
29. Flow in Networks

Flow Network, Flow, Maximum Flow
Residual Capacity, Remainder Network, Augmenting path

Ford-Fulkerson Algorithm
Edmonds-Karp Algorithm

Cuts, Max-Flow Min-Cut Theorem

[Ottman/Widmayer, Kap. 9.7, 9.8.1], [Cormen et al, Kap. 26.1-26.3]

Slides redesigned by Manuela Fischer – thank you!
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Maximum Tra�c Flow
Given: Road Network with capacities

Wanted: Maximum tra�c �ow between Zurich and Geneva
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Flow Network

directed, weighted graph G = (V,E, c) with capacities c : E → R>0

without antiparallel edges:
(u, v) ∈ E ⇒ (v, u) 6∈ E

u v

source s ∈ V without ingoing edges:
∀v ∈ V : (v, s) /∈ E

s

sink t ∈ V without outgoing edges:
∀v ∈ V : (t, v) /∈ E

t

s

a b

c d

t

16 13

12 14

20 4

9

4

13
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Quiz Flow Network
Which of the following graphs are �ow networks?

s

a b

t

2 43

4

6

s

a b

t

−2 4

0

4 6

s

a b

t

13

24

7

s

a b

t

35

76

7

s

a b

t

96

84

6

s

a b

t

1
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Flow in Flow Network

Flow is function f : E → R
≥0 such that

Bounded Capacity: ∀e ∈ E : f(e) ≤ c(e)
Conservation of �ow: ∀v ∈ V \ {s, t} :∑

e∈E−(v)
f(e)

︸ ︷︷ ︸
=:f−(v)

=
∑

e∈E+(v)
f(e)

︸ ︷︷ ︸
=:f+(v)

v

Size of �ow: |f | := f+(s) = f−(t)

s

a b

c d

t

6/16 10/13

6/12 13/14

13/20 3/4

3/9

0/4

10/13

|f | = 16
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Intuition: Flow as set of paths s t

s

a b

c d

t

3

3

3

10

10
10

10

3

3
3

3

3

s

a b

c d

t

6/16 10/13

6/12 13/14

13/20 3/4

3/9

0/4

10/13

|f | = 16
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Quiz Flow
Which of the following are �ows?

s

a b

t

3/4 3/3

6/4

3/6

s

a b

t

1/2 3/6

4/4

4/5 3/3

s

a b

t

1/26/6

2/22/2

2/2

s

a b

t

2/2 6/7

2/26/6

−4/3

s

a b

t

0/10/2

0/40/3

0/6

s

t

6/7
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Maximal Flow
Given: Flow network: G = (V,E, c), directed, positively weighted,
without antiparallel edges, with source s and sink t

s

a

b

c

d

t

8/16

10/13

8/12

10/14

14/20

4/4

0/9
0/4 6/7 18 = |f | ≤ |fmax| = 23

Wanted: Size |fmax| of the maximum �ow in G 892



Quiz Maximum Flow

What is the maximum �ow in the following �ow network?

s

a b

t

2 4

3

4 6

893



Greedy Algorithm?
Residual capacity of an edge e: r(e) := c(e)− f(e)
Residual capacity of a path P : mine∈P r(e)

Greedy: Starting with f(e) = 0 for all e ∈ E, as long as there exists a path
s t with remaining capacity d > 0, increase �ow along this path by d.

s

a

b

c

d

t44

0

3

0

2

4

0

0

G+
f := (V,E, r := c− f)

|f | = 8

s→ a→ b→ d→ t: 3
s→ a→ c→ t: 2
s→ b→ c→ t: 3

but |fmax| = 10
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Problem with Greedy

s

a

b

t

5

3

5

3

3

G = (V,E, c)

s

a

b

t

5 5

3 3

|fmax| = 8

s

a

b

t3 3

3

2

2

Greedy: |f | = 5

s

a

b

t3 3

3

2

2

3

3

Redirection
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29.1 Flow Algorithms

Ford-Fulkerson Algorithm

Edmonds-Karp Algorithm
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Redirection using �ow decrement

s

a

b

t3 3

3

2
2

before

s

a

b

t

5/5

0/3

2/5

3/3

3/3

G = (V,E, f/c)

s

a

b

t3 3

3

2
2
3

3

after

s

a

b

t

5/5

3/3

5/5

0/3

3/3

G = (V,E, f ′/c)

⇒ Umleitung entspricht Verringerung des Flusses durch Kante 897



Idea: Flow increments and decrements

u v
f(e)/c(e)

Increment:
�ow through e can be increased by at most
r(e) := c(e)− f(e)

Decrement:
�ow through e can be decreased by at most
f(e)

⇒ �ow through←−e can be increased by at
most f(e)

u v
r(e)

G+
f := (V,E, r := c−f)

u v
f(e)

G−f := (V,←−E , f)
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Residual Network

s

a

b

c

d

t

8/16

10/13

12/12

10/14

14/20

4/4

4/9
4/4 6/7

s

a

b

c

d

t

8

3

0

4

6

0

5
0 1

12

4

4

8

10

10

14

4
6

Residual network: Gf := G+
f ∪G−f = (V,Ef , cf )
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Ford-Fulkerson: Flow augmentation

s

a

b

c

d

t

4/410/13

12/12

10/14

6/7

12/16 18/20

0/4
0/9 s

a

b

c

d

t

3

0

4 0

1

12

410

10

6
0

0
24

1812

9
4

Augmenting Path: Find a path P : s→ t with residual capacity d > 0 in
Gf

augment �ow along this path for all e ∈ P by d:
decrease residual capacity cf (e) in Gf by d; increase cf (←−e ) by d
increase �ow through e ∈ E by d; decrease through←−e ∈ E

⇒ total �ow |f | in G is increased by t, since �rst (and last) edge ∈ E
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Algorithm Ford-Fulkerson(G, s, t)

Input: Flow network G = (V, E, c), source s, sink t
Output: Maximal flow f

for e ∈ E do
f(e)← 0

while exists positive path P : s t in residual network Gf = (V, Ef , cf ) do
d← mine∈P cf (e)
foreach e ∈ P do

if e ∈ E then
f(e)← f(e) + d

else
f(←−e )← f(←−e )− d

901



Example Ford-Fulkerson

s

a

b

c

d

t

5/5 5/5

5/7

1/7 2/4

5/6

4/4

3/3

3/3 s

a

b

c

d

t

0 0
2

1
6

3

5

3

5

5

4

5

2s

a

b

2
1

c

d

t

0

0

0

nodes reachable from s

nodes not reachable from s

all outgoing edges have residual capacity 0 in Gf

⇒ �ow fully exhausts capacity on these edges!
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Quiz Ford-Fulkerson

s

u

v

t

100

100

1

100

100

How many iterations does Ford-Fulkerson need in the worst case?
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Solution

s

u

v

t

2/100

1/1

2/1002/100

2/100

0/1 s

u

v

t

98

9898

98
1

2

2

0

2

2

After i iterations: |f | = i

⇒ in total |fmax| = 200 iterations
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Running Time Analysis of Ford-Fulkerson
Running time of each iteration: search of an augmenting path s t

⇒ BFS or DFS: O(|V |+ |E|) = O(|E|)
(|V | ≤ |E|, because all non-reachable nodes can be ignored.)

Number of iterations:
In every step, the size of the �ow increases by d > 0.
integer capacities⇒ increment by ≥ 1⇒ at most |fmax| iterations

⇒ O(|fmax| · |E|) for �ow networks G = (V,E, c) with c : E → N≥1

Edmonds-Karp Algorithm: (Variant of Ford-Fulkerson)
shortest augmenting path (number of edges)⇒ O(|V | · |E|2) (without
explanation)
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Quiz Edmonds-Karp

s

u

v

t

100

100

1

100

100

How many iterations does Edmonds-Karp need in the worst case?
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Solution

s

u

v

t0/1

100/100 100/100

100/100100/100

s

u

v

t1

0 0

0 0
0

100 100

100 100

Termination after 2 iterations!
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29.2 Max-Flow Min-Cut
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Flows and Cuts: Bottleneck Intuition
Upper bounds on size of �ow:
what can �ow out of s: c+(s)
what can �ow into t: c−(t)
what can �ow through arbitrary cut
what can �ow through bottleneck: cmin

s t

cmin

⇒ �ow |f | ≤ bottleneck
⇒ maximum �ow ≤ bottleneck

s

a b

c d

t

7

63

6

6

2
8

4

1

13

10

11

9
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Cut

(s, t)-Cut of graph G = (V,E, c): Partition
(S,T) of V such that s ∈ S, t ∈ T

Size of cut:
c(S, T ) := ∑

e : S→T c(e)

Flow through cut of �ow network:
f(S, T ) := ∑

e : S→T f(e)−∑
e : T→S f(e)

Observation:
∀f, S, T : |f | = f(S, T ) ≤ c(S, T )

⇒ |fmax| ≤ cmin

s

a b

c d

t

s

a b

c d

t

3/7

5/62/3

2/6

1/2

1/1

3/6

1/8

4/4

3/6

1/8

4/4

1/2

1/1

|f | = 6

c(S, T) = 18
f(S, T ) = 6
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Maximum Flow and Minimum Cut

s

a

b

c

d

ts

a

b

c

d

t

3/6

6/7

0/1

3/3

6/6

0/2

5/6

4/4

2/8 s

a

b

c

d

ts

a

b

c

d

t

3

1

1

0

0

2

1

0
6

3

6

3

0

6

0
2

5

4

after termination of Ford-Fulkerson/Edmonds-Karp:
reachable from s, T ⊆ V nodes not reachable from s⇒ Cut (S,T)
all outgoing edges e have remaining capacity 0 in Gf

f(S, T ) = ∑
e : S→T f(e)−∑

e : T→S f(e) = ∑
e : S→T c(e) = c(S,T)

⇒ |fmax| = cmin
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Max-Flow Min-Cut Theorem

Max-Flow Min-Cut Theorem
For a �ow f in a �ow network G = (V,E, c) with source s and sink t, the
following statements are equivalent:
1. f is a maximum �ow in G
2. The residual network Gf does not provide any augmenting paths
3. |f | = c(S, T ) for a cut (S, T ) of G.
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Quiz

s

a

b

t

3

4

2

3

5

2

What is the minimum cut?
What is the maximum �ow?
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Application Examples

Maximum Rate:

water in sewage system
cars in tra�c
current in electrical networks
components on conveyors
information �ow in communication networks

Scheduling
Bipartite Matching
Image Segmentation
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29.4 Maximales Bipartites Matching
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Notation

A graph where V can be partitioned into disjoint sets U and W such that
each e ∈ E provides a node in U and a node in W is called bipartite.
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Application: maximal bipartite matching

Given: bipartite undirected graph G = (V,E).
MatchingM : M ⊆ E such that |{m ∈M : v ∈ m}| ≤ 1 for all v ∈ V .
Maximal MatchingM : MatchingM , such that |M | ≥ |M ′| for each matching
M ′.
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Corresponding �ow network
Construct a �ow network that corresponds to the partition L,R of a
bipartite graph with source s and sink t, with directed edges from s to L,
from L to R and from R to t. Each edge has capacity 1.

L R

s t

L R

918



Summary

De�nitions: �ow networks, �ow, cut
Concepts: Redirection, remainder network, augmenting path
Algorithms

Greedy: incorrect!
Ford-Fulkerson: O(|fmax| · |E|)
Greedy augmenting paths in remainder network
Edmonds-Karp: O(|V | · |E|2)
Ford-Fulkerson with shortest augmenting paths (number of edges)

Max Flow = Min Cut
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29.5 Appendix: Some Formal Things
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Flow: Formulation with Skew Symmetry

A Flow f : V × V → R ful�lls the following
conditions:
Bounded Capacity:
For all u, v ∈ V : f(u, v) ≤ c(u, v).
Skew Symmetry:
For all u, v ∈ V : f(u, v) = −f(v, u).
Conservation of �ow:
For all u ∈ V \ {s, t}:∑

v∈V

f(u, v) = 0.

s

v1

v2

v3

v4

t

16/8

13/10

12/12

14/10

20/14

4/4

9/4
4/4 7/6

Value of the �ow:
|f | =

∑
v∈V f(s, v).

Here |f | = 18.
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Cuts
Capacity of an (s, t)−-cut: c(S, T ) = ∑

v∈S,v′∈T c(v, v′)
Minimal cut: cut with minimal capacity.
Flow over the cut: f(S, T ) = ∑

v∈S,v′∈T f(v, v′)
Generally: Let U,U ′ ⊆ V

f(U,U ′) :=
∑
u∈U

u′∈U ′

f(u, u′), f(u, U ′) := f({u}, U ′)

Then
|f | = f(s, V )
f(U,U) = 0
f(U,U ′) = −f(U ′, U)
f(X ∪ Y, Z) = f(X,Z) + f(Y, Z), if X ∩ Y = ∅.
f(R, V ) = 0 if R ∩ {s, t} = ∅. [�ow conversation!]

922



How large can a �ow possibly be?

f(S, T ) = f(S, V )− f(S, S)︸ ︷︷ ︸
0

= f(S, V )

= f(s, V ) + f(S − {s}︸ ︷︷ ︸
63t, 63s

, V ) = |f |.

⇒ |f | ≤
∑

v∈S,v′∈T

c(v, v′) = c(S, T )

s

v1

v2

v3

v4

t

16

13

12

14

20

4

9
4 7

c = 23 923



Rest Network
Rest network Gf provided by the edges with positive rest capacity:

Gf := (V,Ef , cf )
cf (u, v) := c(u, v)− f(u, v) ∀u, v ∈ V

Ef := {(u, v) ∈ V × V |cf (u, v) > 0}

Increase of the �ow along some edge possible, when �ow can be
increased along the edge,i.e. if f(u, v) < c(u, v).
Rest capacity cf (u, v) = c(u, v)− f(u, v) > 0.
Increase of �ow against the direction of the edge possible, if �ow can
be reduced along the edge, i.e. if f(u, v) > 0.
Rest capacity cf (v, u) = f(u, v) > 0.
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The increased �ow is a �ow

Theorem 32
Let G = (V,E, c) be a �ow network with source s and sink t and f a �ow
in G. Let Gf be the corresponding rest networks and let f ′ be a �ow in
Gf . Then f ⊕ f ′ with

(f ⊕ f ′)(u, v) = f(u, v) + f ′(u, v)

de�nes a �ow in G with value |f |+ |f ′|.
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Proof
f ⊕ f ′ de�nes a �ow in G:
capacity limit

(f ⊕ f ′)(u, v) = f(u, v) + f ′(u, v)︸ ︷︷ ︸
≤c(u,v)−f(u,v)

≤ c(u, v)

skew symmetry

(f ⊕ f ′)(u, v) = −f(v, u) +−f ′(v, u) = −(f ⊕ f ′)(v, u)

�ow conservation u ∈ V − {s, t}:∑
v∈V

(f ⊕ f ′)(u, v) =
∑
v∈V

f(u, v) +
∑
v∈V

f ′(u, v) = 0
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Proof

Value of f ⊕ f ′

|f ⊕ f ′| = (f ⊕ f ′)(s, V )
=

∑
u∈V

f(s, u) + f ′(s, u)

= f(s, V ) + f ′(s, V )
= |f |+ |f ′|

�
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Augmenting Paths
expansion path p: simple path from s to t in the rest network Gf .
Rest capacity cf (p) = min{cf (u, v) : (u, v) edge in p}

Theorem 33
The mapping fp : V × V → R,

fp(u, v) =


cf (p) if (u, v) edge in p
−cf (p) if (v, u) edge in p
0 otherwise

provides a �ow in Gf with value |fp| = cf (p) > 0.

fp is a �ow (easy to show). there is one and only one u ∈ V with (s, u) ∈ p.
Thus |fp| =

∑
v∈V fp(s, v) = fp(s, u) = cf (p).
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Max-Flow Min-Cut Theorem

Theorem 34
Let f be a �ow in a �ow network G = (V,E, c) with source s and sink t.
The following statementsa are equivalent:
1. f is a maximal �ow in G
2. The rest network Gf does not provide any expansion paths
3. It holds that |f | = c(S, T ) for a cut (S, T ) of G.
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Proof

(3)⇒ (1):
It holds that |f | ≤ c(S, T ) for all cuts S, T . From |f | = c(S, T ) it follows
that |f | is maximal.
(1)⇒ (2):
f maximal Flow in G. Assumption: Gf has some expansion path
|f ⊕ fp| = |f |+ |fp| > |f |. Contradiction.
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Proof (2)⇒ (3)

Assumption: Gf has no expansion path
De�ne S = {v ∈ V : there is a path s v in Gf}.
(S, T ) := (S, V \ S) is a cut: s ∈ S, t ∈ T .
Let u ∈ S and v ∈ T . Then cf (u, v) = 0, also cf (u, v) = c(u, v)− f(u, v) = 0.
Somit f(u, v) = c(u, v).
Thus

|f | = f(S, T ) =
∑
u∈S

∑
v∈T

f(u, v) =
∑
u∈S

∑
v∈T

c(u, v) = C(S, T ).

�
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Edmonds-Karp Algorithm

Theorem 35
When the Edmonds-Karp algorithm is applied to some integer valued
�ow network G = (V,E) with source s and sink t then the number of
�ow increases applied by the algorithm is in O(|V | · |E|).
⇒ Overal asymptotic runtime: O(|V | · |E|2)

[Without proof]
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Edmonds-Karp Algorithmus

Theorem 36
Wenn der Edmonds-Karp Algorithmus auf Flussnetzwerk G = (V,E) mit
Quelle s und Senke t angewendet wird, dann wächst für jeden Knoten
v ∈ V \ {s, t} die Distanz δf(s, v) des kürzesten Pfades von s nach v im
Restnetzwerk Gf monoton mit jeder Flusserhöhung.
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Beweis

Annahme: Distanz δf (s, v) wird bei Flusserhöhung f → f ′ kleiner für ein v:
δf (s, v) < δf ′(s, v)
Sei p = s u→ v kürzester Pfad von s nach v in Gf ′ , so dass (u, v) ∈ Ef ′

und δf ′(s, u) = δf ′(s, v)− 1. Es gilt δf ′(s, u) ≥ δf (s, u).
Wenn (u, v) ∈ Ef : δfs, v ≤ δf (s, u) + 1 ≤ δf ′(s, u) + 1 = δf ′(s, v) Widerspruch.
Also (u, v) 6∈ Ef .
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Integer number theorem

Theorem 37
If the capacities of a �ow network are integers, then the maximal �ow
generated by the Ford-Fulkerson method provides integer numbers for
each f(u, v), u, v ∈ V .

[without proof]
Consequence: Ford-Fulkerson generates for a �ow network that
corresponds to a bipartite graph a maximal matching
M = {(u, v) : f(u, v) = 1}.
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