S,T)=>c s rfle) =2 rsfle)=>c s rcle)=c(S,T)

= | fmax| = Cmin

M

Max-Flow Min-Cut Theorem

Max-Flow Min-Cut Theorem

For a flow f in a flow network G = (V E, ¢) with source s and sink ¢, the
following statements are equivalent:

1. fisa maximum flow in G
2. The residual network Gy does not provide any augmenting paths
3. |f| =¢(S,T) foracut (S,T) of G.

912

913

What is the minimum cut?

913

What is the minimum cut?
What is the maximum flow?

913

Application Examples

914

Application Examples

m Maximum Rate:

m water in sewage system
m cars in traffic

914

Application Examples

m Maximum Rate:

m water in sewage system
m cars in traffic
m current in electrical networks

914

Application Examples

m Maximum Rate:

m water in sewage system

m cars in traffic

m currentin electrical networks
E components on conveyors

914

Application Examples

m Maximum Rate:

water in sewage system

cars in traffic

current in electrical networks

components on conveyors

information flow in communication networks

914

Application Examples

m Maximum Rate:

water in sewage system

cars in traffic

current in electrical networks

components on conveyors

information flow in communication networks

m Scheduling

914

Application Examples

m Maximum Rate:

water in sewage system

cars in traffic

current in electrical networks

components on conveyors

information flow in communication networks

m Scheduling
m Bipartite Matching

914

Application Examples

m Maximum Rate:

water in sewage system

cars in traffic

current in electrical networks

components on conveyors

information flow in communication networks

m Scheduling
m Bipartite Matching
m Image Segmentation

914

29.4 Maximales Bipartites Matching

915

A graph where V' can be partitioned into disjoint sets U and W such that
each e € E provides a node in U and a node in W is called bipartite.

916

Application: maximal bipartite matching

Given: bipartite undirected graph G = (V. E).
Matching M: M C E'suchthat |[{me M :vem}| <1lforallveV.

Maximal Matching M: Matching M, such that |M| > |M’| for each matching
M.

XY
NAV

917

Corresponding flow network

Construct a flow network that corresponds to the partition L, R of a
bipartite graph with source s and sink ¢, with directed edges from s to L,
from L to R and from R to ¢. Each edge has capacity 1.

918

919

m Definitions: flow networks, flow, cut

919

m Definitions: flow networks, flow, cut
m Concepts: Redirection, remainder network, augmenting path

919

m Definitions: flow networks, flow, cut
m Concepts: Redirection, remainder network, augmenting path
m Algorithms

919

m Definitions: flow networks, flow, cut
m Concepts: Redirection, remainder network, augmenting path
m Algorithms

m Greedy: incorrect!

919

m Definitions: flow networks, flow, cut
m Concepts: Redirection, remainder network, augmenting path
m Algorithms

m Greedy: incorrect!

m Ford-Fulkerson: O(| fmax| - |E|)
Greedy augmenting paths in remainder network

919

m Definitions: flow networks, flow, cut
m Concepts: Redirection, remainder network, augmenting path
m Algorithms

m Greedy: incorrect!
m Ford-Fulkerson: O(| fmax| - |E|)
Greedy augmenting paths in remainder network
® Edmonds-Karp: O(|V] - |E|?)
Ford-Fulkerson with shortest augmenting paths (number of edges)

919

m Definitions: flow networks, flow, cut
m Concepts: Redirection, remainder network, augmenting path
m Algorithms
m Greedy: incorrect!
m Ford-Fulkerson: O(| fmax| - |E|)
Greedy augmenting paths in remainder network
® Edmonds-Karp: O(|V] - |E|?)
Ford-Fulkerson with shortest augmenting paths (number of edges)

m Max Flow = Min Cut

919

29.5 Appendix: Some Formal Things

920

Flow: Formulation with Skew Symmetry

AFlow f : V x V — R fulfills the following
conditions:

m Bounded Capacity:

Forallu,v € Vi f(u,v) < c(u,v).
m Skew Symmetry:

Forallu,v € Vi f(u,v) = —f(v,u).
m Conservation of flow:

Forallu e V'\ {s,t}: Value of the flow:
[fl=2Xvev f(s,0).
Zf(%v):o- Here]f|i18.

veV

921

m Capacity of an (s, t)—-cut: ¢(S,T) = Y eswer (v, V)
® Minimal cut: cut with minimal capacity.
m Flow over the cut: (S, 1) = X cser f(v,0)

Generally: Let U, U’ CV
fOUY) =30 flu), fu,U):= f({u},U)

uEU
u' ey’
Then
m(f[=f(s,V)
m f(UU)=0

m f(UU)=-fU,U)
mf(XUY,Z)=f(X,Z)+ f(Z),if XNY =0.
mf(R,V)=0ifRN {s t} = 0. [flow conversation!]

922

How large can a flow possibly be?

f(SvT):f(SaV)_f(Sv‘S’):f(S7V)
0

=f(sV)+ (S —A{s},V) =[]

= [fl< Y clv))=¢(S,T)

‘\
te=23 923

Rest Network

Rest network G provided by the edges with positive rest capacity:

Gp= (V. Ey,cp)
cr(u,v) = c(u,v) — f(u,v) Yu,v eV
E; = {(u,v) € V x Vlcs(u,v) >0}

m Increase of the flow along some edge possible, when flow can be
increased along the edge,i.e. if f(u,v) < c¢(u,v).
Rest capacity c¢¢(u, v) = ¢(u,v) — f(u,v) > 0.

m Increase of flow against the direction of the edge possible, if flow can
be reduced along the edge, i.e. if f(u,v) > 0.
Rest capacity c¢(v,u) = f(u,v) > 0.

924

The increased flow is a flow

Theorem 32

Let G = (V, E,c) be a flow network with source s and sink t and f a flow
in G. Let Gy be the corresponding rest networks and let f" be a flow in
Gy. Then f & f" with

(f & f)(u,v) = flu,v) + f'(u,v)

defines a flow in G with value |f| + |f/|.

925

f @ f' defines a flow in G-
m capacity limit

(f D f/>(uv U) = f(ua ’U) + f,(u7 U) < C(u’ U)

m skew symmetry
(f D f/)(uv U) = _f(vau) + —f/(U,U) = _(f D f/)<vvu)
m flow conservationu € V — {s,t}:

S(fe M) => flu,v)+ > f(u,v) =0

veV veV veV

926

Value of f & f/

fefl=(af)sV)
=Y f(s,u)+ f'(s,u)

ueV
=f(s,V)+ f'(s,V)
= [f[+[/]

927

Augmenting Paths

expansion path p: simple path from s to ¢ in the rest network Gy.
Rest capacity c¢;(p) = min{cy(u,v) : (u,v) edge in p}

Theorem 33

The mapping f,: V xV = R,

cr(p) if (u,v) edge in p
fo(u,v) = ¢ —c¢(p) if (v,u) edge inp
0 otherwise

provides a flow in Gy with value |f,| = c¢(p) > 0.

f, is a flow (easy to show). there is one and only one u € V with (s,u) € p.
Thus ‘fp| = ZUEV fp(S,’U) = fp(sau’) = Cf(p) 08

Max-Flow Min-Cut Theorem

Theorem 34

Let f be a flow in a flow network G = (V, E, ¢) with source s and sink t.
The following statementsa are equivalent:

1. fis a maximal flow in G
2. The rest network Gy does not provide any expansion paths
3. It holds that |f| = ¢(S,T) for a cut (S,T) of G.

929

m(3)= (1)
It holds that |f| < ¢(S,T) for all cuts S, T. From |f| = ¢(S, T) it follows
that | f] is maximal.

m (1) = (2):
f maximal Flow in G. Assumption: G has some expansion path
If® f,l =1fl+1/f»| > |f|. Contradiction.

930

Proof (2) = (3)

Assumption: Gy has no expansion path

Define S = {v € V : thereis a path s ~» v in G¢}.

(S, T):=(S,V\S)isacut s S;teT.

Letuw € Sand v € T. Then ¢s(u,v) =0, also ¢¢(u,v) = c(u,v) — f(u,v) = 0.
Somit f(u,v) = c(u,v).

Thus
If] = Zquv ZZc(u,v):C’(S,T).

ueS veT ueS veT

931

Edmonds-Karp Algorithm

Theorem 35

When the Edmonds-Karp algorithm is applied to some integer valued
flow network G = (V, E) with source s and sink t then the number of
flow increases applied by the algorithm is in O(|V| - |E|).

= Overal asymptotic runtime: O(|V| - |E|?)
[Without proof]

932

Edmonds-Karp Algorithmus

Theorem 36

Wenn der Edmonds-Karp Algorithmus auf Flussnetzwerk G = (V, E) mit
Quelle s und Senke t angewendet wird, dann wachst fur jeden Knoten
v e V\{s,t} die Distanz 6;(s,v) des Rurzesten Pfades von s nach v im
Restnetzwerk Gy monoton mit jeder Flusserhohung.

933

Beweis

Annahme: Distanz é,(s,v) wird bei Flusserhohung f — f” kleiner fur ein v:
dr(s,v) < dp(s,v)

Sei p = s ~» u — v kurzester Pfad von s nach v in G/, so dass (u,v) € Ep
und 6 (s,u) = dp(s,v) — 1. Es gilt d (s, u) > 64(s, u).

Wenn (u,v) € Ef: dfs,v < d(s,u) +1 < dp(s,u)+1=0p(s,v) Widerspruch.
Also (u,v) & Ej.

934

Integer number theorem

Theorem 37

If the capacities of a flow network are integers, then the maximal flow
generated by the Ford-Fulkerson method provides integer numbers for
each f(u,v), u,v € V.

[without proof]
Consequence: Ford-Fulkerson generates for a flow network that
corresponds to a bipartite graph a maximal matching

M = {(u,v): f(u,v) =1}

935

	Flow in Networks
	Flow Algorithms
	Max-Flow Min-Cut
	Applications
	Maximales Bipartites Matching
	Appendix: Some Formal Things

