29. Flow in Networks

Flow Network, Flow, Maximum Flow
Residual Capacity, Remainder Network, Augmenting path
Ford-Fulkerson Algorithm
Edmonds-Karp Algorithm
Cuts, Max-Flow Min-Cut Theorem
[Ottman/Widmayer, Kap. 9.7, 9.8.1], [Cormen et al, Kap. 26.1-26.3]

Slides redesigned by Manuela Fischer - thank you!

Maximum Traffic Flow

Given: Road Network with capacities

Wanted: Maximum traffic flow between Zurich and Geneva

Flow Network

directed, weighted graph $G=(V, E, c)$ with capacities $c: E \rightarrow \mathbb{R}^{>0}$
■ without antiparallel edges:
$(u, v) \in E \Rightarrow(v, u) \notin E$

■ source $s \in V$ without ingoing edges:
$\forall v \in V:(v, s) \notin E$

■ sink $t \in V$ without outgoing edges:
$\forall v \in V:(t, v) \notin E$

Quiz Flow Network

Which of the following graphs are flow networks?

(b)

Flow in Flow Network

Flow is function $f: E \rightarrow \mathbb{R}^{\geq 0}$ such that
■ Bounded Capacity: $\forall e \in E: f(e) \leq c(e)$
■ Conservation of flow: $\forall v \in V \backslash\{s, t\}$:

$$
\underbrace{\sum_{e \in E^{-}(v)} f(e)}_{=: f^{-}(v)}=\underbrace{\sum_{e \in E^{+}(v)} f(e)}_{=: f^{+}(v)}
$$

Size of flow: $|f|:=f^{+}(s)=f^{-}(t)$

Intuition: Flow as set of paths $s \rightsquigarrow t$

Quiz Flow

Which of the following are flows?

Maximal Flow

Given: Flow network: $G=(V, E, c)$, directed, positively weighted, without antiparallel edges, with source s and $\operatorname{sink} t$

$$
\mathbf{1 8}=|\mathbf{f}| \leq\left|\mathbf{f}_{\max }\right|=\mathbf{2 3}
$$

Wanted: Size $\left|f_{\max }\right|$ of the maximum flow in G

Quiz Maximum Flow

What is the maximum flow in the following flow network?

Greedy Algorithm?

Residual capacity of an edge e : $r(e):=c(e)-f(e)$ Residual capacity of a path $P: \min _{e \in P} r(e)$

Greedy: Starting with $f(e)=0$ for all $e \in E$, as long as there exists a path $s \rightsquigarrow t$ with remaining capacity $d>0$, increase flow along this path by d.

$$
\begin{aligned}
& |f|=8 \\
& s \rightarrow a \rightarrow b \rightarrow d \rightarrow t: 3 \\
& s \rightarrow a \rightarrow c \rightarrow t: 2 \\
& s \rightarrow b \rightarrow c \rightarrow t: 3 \\
& \text { but }\left|f_{\max }\right|=10
\end{aligned}
$$

Problem with Greedy

Greedy: $|f|=5$

Redirection

29.1 Flow Algorithms

Ford-Fulkerson Algorithm

Edmonds-Karp Algorithm

Redirection using flow decrement

$$
G=(V, E, f / c)
$$

\Rightarrow Umleitung entspricht Verringerung des Flusses durch Kante

Idea: Flow increments and decrements

■ Increment:
flow through e can be increased by at most $r(e):=c(e)-f(e)$

- Decrement:
flow through e can be decreased by at most $f(e)$

\Rightarrow flow through \overleftarrow{e} can be increased by at

$$
G_{f}^{-}:=(V, \overleftarrow{E}, f)
$$ most $f(e)$

Residual Network

Residual network: $G_{f}:=\mathrm{G}_{\mathrm{f}}^{+} \cup \mathrm{G}_{\mathrm{f}}^{-}=\left(V, E_{f}, c_{f}\right)$

Ford-Fulkerson: Flow augmentation

■ Augmenting Path: Find a path $\mathbf{P}: \mathrm{s} \rightarrow \mathbf{t}$ with residual capacity $d>0$ in G_{f}

- augment flow along this path for all $e \in P$ by d :
- decrease residual capacity $\mathrm{c}_{\mathrm{f}}(\mathbf{e})$ in G_{f} by d; increase $\mathrm{c}_{\mathrm{f}}(\overleftarrow{e})$ by d
- increase flow through $\mathrm{e} \in \mathbb{E}$ by d; decrease through $\overleftarrow{e} \in \mathbb{E}$

Algorithm Ford-Fulkerson(G, s, t)

Input: Flow network $G=(V, E, c)$, source s, sink t
Output: Maximal flow f
for $e \in E$ do
$f(e) \leftarrow 0$
while exists positive path $P: s \rightsquigarrow t$ in residual network $G_{f}=\left(V, E_{f}, c_{f}\right)$ do $d \leftarrow \min _{e \in P} c_{f}(e)$
foreach $e \in P$ do
if $e \in E$ then
$f(e) \leftarrow f(e)+d$
else

$$
f(\overleftarrow{e}) \leftarrow f(\overleftarrow{e})-d
$$

Example Ford-Fulkerson

nodes reachable from s nodes not reachable from s
all outgoing edges have residual capacity 0 in G_{f}
\Rightarrow flow fully exhausts capacity on these edges!

Quiz Ford-Fulkerson

How many iterations does Ford-Fulkerson need in the worst case?

Solution

After i iterations: $|f|=i$
\Rightarrow in total $\left|f_{\max }\right|=200$ iterations

Running Time Analysis of Ford-Fulkerson

Running time of each iteration: search of an augmenting path $s \rightsquigarrow t$
\Rightarrow BFS or DFS: $\mathcal{O}(|V|+|E|)=\mathcal{O}(|E|)$
($|V| \leq|E|$, because all non-reachable nodes can be ignored.)

Number of iterations:

In every step, the size of the flow increases by $d>0$.
integer capacities \Rightarrow increment by $\geq 1 \Rightarrow$ at most $\left|f_{\max }\right|$ iterations
$\Rightarrow \mathcal{O}\left(\left|f_{\text {max }}\right| \cdot|E|\right)$ for flow networks $G=(V, E, c)$ with $c: E \rightarrow \mathbb{N}^{\geq 1}$
Edmonds-Karp Algorithm: (Variant of Ford-Fulkerson)
shortest augmenting path (number of edges) $\Rightarrow \mathcal{O}\left(|V| \cdot|E|^{2}\right)$ (without
explanation)

Quiz Edmonds-Karp

How many iterations does Edmonds-Karp need in the worst case?

Solution

Termination after 2 iterations!
29.2 Max-Flow Min-Cut

Flows and Cuts: Bottleneck Intuition

Upper bounds on size of flow:

- what can flow out of $s: c^{+}(s)$
- what can flow into t : $c^{-}(t)$
- what can flow through arbitrary cut

■ what can flow through bottleneck: $c_{\text {min }}$

Cut

(s, t)-Cut of graph $G=(V, E, c)$: Partition (S, T) of V such that $s \in S, t \in T$

Size of cut:

$$
c(S, T):=\sum_{\mathrm{e}: \mathrm{S} \rightarrow \mathrm{~T}} \mathrm{c}(\mathrm{e})
$$

Flow through cut of flow network:

$$
f(S, T):=\sum_{\mathrm{e}: \mathrm{S} \rightarrow \mathrm{~T}} \mathrm{f}(\mathrm{e})-\sum_{\mathrm{e}: \mathrm{T} \rightarrow \mathrm{~S}} \mathrm{f}(\mathrm{e})
$$

Observation:

$$
\begin{aligned}
& \forall f, S, T:|f|=f(S, T) \leq c(S, T) \\
& \Rightarrow\left|f_{\max }\right| \leq c_{\min }
\end{aligned}
$$

Maximum Flow and Minimum Cut

after termination of Ford-Fulkerson/Edmonds-Karp:
■ reachable from $s, \mathbf{T} \subseteq \mathbf{V}$ nodes not reachable from $s \Rightarrow \mathbf{C u t}(\mathbf{S}, \mathbf{T})$
■ all outgoing edges e have remaining capacity 0 in G_{f}
$\square f(S, T)=\sum_{\mathrm{e}: \mathrm{S} \rightarrow \mathrm{T}} \mathrm{f}(\mathrm{e})-\sum_{\mathrm{e}: \mathrm{T} \rightarrow \mathrm{S}} \mathrm{f}(\mathrm{e})=\sum_{\mathrm{e}: \mathrm{S} \rightarrow \mathrm{T}} \mathrm{C}(\mathrm{e})=\mathbf{c}(\mathbf{S}, \mathbf{T})$
$\Rightarrow\left|f_{\text {max }}\right|=c_{\text {min }}$

Max-Flow Min-Cut Theorem

Max-Flow Min-Cut Theorem

For a flow f in a flow network $G=(V, E, c)$ with source s and $\operatorname{sink} t$, the following statements are equivalent:
f is a maximum flow in G
The residual network G_{f} does not provide any augmenting paths
$|f|=c(S, T)$ for a cut (S, T) of G.

Quiz

What is the minimum cut?
What is the maximum flow?

Application Examples

■ Maximum Rate:

- water in sewage system
- cars in traffic

■ current in electrical networks

- components on conveyors

■ information flow in communication networks
■ Scheduling

- Bipartite Matching

■ Image Segmentation
29.4 Maximales Bipartites Matching

Notation

A graph where V can be partitioned into disjoint sets U and W such that each $e \in E$ provides a node in U and a node in W is called bipartite.

Application: maximal bipartite matching

Given: bipartite undirected graph $G=(V, E)$.
Matching $M: M \subseteq E$ such that $|\{m \in M: v \in m\}| \leq 1$ for all $v \in V$.
Maximal Matching M : Matching M, such that $|M| \geq\left|M^{\prime}\right|$ for each matching M^{\prime}.

Corresponding flow network

Construct a flow network that corresponds to the partition L, R of a bipartite graph with source s and $\operatorname{sink} t$, with directed edges from s to L, from L to R and from R to t. Each edge has capacity 1.

Summary

■ Definitions: flow networks, flow, cut
■ Concepts: Redirection, remainder network, augmenting path

- Algorithms

■ Greedy: incorrect!
■ Ford-Fulkerson: $\mathcal{O}\left(\left|f_{\max }\right| \cdot|E|\right)$ Greedy augmenting paths in remainder network
■ Edmonds-Karp: $\mathcal{O}\left(|V| \cdot|E|^{2}\right)$
Ford-Fulkerson with shortest augmenting paths (number of edges)

- Max Flow $=$ Min Cut
29.5 Appendix: Some Formal Things

Flow: Formulation with Skew Symmetry

A Flow $f: V \times V \rightarrow \mathbb{R}$ fulfills the following conditions:
■ Bounded Capacity:
For all $u, v \in V: f(u, v) \leq c(u, v)$.
■ Skew Symmetry:
For all $u, v \in V: f(u, v)=-f(v, u)$.
■ Conservation of flow:

For all $u \in V \backslash\{s, t\}$:

$$
\sum_{v \in V} f(u, v)=0
$$

Value of the flow:
$|f|=\sum_{v \in V} f(s, v)$. Here $|f|=18$.

Cuts

■ Capacity of an (s, t)--cut: $c(S, T)=\sum_{v \in S, v^{\prime} \in T} c\left(v, v^{\prime}\right)$
■ Minimal cut: cut with minimal capacity.
■ Flow over the cut: $f(S, T)=\sum_{v \in S, v^{\prime} \in T} f\left(v, v^{\prime}\right)$
Generally: Let $U, U^{\prime} \subseteq V$

$$
f\left(U, U^{\prime}\right):=\sum_{\substack{u \in U \\ u^{\prime} \in U^{\prime}}} f\left(u, u^{\prime}\right), \quad f\left(u, U^{\prime}\right):=f\left(\{u\}, U^{\prime}\right)
$$

Then

- $|f|=f(s, V)$
- $f(U, U)=0$
- $f\left(U, U^{\prime}\right)=-f\left(U^{\prime}, U\right)$

■ $f(X \cup Y, Z)=f(X, Z)+f(Y, Z)$, if $X \cap Y=\emptyset$.
■ $f(R, V)=0$ if $R \cap\{s, t\}=\emptyset$. [flow conversation!]

How large can a flow possibly be?

$$
\begin{aligned}
& f(S, T)=f(S, V)-\underbrace{f(S, S)}_{0}=f(S, V) \\
&=f(s, V)+f(\underbrace{S-\{s\}}_{\nexists t, \not \supset s}, V)=|f| . \\
& \Rightarrow|f| \leq \sum_{v \in S, v^{\prime} \in T} c\left(v, v^{\prime}\right)=c(S, T) \\
& \ddots
\end{aligned}
$$

Rest Network

Rest network G_{f} provided by the edges with positive rest capacity:

$$
\begin{aligned}
G_{f} & :=\left(V, E_{f}, c_{f}\right) \\
c_{f}(u, v) & :=c(u, v)-f(u, v) \quad \forall u, v \in V \\
E_{f} & :=\left\{(u, v) \in V \times V \mid c_{f}(u, v)>0\right\}
\end{aligned}
$$

■ Increase of the flow along some edge possible, when flow can be increased along the edge, i.e. if $f(u, v)<c(u, v)$.
Rest capacity $c_{f}(u, v)=c(u, v)-f(u, v)>0$.

- Increase of flow against the direction of the edge possible, if flow can be reduced along the edge, i.e. if $f(u, v)>0$. Rest capacity $c_{f}(v, u)=f(u, v)>0$.

The increased flow is a flow

Theorem 32
Let $G=(V, E, c)$ be a flow network with source s and sink t and f a flow in G. Let G_{f} be the corresponding rest networks and let f^{\prime} be a flow in G_{f}. Then $f \oplus f^{\prime}$ with

$$
\left(f \oplus f^{\prime}\right)(u, v)=f(u, v)+f^{\prime}(u, v)
$$

defines a flow in G with value $|f|+\left|f^{\prime}\right|$.

Proof

$f \oplus f^{\prime}$ defines a flow in G :
■ capacity limit

$$
\left(f \oplus f^{\prime}\right)(u, v)=f(u, v)+\underbrace{f^{\prime}(u, v)}_{\leq c(u, v)-f(u, v)} \leq c(u, v)
$$

■ skew symmetry

$$
\left(f \oplus f^{\prime}\right)(u, v)=-f(v, u)+-f^{\prime}(v, u)=-\left(f \oplus f^{\prime}\right)(v, u)
$$

■ flow conservation $u \in V-\{s, t\}$:

$$
\sum_{v \in V}\left(f \oplus f^{\prime}\right)(u, v)=\sum_{v \in V} f(u, v)+\sum_{v \in V} f^{\prime}(u, v)=0
$$

Proof

Value of $f \oplus f^{\prime}$

$$
\begin{aligned}
\left|f \oplus f^{\prime}\right| & =\left(f \oplus f^{\prime}\right)(s, V) \\
& =\sum_{u \in V} f(s, u)+f^{\prime}(s, u) \\
& =f(s, V)+f^{\prime}(s, V) \\
& =|f|+\left|f^{\prime}\right|
\end{aligned}
$$

Augmenting Paths

expansion path p : simple path from s to t in the rest network G_{f}.
Rest capacity $c_{f}(p)=\min \left\{c_{f}(u, v):(u, v)\right.$ edge in $\left.p\right\}$

Theorem 33

The mapping $f_{p}: V \times V \rightarrow \mathbb{R}$,

$$
f_{p}(u, v)= \begin{cases}c_{f}(p) & \text { if }(u, v) \text { edge in } p \\ -c_{f}(p) & \text { if }(v, u) \text { edge in } p \\ 0 & \text { otherwise }\end{cases}
$$

provides a flow in G_{f} with value $\left|f_{p}\right|=c_{f}(p)>0$.
f_{p} is a flow (easy to show). there is one and only one $u \in V$ with $(s, u) \in p$. Thus $\left|f_{p}\right|=\sum_{v \in V} f_{p}(s, v)=f_{p}(s, u)=c_{f}(p)$.

Max-Flow Min-Cut Theorem

Theorem 34

Let f be a flow in a flow network $G=(V, E, c)$ with source s and $\operatorname{sink} t$. The following statementsa are equivalent:

1. f is a maximal flow in G
2. The rest network G_{f} does not provide any expansion paths
3. It holds that $|f|=c(S, T)$ for a cut (S, T) of G.

Proof

- $(3) \Rightarrow(1)$:

It holds that $|f| \leq c(S, T)$ for all cuts S, T. From $|f|=c(S, T)$ it follows that $|f|$ is maximal.

- (1) $\Rightarrow(2)$:
f maximal Flow in G. Assumption: G_{f} has some expansion path $\left|f \oplus f_{p}\right|=|f|+\left|f_{p}\right|>|f|$. Contradiction.

Proof $(2) \Rightarrow(3)$

Assumption: G_{f} has no expansion path
Define $S=\left\{v \in V\right.$: there is a path $s \rightsquigarrow v$ in $\left.G_{f}\right\}$.
$(S, T):=(S, V \backslash S)$ is a cut: $s \in S, t \in T$.
Let $u \in S$ and $v \in T$. Then $c_{f}(u, v)=0$, also $c_{f}(u, v)=c(u, v)-f(u, v)=0$.
Somit $f(u, v)=c(u, v)$.
Thus

$$
|f|=f(S, T)=\sum_{u \in S} \sum_{v \in T} f(u, v)=\sum_{u \in S} \sum_{v \in T} c(u, v)=C(S, T) .
$$

Edmonds-Karp Algorithm

Theorem 35

When the Edmonds-Karp algorithm is applied to some integer valued flow network $G=(V, E)$ with source s and $\operatorname{sink} t$ then the number of flow increases applied by the algorithm is in $\mathcal{O}(|V| \cdot|E|)$.
\Rightarrow Overal asymptotic runtime: $\mathcal{O}\left(|V| \cdot|E|^{2}\right)$
[Without proof]

Edmonds-Karp Algorithmus

Theorem 36

Wenn der Edmonds-Karp Algorithmus auf Flussnetzwerk $G=(V, E)$ mit Quelle s und Senke t angewendet wird, dann wächst für jeden Knoten $v \in V \backslash\{s, t\}$ die Distanz $\delta_{f}(s, v)$ des kürzesten Pfades von s nach v im Restnetzwerk G_{f} monoton mit jeder Flusserhöhung.

Beweis

Annahme: Distanz $\delta_{f}(s, v)$ wird bei Flusserhöhung $f \rightarrow f^{\prime}$ kleiner für ein v : $\delta_{f}(s, v)<\delta_{f^{\prime}}(s, v)$ Sei $p=s \rightsquigarrow u \rightarrow v$ kürzester Pfad von s nach v in $G_{f^{\prime}}$, so dass $(u, v) \in E_{f^{\prime}}$ und $\delta_{f^{\prime}}(s, u)=\delta_{f^{\prime}}(s, v)-1$. Es gilt $\delta_{f^{\prime}}(s, u) \geq \delta_{f}(s, u)$.
Wenn $(u, v) \in E_{f}: \delta_{f} s, v \leq \delta_{f}(s, u)+1 \leq \delta_{f^{\prime}}(s, u)+1=\delta_{f^{\prime}}(s, v)$ Widerspruch. Also $(u, v) \notin E_{f}$.

Integer number theorem

Theorem 37

If the capacities of a flow network are integers, then the maximal flow generated by the Ford-Fulkerson method provides integer numbers for each $f(u, v), u, v \in V$.
[without proof]
Consequence: Ford-Fulkerson generates for a flow network that corresponds to a bipartite graph a maximal matching

$$
M=\{(u, v): f(u, v)=1\} .
$$

