29. Flow in Networks

Flow Network, Flow, Maximum Flow
Residual Capacity, Remainder Network, Augmenting path

Ford-Fulkerson Algorithm
Edmonds-Karp Algorithm

Cuts, Max-Flow Min-Cut Theorem

[Ottman/Widmayer, Kap. 9.7, 9.81], [Cormen et al, Kap. 26.1-26.3]

Slides redesigned by Manuela Fischer - thank you!
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Maximum Traffic Flow

Given: Road Network with capacities

Wanted: Maximum traffic flow between Zurich and Geneva
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Flow Network

directed, weighted graph G = (V, E, ¢) with capacities ¢: E — R>°

m without antiparallel edges:
(u,v) € E = (v,u) ¢ £

m source s € V without ingoing edges:
YoeV: (v,s) ¢ E

m sink ¢ € V without outgoing edges:
YoeV: (t,v) ¢ E
(D=
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Quiz Flow Network

Which of the following graphs are flow networks?
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Flow in Flow Network

Flow is function f: E — R=Y such that
m Bounded Capacity: Ve € E: f(e) < c(e)
m Conservation of flow: Vv € V' \ {s,}:

> fle)= > fle)

ecE—(v) e€ET(v)

S () =:f*(v)

Size of flow: |f| := f*(s) = f~ (1)




Intuition: Flow as set of paths s ~ ¢




Quiz Flow

Which of the following are flows?
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Maximal Flow

Given: Flow network: G = (V, E, ¢), directed, positively weighted,
without antiparallel edges, with source s and sink ¢

10/14

8/12

Wanted: Size | fiax| Of the maximum flow in G 892



Quiz Maximum Flow

What is the maximum flow in the following flow network?

893



Greedy Algorithm?

Residual capacity of an edge e: r(¢) := c(e) — f(e)
Residual capacity of a path P: min.cp r(e)

Greedy: Starting with f(e) = 0 for all e € E, as long as there exists a path
s ~» t with remaining capacity d > 0, increase flow along this path by d.

[fl =38

s—=a—>b—>d—1t3
s—a—c—t 2
s—>b—=c—1t3

but | fimax| = 10
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Problem with Greedy

Greedy: |f| =5

|fmaX| =38

Redirection
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29.1 Flow Algorithms

Ford-Fulkerson Algorithm

Edmonds-Karp Algorithm
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Redirection using flow decrement

3/3

= Umleitung entspricht Verringerung des Flusses durch Kante

G=(V,E, f/c)

G=(V.E, []c)
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Idea: Flow increments and decrements

m Increment:

C f(e)lc(e) C

flow through e can be increased by at most

r(e) = c(e) = f(e)

m Decrement:

flow through e can be decreased by at most

f(e)

= flow through ‘¢

most f(e)

can be increased by at

=(V,E,r:==c—f
C f(e) @
G; = (V. E.f)
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Residual Network

Residual network: Gy := G, UG, = (V, Ey,¢y)
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Ford-Fulkerson: Flow augmentation

®m Augmenting Path: Find a path P: s — t with residual capacity d > 0 in
Gy
m augment flow along this path for all e € P by d:
m decrease residual capacity c¢(e) in G by d; increase ce() byd
m increase flow through e € E by d; decrease through @ ¢ E

e L . U, o " -y L Y . R
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Algorithm Ford-Fulkerson(G, s, t)

Input: Flow network G = (V, E, ¢), source s, sink ¢
Output: Maximal flow f

for e € E do
L fle) <0
while exists positive path P: s ~» t in residual network G = (V, Ef,cy) do
d < minecp cy(e)
foreach e € P do
if e € I then
L fle) « fle)+d
else
L f@) — f(e) —d
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Example Ford-Fulkerson

nodes reachable from s
nodes not reachable from s

all outgoing edges have residual capacity 0 in Gy
= flow fully exhausts capacity on these edges!
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Quiz Ford-Fulkerson

How many iterations does Ford-Fulkerson need in the worst case?
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Solution

2/100 2/100

After i iterations: |f| =i
= In total | fuax| = 200 iterations
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Running Time Analysis of Ford-Fulkerson

Running time of each iteration: search of an augmenting path s ~ ¢
= BFS or DFS: O(|V| + |E|) = O(|E|)
(|V| < |E|, because all non-reachable nodes can be ignored.)

Number of iterations:
In every step, the size of the flow increases by d > 0.
integer capacities = increment by > 1 = at most | fu.x| iterations

= O(| fmax| - | E]) for flow networks G = (V, E, ¢) with ¢: E — N=!

Edmonds-Karp Algorithm: (Variant of Ford-Fulkerson)
shortest augmenting path (number of edges) = O(|V| - | E|?) (without
explanation)
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Quiz Edmonds-Karp

How many iterations does Edmonds-Karp need in the worst case?
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Solution

100/100 100/100

100/100 100/100

Termination after 2 iterations!
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29.2 Max-Flow Min-Cut
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Flows and Cuts: Bottleneck Intuition

Upper bounds on size of flow:

m what can flow out of s: ¢*(s)

m what can flow into ¢: ¢ (t)

m what can flow through arbitrary cut

m what can flow through bottleneck: ¢,

Cmin

= flow | f| < bottleneck
= maximum flow < bottleneck




Cut

(s,t)-Cut of graph G = (V, E, ¢): Partition
(S,T) of Vsuchthatse S;teT

Size of cut:
C(Sv T) =) . ST c(e)

Flow through cut of flow network:
f(S7 T) = Z(}: S—T f<e) - Zc: T—S f(e)

Observation:
VS, T | f] = f(S,T) < (S, T)

= |fmax| S Cmin




Maximum Flow and Minimum Cut

after termination of Ford-Fulkerson/Edmonds-Karp:
m reachable from s, T € V nodes not reachable from s = Cut (S, T)
m all outgoing edges e have remaining capacity 0 in Gy
mf(ST)=>c s rfle)=>c rosfle)=>. s rcle)=c(S,T)

= | fmax| = Cmin
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Max-Flow Min-Cut Theorem

Max-Flow Min-Cut Theorem

For a flow f in a flow network G = (V, E, ¢) with source s and sink ¢, the
following statements are equivalent:

fis.a maximum flow in G
The residual network Gy does not provide any augmenting paths
|f| = c(S,T) foracut (S,T) of G.
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Quiz

What is the minimum cut?
What is the maximum flow?
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Application Examples

m Maximum Rate:

water in sewage system

cars in traffic

current in electrical networks

components on conveyors

information flow in communication networks

m Scheduling
m Bipartite Matching
m Image Segmentation
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29.4 Maximales Bipartites Matching
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Notation

A graph where V' can be partitioned into disjoint sets U and W such that
each e € E provides a node in U and a node in W is called bipartite.
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Application: maximal bipartite matching

Given: bipartite undirected graph G = (V. E).
Matching M: M C E'suchthat |[{me M :vem}| <1lforallveV.

Maximal Matching M: Matching M, such that |M| > |M’| for each matching
M.

XY
NAV
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Corresponding flow network

Construct a flow network that corresponds to the partition L, R of a
bipartite graph with source s and sink ¢, with directed edges from s to L,
from L to R and from R to ¢. Each edge has capacity 1.
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Summary

m Definitions: flow networks, flow, cut
m Concepts: Redirection, remainder network, augmenting path
m Algorithms
m Greedy: incorrect!
m Ford-Fulkerson: O(] fmax| - | E])
Greedy augmenting paths in remainder network
® Edmonds-Karp: O(|V] - |E|?)
Ford-Fulkerson with shortest augmenting paths (number of edges)

m Max Flow = Min Cut
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29.5 Appendix: Some Formal Things
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Flow: Formulation with Skew Symmetry

AFlow f : V x V — R fulfills the following
conditions:

o 12/12 r
m Bounded Capacity: y ’

For all u,v € V: f(u,v) < c(u,v). s 4/4
m Skew Symmetry: 1% |
Forall u,v € V: f(u,v) = —f(v,u). ‘ “ 14/10’ .

m Conservation of flow:

Forallu e V'\ {s,t}: Value of the flow:
[fl=2Xvev f(s,0).
Zf(u,v)zo. Here ]f|il8.

veV
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Cuts

m Capacity of an (s, t)—-cut: ¢(S,T) = Y eswer (v, V)
® Minimal cut: cut with minimal capacity.
m Flow over the cut: (S, 1) = X cser f(v,0)

Generally: Let U, U’ CV
f(U7 U/) = Z f(u7 ul>7 f(uv U/) = f({u}7 U/)

uelU
u' e’
Then
m|f[=f(s,V)
m f(UU)=0

m f(UU)=-fU,U)
mAXUY,Z)=f(X,2)+ f(V,2),if XNY =0.
m f(R,V)=0if RN {s,t} = 0. [flow conversation!]
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How large can a flow possibly be?

f(SaT):f(va)_f(SvS):f(S7V)
0

=f(sV)+ (S —A{s},V) =[]

= [fl< Y clv))=¢(S,T)

B c=23
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Rest Network

Rest network G provided by the edges with positive rest capacity:

Gy =V, Ey,cf)
cr(u,v) = c(u,v) — f(u,v) Yu,v eV
E; = {(u,v) € V x Vlcs(u,v) >0}

m Increase of the flow along some edge possible, when flow can be
increased along the edge,i.e. if f(u,v) < c¢(u,v).
Rest capacity c¢¢(u, v) = ¢(u,v) — f(u,v) > 0.

m Increase of flow against the direction of the edge possible, if flow can
be reduced along the edge, i.e. if f(u,v) > 0.
Rest capacity c¢(v,u) = f(u,v) > 0.
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The increased flow is a flow

Theorem 32

Let G = (V, E,c) be a flow network with source s and sink t and f a flow
in G. Let Gy be the corresponding rest networks and let f" be a flow in
Gy. Then f & f" with

(f & f)(u,v) = flu,v) + f'(u,v)

defines a flow in G with value |f| + |f/|.
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Proof

f @ f' defines a flow in G-
m capacity limit

(f D f/)(uv U) = f(uv U) + f/(u’ U) < c(u, U)

m skew symmetry
(f S f/)(uvv) = _f(vau> + _f/(vvu) = _(f S f’)(v,u)
m flow conservationu € V — {s,t}:

Z(f@f quv%—quv-O

veV veV veV



Proof

Value of f & f/

fefl=ef)sV)
= Z f(s>u) —{—f’(s,u)

ueV
= f(S,V) +f/(8,V)
= fl+1f]
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Augmenting Paths

expansion path p: simple path from s to ¢ in the rest network Gy.
Rest capacity c¢;(p) = min{cy(u,v) : (u,v) edge in p}
Theorem 33
The mapping f,: V xV = R,
ci(p)  if (u,v) edge in p

folu,v) = § —cp(p)  if (v,u) edge in p
0 otherwise

provides a flow in Gy with value | f,| = ¢;(p) > 0.

f, is a flow (easy to show). there is one and only one u € V with (s,u) € p.

Thus [ f,| = Xy fo(s,v) = fp(s,u) = c4(p).
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Max-Flow Min-Cut Theorem

Theorem 34

Let f be a flow in a flow network G = (V, E, ¢) with source s and sink t.

The following statementsa are equivalent:
fis a maximal flow in G
The rest network G does not provide any expansion paths
It holds that | f| = ¢(S,T) for a cut (S,T) of G.
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Proof

m(3)= (1)
It holds that |f| < ¢(S,T) for all cuts S, T. From |f| = ¢(S, T) it follows
that | f] is maximal.

m (1) = (2):
f maximal Flow in G. Assumption: G has some expansion path
If® f,l =1fl+1/f»| > |f|. Contradiction.
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Proof (2) = (3)

Assumption: Gy has no expansion path

Define S = {v € V : thereis a path s ~» v in G,}.

(S, T):=(S,V\S)isacut s S;teT.

Letuw € Sand v € T. Then ¢s(u,v) =0, also ¢¢(u,v) = c(u,v) — f(u,v) = 0.
Somit f(u,v) = c(u,v).

Thus
If] = Zquv ZZC(U,U):C(S,T).

ueS veT ueS veT
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Edmonds-Karp Algorithm

Theorem 35

When the Edmonds-Karp algorithm is applied to some integer valued
flow network G = (V, E) with source s and sink t then the number of

flow increases applied by the algorithm is in O(|V| - |E|).
= Overal asymptotic runtime: O(|V| - |E|?)

[Without proof]
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Edmonds-Karp Algorithmus

Theorem 36

Wenn der Edmonds-Karp Algorithmus auf Flussnetzwerk G = (V, E) mit
Quelle s und Senke t angewendet wird, dann wachst fur jeden Knoten
v e V\{s,t} die Distanz 6;(s,v) des Rurzesten Pfades von s nach v im
Restnetzwerk Gy monoton mit jeder Flusserhdhunag.
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Beweis

Annahme: Distanz é,(s,v) wird bei Flusserhohung f — f” kleiner fur ein v:
dr(s,v) < dp(s,v)

Sei p = s ~» u — v kurzester Pfad von s nach v in G/, so dass (u,v) € Ep
und 6 (s,u) = dp(s,v) — 1. Es gilt d (s, u) > 64(s, u).

Wenn (u,v) € Ef: dfs,v < d(s,u) +1 < dp(s,u)+1=0p(s,v) Widerspruch.
Also (u,v) & Ej.
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Integer number theorem

Theorem 37

If the capacities of a flow network are integers, then the maximal flow
generated by the Ford-Fulkerson method provides integer numbers for
each f(u,v), u,v € V.

[without proof]
Consequence: Ford-Fulkerson generates for a flow network that
corresponds to a bipartite graph a maximal matching

M = {(u,v): f(u,v) =1}
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