28. Minimum Spanning Trees

Motivation, Greedy, Algorithm Kruskal, General Rules, ADT Union-Find, Algorithm Jarnik, Prim, Dijkstra , Fibonacci Heaps [Ottman/Widmayer, Kap. 9.6, 6.2, 6.1, Cormen et al, Kap. 23, 19]

Cheapest Electricity Grid

Given: Houses and costs to connect the houses with electricity.

Wanted: Cheapest electricity grid that reaches every house.

Requirements for the power grid

■ Every house must have at least one power line.

■ The power grid needs to be connected (just one grid).

■ The power grid should not have cycles.

Spanning Tree

Given: undirected, connected graph $G=(V, E)$

Spanning Tree of G : Subgraph $T=\left(V^{\prime}, E^{\prime}\right)$ with $V^{\prime} \subseteq V, E^{\prime} \subseteq E$ such that
■ Spanning: $V^{\prime}=V$ (spans all nodes)

- Tree: connected and cycle-free
\Rightarrow for each pair of nodes: exactly one connecting path
\Rightarrow spanning tree has exactly $|V|-1$ edges $\left(\left|E^{\prime}\right|=|V|-1\right)$

Trees

Up to this point trees were directed trees!

- connected
- cycle-free
- directed from parents to children

Minimum Spanning Tree (MST)

Given: undirected, weighted, connected graph $G=(V, E, c)$ with edge weights $c: E \rightarrow \mathbb{R}$

Wanted: Spanning tree $T=\left(V, E^{\prime}\right)$ of G with minimum weight $\sum_{e \in E^{\prime}} c(e)$

Observations

■ Is that the same as shortest paths? No!

■ Is the minimum spanning tree unique? Not always.

Trivial brute force algorithm?

Try out all spanning trees?

\Rightarrow Inefficient: There are graphs with exponentially many spanning trees.

28.2 Algorithm of Kruskal

Kruskal's Algorithm

Idea: add lightest edge if it does not lead to a cycle Invariant: After i steps, i edges of the MST and the corresponding components are known

Beispiel

Construct T by adding the cheapest edge that does not generate a cycle.

(Solution is not unique.)

Algorithm MST-Kruskal(G)

```
Input: Weighted Graph G=(V,E,c)
Output: Minimum spanning tree with edges }A\mathrm{ .
Sort edges by weight c(e}\mp@subsup{e}{1}{})\leq\ldots\leqc(\mp@subsup{e}{m}{}
A\leftarrow\emptyset
for }k=1\mathrm{ to }|E|\mathrm{ do
    if (V,A\cup{\mp@subsup{e}{k}{}})\mathrm{ acyclic then}
        A\leftarrowA\cup{\mp@subsup{e}{k}{}}
return (V,A,c)
(Corrrectness proof in handout.)
```


[Correctness]

At each point in the algorithm (V, A) is a forest, a set of trees. MST-Kruskal considers each edge e_{k} exactly once and either chooses or rejects e_{k}
Notation (snapshot of the state in the running algorithm)
■ A: Set of selected edges
■ R : Set of rejected edges
■ U : Set of yet undecided edges

[Cut]

A cut of G is a partition $S, V-S$ of V. ($S \subseteq V$).

An edge crosses a cut when one of its endpoints is in S and the other is in $V \backslash S$.

[Rules]

1. Selection rule: choose a cut that is not crossed by a selected edge. Of all undecided edges that cross the cut, select the one with minimal weight.
2. Rejection rule: choose a cycle without rejected edges. Of all undecided edges of the cycle, reject those with maximal weight.

[Rules]

Kruskal applies both rules:

1. A selected e_{k} connects two connection components, otherwise it would generate a cycle. e_{k} is minimal, i.e. a cut can be chosen such that e_{k} crosses and e_{k} has minimal weight.
2. A rejected e_{k} is contained in a cycle. Within the cycle e_{k} has minimal weight.
[Correctness]

Theorem 28
Every algorithm that applies the rules above in a step-wise manner until $U=\emptyset$ is correct.
Consequence: MST-Kruskal is correct.

[Selection invariant]

Invariant: At each step there is a minimal spanning tree that contains all selected and none of the rejected edges.
If both rules satisfy the invariant, then the algorithm is correct. Induction:

- At beginning: $U=E, R=A=\emptyset$. Invariant obviously holds.

■ Invariant is preserved at each step of the algorithm.
■ At the end: $U=\emptyset, R \cup A=E \Rightarrow(V, A)$ is a spanning tree.
Proof of the theorem: show that both rules preserve the invariant.

[Selection rule preserves the invariant]

At each step there is a minimal spanning tree T that contains all selected and none of the rejected edges.
Choose a cut that is not crossed by a selected edge. Of all undecided edges that cross the cut, select the egde e with minimal weight.

- Case 1: $e \in T$ (done)

■ Case 2: $e \notin T$. Then $T \cup\{e\}$ contains a cycle that contains e Cycle must have a second edge e^{\prime} that also crosses the cut. ${ }^{43}$ Because $e^{\prime} \notin R, e^{\prime} \in U$. Thus $c(e) \leq c\left(e^{\prime}\right)$ and $T^{\prime}=T \backslash\left\{e^{\prime}\right\} \cup\{e\}$ is also a minimal spanning tree (and $c(e)=c\left(e^{\prime}\right)$).

[^0]
[Rejection rule preserves the invariant]

At each step there is a minimal spanning tree T that contains all selected and none of the rejected edges.
Choose a cycle without rejected edges. Of all undecided edges of the cycle, reject an edge e with maximal weight.

- Case 1: $e \notin T$ (done)
- Case 2: $e \in T$. Remove e from T, This yields a cut. This cut must be crossed by another edge e^{\prime} of the cycle. Because $c\left(e^{\prime}\right) \leq c(e)$, $T^{\prime}=T \backslash\{e\} \cup\left\{e^{\prime}\right\}$ is also minimal (and $c(e)=c\left(e^{\prime}\right)$).

Implementation Issues

Consider a set of sets $i \equiv V_{i} \subset V$.
To identify cycles: membership of the both ends of an edge to sets?

Implementation Issues

General problem: partition (set of subsets) .e.g. $\{\{1,2,3,9\},\{7,6,4\},\{5,8\},\{10\}\}$
Required: Abstract data type "Union-Find" with the following operations
■ Make-Set (i) : create a new set represented by i.
■ Find(e): name of the set i that contains e.

- Union (i, j) : union of the sets with names i and j.

Union-Find Algorithm MST-Kruskal(G)

Input: Weighted Graph $G=(V, E, c)$
Output: Minimum spanning tree with edges A.
Sort edges by weight $c\left(e_{1}\right) \leq \ldots \leq c\left(e_{m}\right)$
$A \leftarrow \emptyset$
for $k=1$ to $|V|$ do
\llcorner MakeSet (k)
for $k=1$ to m do
$(u, v) \leftarrow e_{k}$
if Find $(u) \neq \operatorname{Find}(v)$ then
Union $(\operatorname{Find}(u)$, Find $(v))$
$A \leftarrow A \cup e_{k}$
else
// conceptual: $R \leftarrow R \cup e_{k}$
return (V, A, c)

Implementation Union-Find

Idea: tree for each subset in the partition,e.g. $\{\{1,2,3,9\},\{7,6,4\},\{5,8\},\{10\}\}$

10^{b}
roots = names (representatives) of the sets, trees = elements of the sets

Implementation Union-Find

Representation as array:

$$
\begin{array}{lllllllllll}
\text { Index } & \mathbf{1} & 2 & 3 & 4 & \mathbf{5} & \mathbf{6} & 7 & 8 & 9 & \mathbf{1 0} \\
\text { Parent } & 1 & 1 & 1 & 6 & 5 & 6 & 6 & 5 & 3 & 10
\end{array}
$$

Implementation Union-Find

Index	$\mathbf{1}$	2	3	4	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	8	9	$\mathbf{1 0}$
Parent	1	1	1	6	5	6	6	5	3	10

Make-Set $(i) \quad p[i] \leftarrow i$; return i

Find $(i) \quad$| while $(p[i] \neq i)$ do $i \leftarrow p[i]$ |
| :--- |
| return i |

$$
\operatorname{Union}(i, j)^{44} \quad p[j] \leftarrow i \text {; }
$$

[^1]
Optimisation of the runtime for Find

Tree may degenerate. Example: Union(8, 7), Union(7, 6), Union(6, 5), ...

$$
\begin{array}{lllllllllll}
\text { Index } & \mathbf{1} & 2 & 3 & 4 & 5 & 6 & 7 & 8 & . \\
\text { Parent } & 1 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & . .
\end{array}
$$

Worst-case running time of Find in $\Theta(n)$.

Optimisation of the runtime for Find

Idea: always append smaller tree to larger tree. Requires additional size information (array) g

$$
\begin{array}{ll}
\text { Make-Set }(i) & p[i] \leftarrow i ; g[i] \leftarrow 1 \text {; return } i \\
\hline & \text { if } g[j]>g[i] \text { then } \operatorname{swap}(i, j) \\
\text { Union }(i, j) & p[j] \leftarrow i \\
& \text { if } g[i]=g[j] \text { then } g[i] \leftarrow g[i]+1
\end{array}
$$

\Rightarrow Tree depth (and worst-ase running time for Find) in $\Theta(\log n)$

[Observation]

Theorem 29

The method above (union by size) preserves the following property of the trees: a tree of height h has at least 2^{h} nodes.
Immediate consequence: runtime Find $=\mathcal{O}(\log n)$.

[Proof]

Induction: by assumption, sub-trees have at least $2^{h_{i}}$ nodes. WLOG: $h_{2} \leq h_{1}$

- $h_{2}<h_{1}$:

$$
h\left(T_{1} \oplus T_{2}\right)=h_{1} \Rightarrow g\left(T_{1} \oplus T_{2}\right) \geq 2^{h}
$$

- $h_{2}=h_{1}$:

$$
\begin{aligned}
& g\left(T_{1}\right) \geq g\left(T_{2}\right) \geq 2^{h_{2}} \\
\Rightarrow & g\left(T_{1} \oplus T_{2}\right)=g\left(T_{1}\right)+g\left(T_{2}\right) \geq 2 \cdot 2^{h_{2}}=2^{h\left(T_{1} \oplus T_{2}\right)}
\end{aligned}
$$

Alterantive improvement

Link all nodes to the root when Find is called.
Find (i) :
$j \leftarrow i$
while $(p[i] \neq i)$ do $i \leftarrow p[i]$
while $(j \neq i)$ do
$t \leftarrow j$
$j \leftarrow p[j]$
$p[t] \leftarrow i$
return i
Cost: amortised nearly constant (inverse of the Ackermann-function). ${ }^{45}$

[^2]
Running time of Kruskal's Algorithm

■ Sorting of the edges: $\Theta(|E| \log |E|)=\Theta(|E| \log |V|) .{ }^{46}$

- Initialisation of the Union-Find data structure $\Theta(|V|)$

■ $|E| \times \operatorname{Union}($ Find (x),Find $(y)): \mathcal{O}(|E| \log |E|)=\mathcal{O}(|E| \log |V|)$.
Overal $\Theta(|E| \log |V|)$.

[^3]
28.5 Algorithm Jarnik, Prim, Dijkstra

Algorithm of Jarnik (1930), Prim, Dijkstra (1959)

Idea: start with some $v \in V$ and grow the spanning tree from here by the acceptance rule.

```
A\leftarrow\emptyset
S\leftarrow{\mp@subsup{v}{0}{}}
for}i\leftarrow1\mathrm{ to }|V|\mathrm{ do
    Choose cheapest (u,v) mit u\inS,v\not\inS
    A\leftarrowA\cup{(u,v)}
    S\leftarrowS\cup{v} // (Coloring)
```


Remark: a union-Find data structure is not required. It suffices to color nodes when they are added to S.

Implementation and Running time

Implementation like with Dijkstra's ShortestPath. Only difference:

Shortest Paths

Relax (u, v) :
if $d_{s}[v]>d[u]+c(u, v)$ then
$d_{s}[v] \leftarrow d_{s}[u]+c(u, v)$ $\pi_{s}[v] \leftarrow u$

Minimum Spanning Tree Relax (u, v) :
if $d_{s}[v]>c(u, v)$ then $d_{s}[v] \leftarrow c(u, v)$ $\pi_{s}[v] \leftarrow u$

■ With Min-Heap: costs $\mathcal{O}(|E| \cdot \log |V|)$:

- Initialization (node coloring) $\mathcal{O}(|V|)$
- $|V| \times$ ExtractMin $=\mathcal{O}(|V| \log |V|)$,

■ |E|× Insert or DecreaseKey: $\mathcal{O}(|E| \log |V|)$,
■ With a Fibonacci-Heap: $\mathcal{O}(|E|+|V| \cdot \log |V|)$.

Application Examples

■ Network-Design: find the cheapest / shortest network that connects all nodes.

- Approximation of a solution of the travelling salesman problem: find a round-trip, as short as possible, that visits each node once.

28.7 Fibonacci Heaps

Fibonacci Heaps

Data structure for elements with key with operations
■ MakeHeap(): Return new heap without elements
■ Insert(H, x): Add x to H
■ Minimum (H) : return a pointer to element m with minimal key
■ ExtractMin (H) : return and remove (from H) pointer to the element m
■ Union $\left(H_{1}, H_{2}\right)$: return a heap merged from H_{1} and H_{2}
■ DecreaseKey (H, x, k) : decrease the key of x in H to k
■ Delete (H, x) : remove element x from H

Advantage over binary heap?

	Binary Heap (worst-Case)	Fibonacci Heap
(amortized)		

Structure

Set of trees that respect the Min-Heap property. Nodes that can be marked.

Implementation

Doubly linked lists of nodes with a marked-flag and number of children. Pointer to minimal Element and number nodes.

Simple Operations

■ MakeHeap (trivial)

- Minimum (trivial)

■ Insert (H, e)

1. Insert new element into root-list
2. If key is smaller than minimum, reset min-pointer.

- Union $\left(H_{1}, H_{2}\right)$

1. Concatenate root-lists of H_{1} and H_{2}
2. Reset min-pointer.

■ Delete (H, e)

1. DecreaseKey $(H, e,-\infty)$
2. ExtractMin (H)

ExtractMin

1. Remove minimal node m from the root list
2. Insert children of m into the root list
3. Merge heap-ordered trees with the same degrees until all trees have a different degree:
Array of degrees $a[0, \ldots, n]$ of elements, empty at beginning. For each element e of the root list:
a Let g be the degree of e
b If $a[g]=n i l: a[g] \leftarrow e$.
c If $e^{\prime}:=a[g] \neq$ nil: Merge e with e^{\prime} resutling in $e^{\prime \prime}$ and set $a[g] \leftarrow$ nil. Set $e^{\prime \prime}$ unmarked. Re-iterate with $e \leftarrow e^{\prime \prime}$ having degree $g+1$.

DecreaseKey (H, e, k)

1. Remove e from its parent node p (if existing) and decrease the degree of p by one.
2. Insert (H, e)
3. Avoid too thin trees:
a If $p=n i l$ then done.
b If p is unmarked: mark p and done.
c If p marked: unmark p and cut p from its parent $p p$. Insert (H, p). Iterate with $p \leftarrow p p$.

A sketch of the amoritized analysis is in the handout.

[Estimation of the degree]

Theorem 30

Let p be a node of a F-Heap H. If child nodes of p are sorted by time of insertion (Union), then it holds that the ith child node has a degree of at least $i-2$.

Proof: p may have had more children and lost by cutting. When the i th child p_{i} was linked, p and p_{i} must at least have had degree $i-1$. p_{i} may have lost at least one child (marking!), thus at least degree $i-2$ remains.

[Estimation of the degree]

Theorem 31

Every node p with degree k of a F-Heap is the root of a subtree with at least F_{k+1} nodes. (F : Fibonacci-Folge)

Proof: Let S_{k} be the minimal number of successors of a node of degree k in a F-Heap plus 1 (the node itself). Clearly $S_{0}=1, S_{1}=2$. With the previous theorem $S_{k} \geq 2+\sum_{i=0}^{k-2} S_{i}, k \geq 2$ (p and nodes p_{1} each 1). For Fibonacci numbers it holds that (induction) $F_{k} \geq 2+\sum_{i=2}^{k} F_{i}, k \geq 2$ and thus (also induction) $S_{k} \geq F_{k+2}$. Fibonacci numbers grow exponentially fast $\left(\mathcal{O}\left(\varphi^{k}\right)\right)$ Consequence: maximal degree of an arbitrary node in a Fibonacci-Heap with n nodes is $\mathcal{O}(\log n)$.

[Amortized worst-case analysis Fibonacci Heap]

$t(H)$: number of trees in the root list of $H, m(H)$: number of marked nodes in H not within the root-list, Potential function $\Phi(H)=t(H)+2 \cdot m(H)$. At the beginnning $\Phi(H)=0$. Potential always non-negative.
Amortized costs:
■ Insert $(H, x): t^{\prime}(H)=t(H)+1, m^{\prime}(H)=m(H)$, Increase of the potential: 1, Amortized costs $\Theta(1)+1=\Theta(1)$
■ $\operatorname{Minimum}(H)$: Amortized costs $=$ real costs $=\Theta(1)$
■ Union $\left(H_{1}, H_{2}\right)$: Amortized costs $=$ real costs $=\Theta(1)$

[Amortized costs of ExtractMin]

■ Number trees in the root list $t(H)$.

- Real costs of ExtractMin operation $\mathcal{O}(\log n+t(H))$.
- When merged still $\mathcal{O}(\log n)$ nodes.

■ Number of markings can only get smaller when trees are merged
■ Thus maximal amortized costs of ExtractMin

$$
\mathcal{O}(\log n+t(H))+\mathcal{O}(\log n)-\mathcal{O}(t(H))=\mathcal{O}(\log n) .
$$

[Amortized costs of DecreaseKey]

■ Assumption: DecreaseKey leads to c cuts of a node from its parent node, real costs $\mathcal{O}(c)$

- c nodes are added to the root list

■ Delete $(c-1)$ mark flags, addition of at most one mark flag

- Amortized costs of DecreaseKey:

$$
\mathcal{O}(c)+(t(H)+c)+2 \cdot(m(H)-c+2))-(t(H)+2 m(H))=\mathcal{O}(1)
$$

[^0]: ${ }^{43}$ Such a cycle contains at least one node in S and one node in $V \backslash S$ and therefore at lease to edges between S and $V \backslash S$.

[^1]: ${ }^{44} i$ and j need to be names (roots) of the sets. Otherwise use Union(Find $\left.(i), \operatorname{Find}(j)\right)$

[^2]: ${ }^{45}$ When combined with union by size, we do not go into any details here. Cf. Cormen et al, Kap. 21.4

[^3]: ${ }^{46}$ because G is connected: $|V| \leq|E| \leq|V|^{2}$

