29. Flow in Networks

Flow Network, Flow, Maximum Flow Residual Capacity, Remainder Network, Augmenting path

Ford-Fulkerson Algorithm Edmonds-Karp Algorithm

Cuts, Max-Flow Min-Cut Theorem

[Ottman/Widmayer, Kap. 9.7, 9.8.1], [Cormen et al, Kap. 26.1-26.3]

Slides redesigned by Manuela Fischer – thank you!

Maximum Traffic Flow

Given: Road Network with capacities

Wanted: Maximum traffic flow between Zurich and Geneva

Flow Network

directed, weighted graph G = (V, E, c) with capacities $c \colon E \to \mathbb{R}^{>0}$

- without antiparallel edges:
 - $\begin{array}{c} (u,v)\in E \ \Rightarrow \ (v,u)\not\in E \\ \hline u & v \end{array}$
- source $s \in V$ without ingoing edges: $\forall v \in V : (v, s) \notin E$
- sink $t \in V$ without outgoing edges: $\forall v \in V : (t, v) \notin E$ (t)→

Quiz Flow Network

Which of the following graphs are flow networks?

Flow in Flow Network

Flow is function $f: E \to \mathbb{R}^{\geq 0}$ such that Bounded Capacity: $\forall e \in E: f(e) \leq c(e)$ Conservation of flow: $\forall v \in V \setminus \{s, t\}$:

Size of flow: $|f| := f^+(s) = f^-(t)$

Intuition: Flow as set of paths $s \rightsquigarrow t$

Quiz Flow

Which of the following are flows?

Maximal Flow

Given: Flow network: G = (V, E, c), directed, positively weighted, without antiparallel edges, with source s and sink t

Wanted: Size $|f_{\text{max}}|$ of the maximum flow in G

Quiz Maximum Flow

What is the maximum flow in the following flow network?

Greedy Algorithm?

Residual capacity of an edge e: r(e) := c(e) - f(e)Residual capacity of a path P: $\min_{e \in P} r(e)$

Greedy: Starting with f(e) = 0 for all $e \in E$, as long as there exists a path $s \rightsquigarrow t$ with remaining capacity d > 0, increase flow along this path by d.

$$f| = 8$$

$$\begin{split} s &\to a \to b \to d \to t: 3\\ s &\to a \to c \to t: 2\\ s &\to b \to c \to t: 3 \end{split}$$

but $|f_{\max}| = 10$

Problem with Greedy

29.1 Flow Algorithms

Ford-Fulkerson Algorithm

Edmonds-Karp Algorithm

Redirection using flow decrement

 \Rightarrow Umleitung entspricht Verringerung des Flusses durch Kante

Idea: Flow increments and decrements

f(e)/c(e)u

Increment:

flow through e can be increased by at most $r(e) \mathrel{\mathop:}= c(e) - f(e)$

Decrement:

flow through $e \mbox{ can be decreased by at most } f(e)$

 \Rightarrow flow through \overleftarrow{e} can be increased by at most f(e)

Residual Network

Residual network: $G_f := \mathbf{G}_{\mathbf{f}}^+ \cup \mathbf{G}_{\mathbf{f}}^- = (V, E_f, c_f)$

Ford-Fulkerson: Flow augmentation

Augmenting Path: Find a path $\mathbf{P} : \mathbf{s} \to \mathbf{t}$ with residual capacity d > 0 in G_f

• augment flow along this path for all $e \in P$ by d:

- decrease residual capacity $\mathbf{c_f}(\mathbf{e})$ in G_f by d; increase $\mathbf{c_f}(\overleftarrow{e})$ by d
- increase flow through $\mathbf{e} \in \mathbf{E}$ by d; decrease through $\overleftarrow{e} \in \mathbf{E}$

Algorithm Ford-Fulkerson(G, s, t)

Input: Flow network G = (V, E, c), source s, sink t **Output:** Maximal flow f

for $e \in E$ do $f(e) \leftarrow 0$ while exists positive path $P: s \rightsquigarrow t$ in residual network $G_f = (V, E_f, c_f)$ do $d \leftarrow \min_{e \in P} c_f(e)$ foreach $e \in P$ do if $e \in E$ then

Example Ford-Fulkerson

nodes reachable from snodes not reachable from s

all outgoing edges have residual capacity 0 in G_f \Rightarrow flow fully exhausts capacity on these edges!

Quiz Ford-Fulkerson

How many iterations does Ford-Fulkerson need in the worst case?

Solution

After *i* iterations: |f| = i \Rightarrow in total $|f_{\text{max}}| = 200$ iterations

Running Time Analysis of Ford-Fulkerson

Running time of each iteration: search of an augmenting path $s \rightsquigarrow t$ \Rightarrow BFS or DFS: $\mathcal{O}(|V| + |E|) = \mathcal{O}(|E|)$

 $(|V| \leq |E|$, because all non-reachable nodes can be ignored.)

Number of iterations:

In every step, the size of the flow increases by d > 0. integer capacities \Rightarrow increment by $\ge 1 \Rightarrow$ at most $|f_{\max}|$ iterations

 $\Rightarrow \mathcal{O}(|f_{\max}| \cdot |E|)$ for flow networks G = (V, E, c) with $c \colon E \to \mathbb{N}^{\geq 1}$

Edmonds-Karp Algorithm: (Variant of Ford-Fulkerson) shortest augmenting path (number of edges) $\Rightarrow O(|V| \cdot |E|^2)$ (without explanation)

Quiz Edmonds-Karp

How many iterations does Edmonds-Karp need in the worst case?

Solution

Termination after 2 iterations!

29.2 Max-Flow Min-Cut

Flows and Cuts: Bottleneck Intuition

Upper bounds on size of flow:

- what can flow out of s: $c^+(s)$
- what can flow into t: $c^-(t)$
- what can flow through arbitrary cut
- \blacksquare what can flow through bottleneck: c_{\min}

Cut

(s,t)-**Cut** of graph G = (V, E, c): Partition (\mathbf{S}, \mathbf{T}) of V such that $s \in S, t \in T$

Size of cut: $c(S,T) := \sum_{\mathbf{e}: \mathbf{S} \to \mathbf{T}} \mathbf{c}(\mathbf{e})$

Flow through cut of flow network: $f(S,T) := \sum_{\mathbf{e}: \ \mathbf{S} \to \mathbf{T}} \mathbf{f}(\mathbf{e}) - \sum_{\mathbf{e}: \ \mathbf{T} \to \mathbf{S}} \mathbf{f}(\mathbf{e})$

Observation: $\forall f, S, T \colon |f| = f(S, T) \leq c(S, T)$

 $\Rightarrow |f_{\max}| \le c_{\min}$

Maximum Flow and Minimum Cut

after termination of Ford-Fulkerson/Edmonds-Karp:

- **•** reachable from $s, \mathbf{T} \subseteq \mathbf{V}$ nodes not reachable from $s \Rightarrow \mathbf{Cut} (\mathbf{S}, \mathbf{T})$
- \blacksquare all outgoing edges *e* have remaining capacity 0 in G_f
- $\begin{aligned} \bullet \ f(S,T) &= \sum_{\mathbf{e}: \ \mathbf{S} \to \mathbf{T}} \mathbf{f}(\mathbf{e}) \sum_{\mathbf{e}: \ \mathbf{T} \to \mathbf{S}} \mathbf{f}(\mathbf{e}) = \sum_{\mathbf{e}: \ \mathbf{S} \to \mathbf{T}} \mathbf{c}(\mathbf{e}) = \mathbf{c}(\mathbf{S},\mathbf{T}) \\ \Rightarrow |f_{\max}| &= c_{\min} \end{aligned}$

Max-Flow Min-Cut Theorem

Max-Flow Min-Cut Theorem

For a flow f in a flow network G = (V, E, c) with source s and sink t, the following statements are equivalent:

f is a maximum flow in G

2. The residual network G_f does not provide any augmenting paths

 $\exists |f| = c(S,T)$ for a cut (S,T) of G.

Quiz

What is the minimum cut? What is the maximum flow?

Application Examples

Maximum Rate:

- water in sewage system
- cars in traffic
- current in electrical networks
- components on conveyors
- information flow in communication networks
- Scheduling
- Bipartite Matching
- Image Segmentation

29.4 Maximales Bipartites Matching

Notation

A graph where V can be partitioned into disjoint sets U and W such that each $e \in E$ provides a node in U and a node in W is called **bipartite**.

Application: maximal bipartite matching

Given: bipartite undirected graph G = (V, E). Matching $M: M \subseteq E$ such that $|\{m \in M : v \in m\}| \le 1$ for all $v \in V$. Maximal Matching M: Matching M, such that $|M| \ge |M'|$ for each matching M'.

Corresponding flow network

Construct a flow network that corresponds to the partition L, R of a bipartite graph with source s and sink t, with directed edges from s to L, from L to R and from R to t. Each edge has capacity 1.

Summary

- Definitions: flow networks, flow, cut
- Concepts: Redirection, remainder network, augmenting path

Algorithms

- Greedy: incorrect!
- Ford-Fulkerson: O(|f_{max}| · |E|) Greedy augmenting paths in remainder network
- Edmonds-Karp: $\mathcal{O}(|V| \cdot |E|^2)$

Ford-Fulkerson with shortest augmenting paths (number of edges)

Max Flow = Min Cut

29.5 Appendix: Some Formal Things

Flow: Formulation with Skew Symmetry

A **Flow** $f: V \times V \rightarrow \mathbb{R}$ fulfills the following conditions:

Bounded Capacity:

For all $u, v \in V$: $f(u, v) \le c(u, v)$.

Skew Symmetry:

For all $u, v \in V$: f(u, v) = -f(v, u).

Conservation of flow:

For all $u \in V \setminus \{s, t\}$:

$$\sum_{v \in V} f(u, v) = 0.$$

Value of the flow: $|f| = \sum_{v \in V} f(s, v).$ Here |f| = 18.

Cuts

■ Capacity of an (s,t)--cut: $c(S,T) = \sum_{v \in S, v' \in T} c(v,v')$ ■ Minimal cut: cut with minimal capacity. ■ Flow over the cut: $f(S,T) = \sum_{v \in S, v' \in T} f(v,v')$ Generally: Let $U, U' \subseteq V$ $f(U,U') := \sum_{v \in S, v' \in T} f(v,v') := f((v),U')$

$$f(U,U') := \sum_{\substack{u \in U \\ u' \in U'}} f(u,u'), \qquad f(u,U') := f(\{u\},U')$$

Then

 $\begin{array}{l} \|f\| = f(s,V) \\ f(U,U) = 0 \\ f(U,U') = -f(U',U) \\ f(X \cup Y,Z) = f(X,Z) + f(Y,Z), \mbox{ if } X \cap Y = \emptyset. \\ f(R,V) = 0 \mbox{ if } R \cap \{s,t\} = \emptyset. \mbox{ [flow conversation!]} \end{array}$

How large can a flow possibly be?

$$f(S,T) = f(S,V) - \underbrace{f(S,S)}_{0} = f(S,V)$$
$$= f(s,V) + f(\underbrace{S-\{s\}}_{yt, \not\ni s}, V) = |f|.$$
$$\Rightarrow |f| \leq \sum_{v \in S, v' \in T} c(v,v') = c(S,T)$$

923

Rest Network

Rest network G_f provided by the edges with positive rest capacity:

$$G_f := (V, E_f, c_f)$$

$$c_f(u, v) := c(u, v) - f(u, v) \quad \forall u, v \in V$$

$$E_f := \{(u, v) \in V \times V | c_f(u, v) > 0\}$$

- Increase of the flow along some edge possible, when flow can be increased along the edge, i.e. if f(u, v) < c(u, v). Rest capacity $c_f(u, v) = c(u, v) - f(u, v) > 0$.
- Increase of flow **against the direction** of the edge possible, if flow can be reduced along the edge, i.e. if f(u, v) > 0. Rest capacity $c_f(v, u) = f(u, v) > 0$.

The increased flow is a flow

Theorem 32

Let G = (V, E, c) be a flow network with source s and sink t and f a flow in G. Let G_f be the corresponding rest networks and let f' be a flow in G_f . Then $f \oplus f'$ with

$$(f \oplus f')(u, v) = f(u, v) + f'(u, v)$$

defines a flow in G with value |f| + |f'|.

Proof

 $f \oplus f'$ defines a flow in G: • capacity limit

$$(f \oplus f')(u,v) = f(u,v) + \underbrace{f'(u,v)}_{\leq c(u,v) - f(u,v)} \leq c(u,v)$$

skew symmetry

$$(f \oplus f')(u, v) = -f(v, u) + -f'(v, u) = -(f \oplus f')(v, u)$$

• flow conservation $u \in V - \{s, t\}$:

$$\sum_{v \in V} (f \oplus f')(u, v) = \sum_{v \in V} f(u, v) + \sum_{v \in V} f'(u, v) = 0$$

Proof

Value of $f \oplus f'$

$$|f \oplus f'| = (f \oplus f')(s, V)$$
$$= \sum_{u \in V} f(s, u) + f'(s, u)$$
$$= f(s, V) + f'(s, V)$$
$$= |f| + |f'|$$

Augmenting Paths

expansion path p: simple path from s to t in the rest network G_f . **Rest capacity** $c_f(p) = \min\{c_f(u, v) : (u, v) \text{ edge in } p\}$

Theorem 33

The mapping $f_p: V \times V \to \mathbb{R}$,

$$f_p(u,v) = \begin{cases} c_f(p) & \text{if } (u,v) \text{ edge in } p \\ -c_f(p) & \text{if } (v,u) \text{ edge in } p \\ 0 & \text{otherwise} \end{cases}$$

provides a flow in G_f with value $|f_p| = c_f(p) > 0$.

 f_p is a flow (easy to show). there is one and only one $u \in V$ with $(s, u) \in p$. Thus $|f_p| = \sum_{v \in V} f_p(s, v) = f_p(s, u) = c_f(p)$.

Max-Flow Min-Cut Theorem

Theorem 34

Let f be a flow in a flow network G = (V, E, c) with source s and sink t. The following statements are equivalent:

- 1. f is a maximal flow in G
- 2. The rest network G_f does not provide any expansion paths
- 3. It holds that |f| = c(S,T) for a cut (S,T) of G.

Proof

- (3) \Rightarrow (1): It holds that $|f| \le c(S,T)$ for all cuts S,T. From |f| = c(S,T) it follows that |f| is maximal.
- (1) \Rightarrow (2): f maximal Flow in G. Assumption: G_f has some expansion path $|f \oplus f_p| = |f| + |f_p| > |f|$. Contradiction.

$$\mathsf{Proof}\left(2\right) \Rightarrow (3)$$

Assumption: G_f has no expansion path Define $S = \{v \in V : \text{ there is a path } s \rightsquigarrow v \text{ in } G_f\}.$ $(S,T) := (S,V \setminus S) \text{ is a cut: } s \in S, t \in T.$ Let $u \in S$ and $v \in T$. Then $c_f(u,v) = 0$, also $c_f(u,v) = c(u,v) - f(u,v) = 0$. Somit f(u,v) = c(u,v). Thus

$$|f| = f(S,T) = \sum_{u \in S} \sum_{v \in T} f(u,v) = \sum_{u \in S} \sum_{v \in T} c(u,v) = C(S,T).$$

Edmonds-Karp Algorithm

Theorem 35

When the Edmonds-Karp algorithm is applied to some integer valued flow network G = (V, E) with source s and sink t then the number of flow increases applied by the algorithm is in $\mathcal{O}(|V| \cdot |E|)$.

 \Rightarrow Overal asymptotic runtime: $\mathcal{O}(|V| \cdot |E|^2)$

[Without proof]

Edmonds-Karp Algorithmus

Theorem 36

Wenn der Edmonds-Karp Algorithmus auf Flussnetzwerk G = (V, E) mit Quelle s und Senke t angewendet wird, dann wächst für jeden Knoten $v \in V \setminus \{s,t\}$ die Distanz $\delta_f(s,v)$ des kürzesten Pfades von s nach v im Restnetzwerk G_f monoton mit jeder Flusserhöhung.

Beweis

Annahme: Distanz $\delta_f(s, v)$ wird bei Flusserhöhung $f \to f'$ kleiner für ein v: $\delta_f(s, v) < \delta_{f'}(s, v)$ Sei $p = s \rightsquigarrow u \to v$ kürzester Pfad von s nach v in $G_{f'}$, so dass $(u, v) \in E_{f'}$ und $\delta_{f'}(s, u) = \delta_{f'}(s, v) - 1$. Es gilt $\delta_{f'}(s, u) \ge \delta_f(s, u)$. Wenn $(u, v) \in E_f$: $\delta_f s, v \le \delta_f(s, u) + 1 \le \delta_{f'}(s, u) + 1 = \delta_{f'}(s, v)$ Widerspruch. Also $(u, v) \notin E_f$.

Integer number theorem

Theorem 37

If the capacities of a flow network are integers, then the maximal flow generated by the Ford-Fulkerson method provides integer numbers for each f(u, v), $u, v \in V$.

[without proof]

Consequence: Ford-Fulkerson generates for a flow network that corresponds to a bipartite graph a maximal matching $M = \{(u, v) : f(u, v) = 1\}.$