
28. Minimum Spanning Trees

Motivation, Greedy, Algorithm Kruskal, General Rules, ADT Union-Find,
Algorithm Jarnik, Prim, Dijkstra , Fibonacci Heaps [Ottman/Widmayer, Kap.
9.6, 6.2, 6.1, Cormen et al, Kap. 23, 19]

834

Cheapest Electricity Grid

Given: Houses and costs to connect the houses with electricity.

6

2

3

4

15

8

2

3

4
1

Wanted: Cheapest electricity grid that reaches every house.

835

Requirements for the power grid
Every house must have at least one power line.

The power grid needs to be connected (just one grid).

The power grid should not have cycles.

836

Spanning Tree
Given: undirected, connected graph G = (V,E)

a

b

c

d

e

f

a

b

d

f

e

c

Spanning Tree of G: Subgraph T = (V ′, E ′) with V ′ ⊆ V,E ′ ⊆ E such that
Spanning: V ′ = V (spans all nodes)
Tree: connected and cycle-free

⇒ for each pair of nodes: exactly one connecting path
⇒ spanning tree has exactly |V | − 1 edges (|E ′| = |V | − 1) 837

Trees

Up to this point trees were directed trees!
connected
cycle-free
directed from parents to children

838

Minimum Spanning Tree (MST)

Given: undirected, weighted, connected graph G = (V,E, c) with edge
weights c : E → R

a

b

c

d

e

f

5

7

8
6

2

3

4
1

Wanted: Spanning tree T = (V,E ′) of G with minimum weight ∑
e∈E′ c(e)

839

Observations

Is that the same as shortest paths? No!

a

b

c

d

4

3

3

2

2

Is the minimum spanning tree unique? Not always.

a

b

c

1

1

1

840

Trivial brute force algorithm?
Try out all spanning trees?

.

⇒ Ine�cient: There are graphs with exponentially many spanning trees.
841

28.2 Algorithm of Kruskal

842

Kruskal’s Algorithm

Idea: add lightest edge if it does not lead to a cycle
Invariant: After i steps, i edges of the MST and the corresponding
components are known

843

Beispiel

Construct T by adding the cheapest edge that does not generate a cycle.

s

t

u

v

w

x

1

1

2

4
3

2

2
6

(Solution is not unique.)

844

Algorithm MST-Kruskal(G)

Input: Weighted Graph G = (V, E, c)
Output: Minimum spanning tree with edges A.

Sort edges by weight c(e1) ≤ ... ≤ c(em)
A← ∅
for k = 1 to |E| do

if (V, A ∪ {ek}) acyclic then
A← A ∪ {ek}

return (V, A, c)

(Corrrectness proof in handout.)

845

[Correctness]

At each point in the algorithm (V,A) is a forest, a set of trees.
MST-Kruskal considers each edge ek exactly once and either chooses or
rejects ek

Notation (snapshot of the state in the running algorithm)
A: Set of selected edges
R: Set of rejected edges
U : Set of yet undecided edges

846

[Cut]
A cut of G is a partition S, V − S of V . (S ⊆ V).
An edge crosses a cut when one of its endpoints is in S and the other is in
V \ S.

S

V \ S

847

[Rules]

1. Selection rule: choose a cut that is not crossed by a selected edge. Of
all undecided edges that cross the cut, select the one with minimal
weight.

2. Rejection rule: choose a cycle without rejected edges. Of all
undecided edges of the cycle, reject those with maximal weight.

848

[Rules]

Kruskal applies both rules:
1. A selected ek connects two connection components, otherwise it
would generate a cycle. ek is minimal, i.e. a cut can be chosen such
that ek crosses and ek has minimal weight.

2. A rejected ek is contained in a cycle. Within the cycle ek has minimal
weight.

849

[Correctness]

Theorem 28
Every algorithm that applies the rules above in a step-wise manner until
U = ∅ is correct.

Consequence: MST-Kruskal is correct.

850

[Selection invariant]

Invariant: At each step there is a minimal spanning tree that contains all
selected and none of the rejected edges.
If both rules satisfy the invariant, then the algorithm is correct. Induction:

At beginning: U = E, R = A = ∅. Invariant obviously holds.
Invariant is preserved at each step of the algorithm.
At the end: U = ∅, R ∪ A = E ⇒ (V,A) is a spanning tree.

Proof of the theorem: show that both rules preserve the invariant.

851

[Selection rule preserves the invariant]

At each step there is a minimal spanning tree T that contains all selected and none of
the rejected edges.
Choose a cut that is not crossed by a selected edge. Of all undecided edges that cross
the cut, select the egde e with minimal weight.

Case 1: e ∈ T (done)
Case 2: e 6∈ T . Then T ∪ {e} contains a cycle that contains e Cycle must
have a second edge e′ that also crosses the cut.43 Because e′ 6∈ R , e′ ∈ U .
Thus c(e) ≤ c(e′) and T ′ = T \ {e′} ∪ {e} is also a minimal spanning tree
(and c(e) = c(e′)).

43Such a cycle contains at least one node in S and one node in V \ S and therefore at
lease to edges between S and V \ S.

852

[Rejection rule preserves the invariant]

At each step there is a minimal spanning tree T that contains all selected and none of
the rejected edges.
Choose a cycle without rejected edges. Of all undecided edges of the cycle, reject an edge
e with maximal weight.

Case 1: e 6∈ T (done)
Case 2: e ∈ T . Remove e from T , This yields a cut. This cut must be
crossed by another edge e′ of the cycle. Because c(e′) ≤ c(e) ,
T ′ = T \ {e} ∪ {e′} is also minimal (and c(e) = c(e′)).

853

Implementation Issues

Consider a set of sets i ≡ Vi ⊂ V .

To identify cycles: membership of the both ends of an edge to sets?

854

Implementation Issues

General problem: partition (set of subsets) .e.g.
{{1, 2, 3, 9}, {7, 6, 4}, {5, 8}, {10}}
Required: Abstract data type “Union-Find” with the following operations
Make-Set(i): create a new set represented by i.
Find(e): name of the set i that contains e .
Union(i, j): union of the sets with names i and j.

855

Union-Find Algorithm MST-Kruskal(G)
Input: Weighted Graph G = (V, E, c)
Output: Minimum spanning tree with edges A.

Sort edges by weight c(e1) ≤ ... ≤ c(em)
A← ∅
for k = 1 to |V | do

MakeSet(k)

for k = 1 to m do
(u, v)← ek

if Find(u) 6= Find(v) then
Union(Find(u),Find(v))
A← A ∪ ek

else // conceptual: R← R ∪ ek

return (V, A, c)

856

Implementation Union-Find

Idea: tree for each subset in the partition,e.g.
{{1, 2, 3, 9}, {7, 6, 4}, {5, 8}, {10}}

1

2 3

9

6

7 4

5

8

10

roots = names (representatives) of the sets,
trees = elements of the sets

857

Implementation Union-Find

1

2 3

9

6

7 4

5

8

10

Representation as array:

Index 1 2 3 4 5 6 7 8 9 10
Parent 1 1 1 6 5 6 6 5 3 10

858

Implementation Union-Find

Index 1 2 3 4 5 6 7 8 9 10
Parent 1 1 1 6 5 6 6 5 3 10

Make-Set(i) p[i]← i; return i

Find(i) while (p[i] 6= i) do i← p[i]
return i

Union(i, j) 44 p[j]← i;

44i and j need to be names (roots) of the sets. Otherwise use Union(Find(i),Find(j))
859

Optimisation of the runtime for Find

Tree may degenerate. Example: Union(8, 7), Union(7, 6), Union(6, 5), ...

Index 1 2 3 4 5 6 7 8 ..
Parent 1 1 2 3 4 5 6 7 ..

Worst-case running time of Find in Θ(n).

860

Optimisation of the runtime for Find

Idea: always append smaller tree to larger tree. Requires additional size
information (array) g

Make-Set(i) p[i]← i; g[i]← 1; return i

Union(i, j)
if g[j] > g[i] then swap(i, j)
p[j]← i
if g[i] = g[j] then g[i]← g[i] + 1

⇒ Tree depth (and worst-ase running time for Find) in Θ(log n)

861

[Observation]

Theorem 29

The method above (union by size) preserves the following property of
the trees: a tree of height h has at least 2h nodes.

Immediate consequence: runtime Find = O(log n).

862

[Proof]

Induction: by assumption, sub-trees have at
least 2hi nodes. WLOG: h2 ≤ h1

h2 < h1:

h(T1 ⊕ T2) = h1 ⇒ g(T1 ⊕ T2) ≥ 2h

h2 = h1:

g(T1) ≥ g(T2) ≥ 2h2

⇒g(T1 ⊕ T2) = g(T1) + g(T2) ≥ 2 · 2h2 = 2h(T1⊕T2)

T1

T2

h1

h2

863

Alterantive improvement

Link all nodes to the root when Find is called.
Find(i):
j ← i
while (p[i] 6= i) do i← p[i]
while (j 6= i) do

t← j
j ← p[j]
p[t]← i

return i

Cost: amortised nearly constant (inverse of the Ackermann-function).45

45When combined with union by size, we do not go into any details here. Cf. Cormen et
al, Kap. 21.4

864

Running time of Kruskal’s Algorithm

Sorting of the edges: Θ(|E| log |E|) = Θ(|E| log |V |). 46

Initialisation of the Union-Find data structure Θ(|V |)
|E|× Union(Find(x),Find(y)): O(|E| log |E|) = O(|E| log |V |).

Overal Θ(|E| log |V |).

46because G is connected: |V | ≤ |E| ≤ |V |2
865

28.5 Algorithm Jarnik, Prim, Dijkstra

866

Algorithm of Jarnik (1930), Prim, Dijkstra (1959)

Idea: start with some v ∈ V and grow the spanning tree from here by the
acceptance rule.

A← ∅
S ← {v0}
for i← 1 to |V | do

Choose cheapest (u, v) mit u ∈ S, v 6∈ S
A← A ∪ {(u, v)}
S ← S ∪ {v} // (Coloring)

S

V \ S

Remark: a union-Find data structure is not required. It su�ces to color
nodes when they are added to S.

867

Implementation and Running time

Implementation like with Dijkstra’s ShortestPath. Only di�erence:
Shortest Paths
Relax (u, v):

if ds[v] > d[u] + c(u, v) then
ds[v]← ds[u] + c(u, v)
πs[v]← u

⇒ Minimum Spanning Tree
Relax (u, v):

if ds[v] > c(u, v) then
ds[v]← c(u, v)
πs[v]← u

With Min-Heap: costs O(|E| · log |V |):

Initialization (node coloring) O(|V |)
|V |× ExtractMin = O(|V | log |V |),
|E|× Insert or DecreaseKey: O(|E| log |V |),

With a Fibonacci-Heap: O(|E|+ |V | · log |V |).
868

Application Examples

Network-Design: �nd the cheapest / shortest network that connects all
nodes.
Approximation of a solution of the travelling salesman problem: �nd a
round-trip, as short as possible, that visits each node once.

869

28.7 Fibonacci Heaps

872

Fibonacci Heaps

Data structure for elements with key with operations
MakeHeap(): Return new heap without elements
Insert(H, x): Add x to H
Minimum(H): return a pointer to element m with minimal key
ExtractMin(H): return and remove (from H) pointer to the element m
Union(H1, H2): return a heap merged from H1 and H2

DecreaseKey(H, x, k): decrease the key of x in H to k
Delete (H, x): remove element x from H

873

Advantage over binary heap?

Binary Heap Fibonacci Heap
(worst-Case) (amortized)

MakeHeap Θ(1) Θ(1)
Insert Θ(log n) Θ(1)
Minimum Θ(1) Θ(1)
ExtractMin Θ(log n) Θ(log n)
Union Θ(n) Θ(1)
DecreaseKey Θ(log n) Θ(1)
Delete Θ(log n) Θ(log n)

874

Structure

Set of trees that respect the Min-Heap property. Nodes that can be
marked.

23 7 3

18

39

52 38

41

17

30

24

26

35

46

min

875

Implementation

Doubly linked lists of nodes with a marked-�ag and number of children.
Pointer to minimal Element and number nodes.

23 7 3

18

39

52 38

41

17

30

24

26

35

46

min
n = 14

0 0 3 2 2

1

0

0 1

0

0 1

0

0

876

Simple Operations
MakeHeap (trivial)
Minimum (trivial)
Insert(H, e)
1. Insert new element into root-list
2. If key is smaller than minimum, reset min-pointer.

Union (H1, H2)
1. Concatenate root-lists of H1 and H2
2. Reset min-pointer.

Delete(H, e)
1. DecreaseKey(H, e,−∞)
2. ExtractMin(H)

877

ExtractMin

1. Remove minimal node m from the root list
2. Insert children of m into the root list
3. Merge heap-ordered trees with the same degrees until all trees have a
di�erent degree:
Array of degrees a[0, . . . , n] of elements, empty at beginning. For each
element e of the root list:

a Let g be the degree of e
b If a[g] = nil: a[g]← e.
c If e′ := a[g] 6= nil: Merge e with e′ resutling in e′′ and set a[g]← nil. Set

e′′ unmarked. Re-iterate with e← e′′ having degree g + 1.

878

DecreaseKey (H, e, k)

1. Remove e from its parent node p (if existing) and decrease the degree
of p by one.

2. Insert(H, e)
3. Avoid too thin trees:

a If p = nil then done.
b If p is unmarked: mark p and done.
c If p marked: unmark p and cut p from its parent pp. Insert (H, p). Iterate
with p← pp.

A sketch of the amoritized analysis is in the handout.

879

[Estimation of the degree]

Theorem 30
Let p be a node of a F-Heap H . If child nodes of p are sorted by time of
insertion (Union), then it holds that the ith child node has a degree of
at least i− 2.

Proof: p may have had more children and lost by cutting. When the ith child pi

was linked, p and pi must at least have had degree i− 1. pi may have lost at least
one child (marking!), thus at least degree i− 2 remains.

880

[Estimation of the degree]

Theorem 31
Every node p with degree k of a F-Heap is the root of a subtree with at
least Fk+1 nodes. (F : Fibonacci-Folge)

Proof: Let Sk be the minimal number of successors of a node of degree k in a
F-Heap plus 1 (the node itself). Clearly S0 = 1, S1 = 2. With the previous theorem
Sk ≥ 2 +

∑k−2
i=0 Si, k ≥ 2 (p and nodes p1 each 1). For Fibonacci numbers it holds

that (induction) Fk ≥ 2 +
∑k

i=2 Fi, k ≥ 2 and thus (also induction) Sk ≥ Fk+2.

Fibonacci numbers grow exponentially fast (O(ϕk)) Consequence: maximal
degree of an arbitrary node in a Fibonacci-Heap with n nodes is O(log n).

881

[Amortized worst-case analysis Fibonacci Heap]

t(H): number of trees in the root list of H , m(H): number of marked nodes
in H not within the root-list, Potential function Φ(H) = t(H) + 2 ·m(H). At
the beginnning Φ(H) = 0. Potential always non-negative.
Amortized costs:
Insert(H, x): t′(H) = t(H) + 1, m′(H) = m(H), Increase of the potential: 1,
Amortized costs Θ(1) + 1 = Θ(1)
Minimum(H): Amortized costs = real costs = Θ(1)
Union(H1, H2): Amortized costs = real costs = Θ(1)

882

[Amortized costs of ExtractMin]

Number trees in the root list t(H).
Real costs of ExtractMin operation O(log n+ t(H)).
When merged still O(log n) nodes.
Number of markings can only get smaller when trees are merged
Thus maximal amortized costs of ExtractMin

O(log n+ t(H)) +O(log n)−O(t(H)) = O(log n).

883

[Amortized costs of DecreaseKey]

Assumption: DecreaseKey leads to c cuts of a node from its parent node,
real costs O(c)
c nodes are added to the root list
Delete (c− 1) mark �ags, addition of at most one mark �ag
Amortized costs of DecreaseKey:

O(c) + (t(H) + c) + 2 · (m(H)− c+ 2))− (t(H) + 2m(H)) = O(1)

884

	Minimum Spanning Trees
	Motivation
	Algorithm of Kruskal
	General Rules
	Abstract Data Type Union-Find
	Algorithm Jarnik, Prim, Dijkstra
	Applications
	Fibonacci Heaps

