28. Minimum Spanning Trees

Motivation, Greedy, Algorithm Kruskal, General Rules, ADT Union-Find, Algorithm Jarnik, Prim, Dijkstra , Fibonacci Heaps [Ottman/Widmayer, Kap. 9.6, 6.2, 6.1, Cormen et al, Kap. 23, 19]

Cheapest Electricity Grid

Given: Houses and costs to connect the houses with electricity.

Wanted: Cheapest electricity grid that reaches every house.

Requirements for the power grid

• Every house must have at least one power line.

■ The power grid needs to be connected (just one grid).

The power grid should not have cycles.

Spanning Tree

Given: undirected, connected graph G = (V, E)

Spanning Tree of G: Subgraph T = (V', E') with $V' \subseteq V, E' \subseteq E$ such that

- Spanning: V' = V (spans all nodes)
- Tree: connected and cycle-free

 \Rightarrow for each pair of nodes: exactly one connecting path

 \Rightarrow spanning tree has exactly |V| - 1 edges (|E'| = |V| - 1)

Trees

Up to this point trees were directed trees!

- connected
- cycle-free
- directed from parents to children

Minimum Spanning Tree (MST)

Given: undirected, weighted, connected graph G = (V, E, c) with edge weights $c \colon E \to \mathbb{R}$

Wanted: Spanning tree T = (V, E') of G with minimum weight $\sum_{e \in E'} c(e)$

Observations

Is that the same as shortest paths? No!

■ Is the minimum spanning tree unique? Not always.

Trivial brute force algorithm?

Try out all spanning trees?

 \Rightarrow Inefficient: There are graphs with exponentially many spanning trees.

28.2 Algorithm of Kruskal

Kruskal's Algorithm

Idea: add lightest edge if it does not lead to a cycle **Invariant:** After *i* steps, *i* edges of the MST and the corresponding components are known

Beispiel

Construct T by adding the cheapest edge that does not generate a cycle.

(Solution is not unique.)

Algorithm MST-Kruskal(G)

Input: Weighted Graph G = (V, E, c)**Output:** Minimum spanning tree with edges A.

```
Sort edges by weight c(e_1) \leq ... \leq c(e_m)

A \leftarrow \emptyset

for k = 1 to |E| do

\begin{bmatrix} \text{if } (V, A \cup \{e_k\}) \text{ acyclic then} \\ A \leftarrow A \cup \{e_k\} \end{bmatrix}

return (V, A, c)
```

return (V, A, c)

(Corrrectness proof in handout.)

At each point in the algorithm (V, A) is a forest, a set of trees. MST-Kruskal considers each edge e_k exactly once and either chooses or rejects e_k

Notation (snapshot of the state in the running algorithm)

- *A*: Set of selected edges
- *R*: Set of rejected edges
- *U*: Set of yet undecided edges

[Cut]

A cut of G is a partition S, V - S of V. ($S \subseteq V$).

An edge crosses a cut when one of its endpoints is in S and the other is in $V \setminus S.$

[Rules]

- Selection rule: choose a cut that is not crossed by a selected edge. Of all undecided edges that cross the cut, select the one with minimal weight.
- 2. Rejection rule: choose a cycle without rejected edges. Of all undecided edges of the cycle, reject those with maximal weight.

[Rules]

Kruskal applies both rules:

- 1. A selected e_k connects two connection components, otherwise it would generate a cycle. e_k is minimal, i.e. a cut can be chosen such that e_k crosses and e_k has minimal weight.
- 2. A rejected e_k is contained in a cycle. Within the cycle e_k has minimal weight.

[Correctness]

Theorem 28

Every algorithm that applies the rules above in a step-wise manner until $U = \emptyset$ is correct.

Consequence: MST-Kruskal is correct.

[Selection invariant]

Invariant: At each step there is a minimal spanning tree that contains all selected and none of the rejected edges.

If both rules satisfy the invariant, then the algorithm is correct. Induction:

- At beginning: U = E, $R = A = \emptyset$. Invariant obviously holds.
- Invariant is preserved at each step of the algorithm.
- At the end: $U = \emptyset$, $R \cup A = E \Rightarrow (V, A)$ is a spanning tree.

Proof of the theorem: show that both rules preserve the invariant.

[Selection rule preserves the invariant]

At each step there is a minimal spanning tree T that contains all selected and none of the rejected edges.

Choose a cut that is not crossed by a selected edge. Of all undecided edges that cross the cut, select the egde e with minimal weight.

- Case 1: $e \in T$ (done)
- Case 2: $e \notin T$. Then $T \cup \{e\}$ contains a cycle that contains e Cycle must have a second edge e' that also crosses the cut.⁴³ Because $e' \notin R$, $e' \in U$. Thus $c(e) \leq c(e')$ and $T' = T \setminus \{e'\} \cup \{e\}$ is also a minimal spanning tree (and c(e) = c(e')).

 $^{^{43}}$ Such a cycle contains at least one node in S and one node in $V\setminus S$ and therefore at lease to edges between S and $V\setminus S.$

[Rejection rule preserves the invariant]

At each step there is a minimal spanning tree T that contains all selected and none of the rejected edges.

Choose a cycle without rejected edges. Of all undecided edges of the cycle, reject an edge e with maximal weight.

• Case 1: $e \notin T$ (done)

Case 2: $e \in T$. Remove e from T, This yields a cut. This cut must be crossed by another edge e' of the cycle. Because $c(e') \leq c(e)$, $T' = T \setminus \{e\} \cup \{e'\}$ is also minimal (and c(e) = c(e')).

Implementation Issues

Consider a set of sets $i \equiv V_i \subset V$.

To identify cycles: membership of the both ends of an edge to sets?

Implementation Issues

General problem: partition (set of subsets) .e.g. $\{\{1, 2, 3, 9\}, \{7, 6, 4\}, \{5, 8\}, \{10\}\}$

Required: Abstract data type "Union-Find" with the following operations

- Make-Set(*i*): create a new set represented by *i*.
- Find(e): name of the set i that contains e.
- Union(i, j): union of the sets with names *i* and *j*.

Union-Find Algorithm MST-Kruskal(G)

```
Input: Weighted Graph G = (V, E, c)
Output: Minimum spanning tree with edges A.
```

```
Sort edges by weight c(e_1) \leq ... \leq c(e_m)
A \leftarrow \emptyset
for k = 1 to |V| do
    MakeSet(k)
for k = 1 to m do
    (u,v) \leftarrow e_k
    if Find(u) \neq Find(v) then
         Union(Find(u), Find(v))
         A \leftarrow A \cup e_k
    else
```

return (V, A, c)

// conceptual: $R \leftarrow R \cup e_k$

Implementation Union-Find

Idea: tree for each subset in the partition, e.g. $\{\{1,2,3,9\},\{7,6,4\},\{5,8\},\{10\}\}$

roots = names (representatives) of the sets, trees = elements of the sets

Implementation Union-Find

Representation as array:

Implementation Union-Find

Index	1	2	3	4	5	6	7	8	9	10
Parent	1	1	1	6	5	6	6	5	3	10

Make-Set(i)	$p[i] \leftarrow i$; return i
Find(<i>i</i>)	while $(p[i] \neq i)$ do $i \leftarrow p[i]$ return i
Union (i, j) 44	$p[j] \leftarrow i;$

 $^{^{44}}i$ and j need to be names (roots) of the sets. Otherwise use Union(Find(i),Find(j))

Optimisation of the runtime for Find

Tree may degenerate. Example: Union(8,7), Union(7,6), Union(6,5), ...

Worst-case running time of Find in $\Theta(n)$.

Optimisation of the runtime for Find

Idea: always append smaller tree to larger tree. Requires additional size information (array) g

Make-Set(*i*) $p[i] \leftarrow i; g[i] \leftarrow 1;$ return *i*

 $\begin{array}{ll} \text{if } g[j] > g[i] \text{ then } \operatorname{swap}(i,j) \\ p[j] \leftarrow i \\ \text{if } g[i] = g[j] \text{ then } g[i] \leftarrow g[i] + 1 \end{array}$

 \Rightarrow Tree depth (and worst-ase running time for Find) in $\Theta(\log n)$

[Observation]

Theorem 29

The method above (union by size) preserves the following property of the trees: a tree of height h has at least 2^h nodes.

Immediate consequence: runtime Find = $O(\log n)$.

[Proof]

Induction: by assumption, sub-trees have at least 2^{h_i} nodes. WLOG: $h_2 \leq h_1$

 $h_2 < h_1$:

$$h(T_1 \oplus T_2) = h_1 \Rightarrow g(T_1 \oplus T_2) \ge 2^h$$

 $h_2 = h_1:$

$$g(T_1) \ge g(T_2) \ge 2^{h_2}$$

$$\Rightarrow g(T_1 \oplus T_2) = g(T_1) + g(T_2) \ge 2 \cdot 2^{h_2} = 2^{h(T_1 \oplus T_2)}$$

Alterantive improvement

Link all nodes to the root when Find is called. Find(*i*):

```
\begin{array}{l} j \leftarrow i \\ \text{while } (p[i] \neq i) \text{ do } i \leftarrow p[i] \\ \text{while } (j \neq i) \text{ do} \\ \\ \begin{bmatrix} t \leftarrow j \\ j \leftarrow p[j] \\ p[t] \leftarrow i \\ \end{bmatrix} \end{array}
```

return i

Cost: amortised *nearly* constant (inverse of the Ackermann-function).⁴⁵

⁴⁵When combined with union by size, we do not go into any details here. Cf. Cormen et al, Kap. 21.4

Running time of Kruskal's Algorithm

- Sorting of the edges: $\Theta(|E|\log|E|) = \Theta(|E|\log|V|)$. ⁴⁶
- Initialisation of the Union-Find data structure $\Theta(|V|)$
- $|E| \times \text{Union}(\text{Find}(x), \text{Find}(y))$: $\mathcal{O}(|E| \log |E|) = \mathcal{O}(|E| \log |V|)$. Overal $\Theta(|E| \log |V|)$.

⁴⁶because *G* is connected: $|V| \le |E| \le |V|^2$

28.5 Algorithm Jarnik, Prim, Dijkstra

Algorithm of Jarnik (1930), Prim, Dijkstra (1959)

Idea: start with some $v \in V$ and grow the spanning tree from here by the acceptance rule.

 $\begin{array}{l} A \leftarrow \emptyset \\ S \leftarrow \{v_0\} \\ \text{for } i \leftarrow 1 \text{ to } |V| \text{ do} \\ \\ | \begin{array}{c} \text{Choose cheapest } (u, v) \text{ mit } u \in S, v \notin S \\ A \leftarrow A \cup \{(u, v)\} \\ S \leftarrow S \cup \{v\} \ // \text{ (Coloring)} \end{array} \end{array}$

Remark: a union-Find data structure is not required. It suffices to color nodes when they are added to *S*.

Implementation and Running time

Implementation like with Dijkstra's ShortestPath. Only difference:

Shortest Paths

 $\begin{array}{l} \text{Relax} \ (u,v) \text{:} \\ \text{if} \ d_s[v] > d[u] + c(u,v) \ \text{then} \\ d_s[v] \leftarrow d_s[u] + c(u,v) \\ \pi_s[v] \leftarrow u \end{array}$

 $\Rightarrow \begin{array}{c} \textbf{Minimum Spanning Tree} \\ \text{Relax } (u, v): \\ \text{if } d_s[v] > c(u, v) \text{ then} \\ d_s[v] \leftarrow c(u, v) \\ \pi_s[v] \leftarrow u \end{array}$

• With Min-Heap: costs $\mathcal{O}(|E| \cdot \log |V|)$:

- Initialization (node coloring) $\mathcal{O}(|V|)$
- $|V| \times \text{ExtractMin} = \mathcal{O}(|V| \log |V|),$
- \blacksquare $|E| \times$ Insert or DecreaseKey: $\mathcal{O}(|E| \log |V|)$,

• With a Fibonacci-Heap: $\mathcal{O}(|E| + |V| \cdot \log |V|)$.

Application Examples

- Network-Design: find the cheapest / shortest network that connects all nodes.
- Approximation of a solution of the travelling salesman problem: find a round-trip, as short as possible, that visits each node once.

28.7 Fibonacci Heaps

Fibonacci Heaps

Data structure for elements with key with operations

- MakeHeap(): Return new heap without elements
- Insert(H, x): Add x to H
- Minimum(H): return a pointer to element m with minimal key
- **Extract**Min(H): return and remove (from H) pointer to the element m
- Union (H_1, H_2) : return a heap merged from H_1 and H_2
- DecreaseKey(H, x, k): decrease the key of x in H to k
- **Delete** (H, x): remove element x from H

Advantage over binary heap?

	Binary Heap	Fibonacci Heap
	(worst-Case)	(amortized)
MakeHeap	$\Theta(1)$	$\Theta(1)$
Insert	$\Theta(\log n)$	$\Theta(1)$
Minimum	$\Theta(1)$	$\Theta(1)$
ExtractMin	$\Theta(\log n)$	$\Theta(\log n)$
Union	$\Theta(n)$	$\Theta(1)$
DecreaseKey	$\Theta(\log n)$	$\Theta(1)$
Delete	$\Theta(\log n)$	$\Theta(\log n)$

Structure

Set of trees that respect the Min-Heap property. Nodes that can be marked.

Implementation

Doubly linked lists of nodes with a marked-flag and number of children. Pointer to minimal Element and number nodes.

Simple Operations

- MakeHeap (trivial)
- Minimum (trivial)
- Insert(H, e)
 - 1. Insert new element into root-list
 - 2. If key is smaller than minimum, reset min-pointer.

• Union (H_1, H_2)

- 1. Concatenate root-lists of H_1 and H_2
- 2. Reset min-pointer.

■ Delete(H, e)

- 1. DecreaseKey $(H, e, -\infty)$
- 2. ExtractMin(*H*)

ExtractMin

- 1. Remove minimal node m from the root list
- 2. Insert children of m into the root list
- 3. Merge heap-ordered trees with the same degrees until all trees have a different degree:

Array of degrees $a[0, \ldots, n]$ of elements, empty at beginning. For each element e of the root list:

a Let g be the degree of e

b If
$$a[g] = nil: a[g] \leftarrow e$$
.

c If $e' := a[g] \neq nil$: Merge e with e' resulting in e'' and set $a[g] \leftarrow nil$. Set e'' unmarked. Re-iterate with $e \leftarrow e''$ having degree g + 1.

DecreaseKey (H, e, k)

- 1. Remove e from its parent node p (if existing) and decrease the degree of p by one.
- 2. Insert(H, e)
- 3. Avoid too thin trees:
 - a If p = nil then done.
 - b If p is unmarked: mark p and done.
 - c If p marked: unmark p and cut p from its parent pp. Insert (H, p). Iterate with $p \leftarrow pp$.

A sketch of the amoritized analysis is in the handout.

[Estimation of the degree]

Theorem 30

Let p be a node of a F-Heap H. If child nodes of p are sorted by time of insertion (Union), then it holds that the *i*th child node has a degree of at least i - 2.

Proof: p may have had more children and lost by cutting. When the *i*th child p_i was linked, p and p_i must at least have had degree i - 1. p_i may have lost at least one child (marking!), thus at least degree i - 2 remains.

[Estimation of the degree]

Theorem 31

Every node p with degree k of a F-Heap is the root of a subtree with at least F_{k+1} nodes. (F: Fibonacci-Folge)

Proof: Let S_k be the minimal number of successors of a node of degree k in a F-Heap plus 1 (the node itself). Clearly $S_0 = 1$, $S_1 = 2$. With the previous theorem $S_k \ge 2 + \sum_{i=0}^{k-2} S_i$, $k \ge 2$ (p and nodes p_1 each 1). For Fibonacci numbers it holds that (induction) $F_k \ge 2 + \sum_{i=2}^{k} F_i$, $k \ge 2$ and thus (also induction) $S_k \ge F_{k+2}$. Fibonacci numbers grow exponentially fast ($\mathcal{O}(\varphi^k)$) Consequence: maximal degree of an arbitrary node in a Fibonacci-Heap with n nodes is $\mathcal{O}(\log n)$.

[Amortized worst-case analysis Fibonacci Heap]

t(H): number of trees in the root list of H, m(H): number of marked nodes in H not within the root-list, Potential function $\Phi(H) = t(H) + 2 \cdot m(H)$. At the beginnning $\Phi(H) = 0$. Potential always non-negative. Amortized costs:

- Insert(H, x): t'(H) = t(H) + 1, m'(H) = m(H), Increase of the potential: 1, Amortized costs $\Theta(1) + 1 = \Theta(1)$
- Minimum(*H*): Amortized costs = real costs = $\Theta(1)$
- Union(H_1, H_2): Amortized costs = real costs = $\Theta(1)$

[Amortized costs of ExtractMin]

- Number trees in the root list t(H).
- Real costs of ExtractMin operation $\mathcal{O}(\log n + t(H))$.
- When merged still $\mathcal{O}(\log n)$ nodes.
- Number of markings can only get smaller when trees are merged
- Thus maximal amortized costs of ExtractMin

 $\mathcal{O}(\log n + t(H)) + \mathcal{O}(\log n) - \mathcal{O}(t(H)) = \mathcal{O}(\log n).$

[Amortized costs of DecreaseKey]

- Assumption: DecreaseKey leads to *c* cuts of a node from its parent node, real costs *O*(*c*)
- c nodes are added to the root list
- **Delete** (c-1) mark flags, addition of at most one mark flag
- Amortized costs of DecreaseKey:

 $\mathcal{O}(c) + (t(H) + c) + 2 \cdot (m(H) - c + 2)) - (t(H) + 2m(H)) = \mathcal{O}(1)$