28. Minimum Spanning Trees

Motivation, Greedy, Algorithm Kruskal, General Rules, ADT Union-Find,
Algorithm Jarnik, Prim, Dijkstra , Fibonacci Heaps [Ottman/Widmayer, Kap.
9.6, 6.2, 61, Cormen et al, Kap. 23, 19]

834

Cheapest Electricity Grid

Given: Houses and costs to connect the houses with electricity.

@/\/
/\

Wanted: Cheapest electricity grid that reaches every house.

835

Requirements for the power grid

m Every house must have at least one power line.
El
. \\
m The power gr|d needs to be connected (just one grid).
—— DN e 1
dn =] A\
m The power grid should not have cycles.

Spanning Tree

Given: undirected, connected graph G = (V, E)
S —®
& | s
¢ @

Spanning Tree of G: Subgraph 7' = (V', E') with V' C V, E’ C E such that
m Spanning: V' =V (spans all nodes)
m Tree: connected and cycle-free

= for each pair of nodes: exactly one connecting path
= spanning tree has exactly |V| — 1 edges (|E'| = |[V| — 1) 837

Trees

Up to this point trees were directed trees!

m connected
m cycle-free
m directed from parents to children

838

Minimum Spanning Tree (MST)

Given: undirected, weighted, connected graph G = (V, E, ¢) with edge
weightsc: F — R

/\/
/\

Wanted: Spanning tree T' = (V, E’) of G with minimum weight > c c(e)

839

Observations
m s that the same as shortest paths? No!

71N

a 3 d
C

m |s the minimum spanning tree unique? Not always.

b
7\
d =— C
1

840

Trivial brute force algorithm?

Try out all spanning trees?

= Inefficient: There are graphs with exponentially many spanning trees.

841

28.2 Algorithm of Kruskal

842

Kruskal's Algorithm

Idea: add lightest edge if it does not lead to a cycle
Invariant: After ¢ steps, i edges of the MST and the corresponding
components are known

843

Beispiel

Construct T' by adding the cheapest edge that does not generate a cycle.

(Solution is not unique.)

844

Algorithm MST-Kruskal(G)

Input: Weighted Graph G = (V, E, ¢)

Output: Minimum spanning tree with edges A.

Sort edges by weight c(e1) < ... < c(ep)
A0
for k=1 to |E| do
if (V,AU{ex}) acyclic then
A<+ Au{er}

return (V, A, c)

(Corrrectness proof in handout.)

845

[Correctness]

At each point in the algorithm (V, A) is a forest, a set of trees.
MST-Kruskal considers each edge ¢, exactly once and either chooses or

rejects ey

Notation (snapshot of the state in the running algorithm)
m A: Set of selected edges

m R: Set of rejected edges

m U: Set of yet undecided edges

846

[Cut]

A cut of G is a partition S,V — S of V. (S C V).
An edge crosses a cut when one of its endpoints is in S and the other is in

V\S.

847

[Rules]

1. Selection rule: choose a cut that is not crossed by a selected edge. Of
all undecided edges that cross the cut, select the one with minimal
weight.

2. Rejection rule: choose a cycle without rejected edges. Of all
undecided edges of the cycle, reject those with maximal weight.

848

[Rules]

Kruskal applies both rules:

1. A selected e, connects two connection components, otherwise it
would generate a cycle. e, is minimal, i.e. a cut can be chosen such
that e, crosses and e, has minimal weight.

2. Arejected e is contained in a cycle. Within the cycle e, has minimal
weight.

849

[Correctness]

Theorem 28

Every algorithm that applies the rules above in a step-wise manner until
U =0 is correct.

Consequence: MST-Kruskal is correct.

850

[Selection invariant]

Invariant: At each step there is a minimal spanning tree that contains all
selected and none of the rejected edges.
If both rules satisfy the invariant, then the algorithm is correct. Induction:

m At beginning: U = E, R = A = (). Invariant obviously holds.

m Invariant is preserved at each step of the algorithm.

m Attheend: U =0, RUA=E = (V,A) is a spanning tree.

Proof of the theorem: show that both rules preserve the invariant.

851

[Selection rule preserves the invariant]

At each step there is a minimal spanning tree T that contains all selected and none of
the rejected edges.

Choose a cut that is not crossed by a selected edge. Of all undecided edges that cross
the cut, select the egde e with minimal weight.

m Case 1: e € T (done)

m Case 2. e ¢ T. Then T'U {e} contains a cycle that contains e Cycle must

have a second edge ¢’ that also crosses the cut.*® Becausee' € R, e’ € U.

Thus c(e) < c(¢) and T" =T\ {e'} U {e} is also a minimal spanning tree
(and c(e) = c(€)).

“3Such a cycle contains at least one node in S and one node in V'\ S and therefore at
lease to edges between S and V'\ S.

852

[Rejection rule preserves the invariant]

At each step there is a minimal spanning tree T that contains all selected and none of
the rejected edges.

Choose a cycle without rejected edges. Of all undecided edges of the cycle, reject an edge
e with maximal weight.
m Case 1: e ¢ T (done)

m Case 2: e € T. Remove e from T, This yields a cut. This cut must be
crossed by another edge ¢’ of the cycle. Because c(e’) < c(e),
T' =T\ {e} U{e'} is also minimal (and c(e) = c(¢')).

853

Implementation Issues

Considerasetofsets: =V, C V.

To identify cycles: membership of the both ends of an edge to sets?

854

Implementation Issues

General problem: partition (set of subsets) .e.g.
{{1,2,3,9},{7,6,4}, {5,8}, {10}}

Required: Abstract data type “Union-Find” with the following operations
m Make-Set(:): create a new set represented by i.

m Find(e): name of the set i that contains e.

m Union(i,): union of the sets with names i and j.

855

Union-Find Algorithm MST-Kruskal(G)

Input: Weighted Graph G = (V, E, ¢)
Output: Minimum spanning tree with edges A.

Sort edges by weight c(e1) < ... < c(ep)
A«0
for k=1to |V| do
. MakeSet(k)
for k=1 tom do
(u,v) < eg,
if Find(u) # Find(v) then
Union(Find(u), Find(v))
A<+ AUeg
else // conceptual: R < RU e

return (V, A, c)

856

Implementation Union-Find

Idea: tree for each subset in the partition,e.g.

{{1,2,3,9},{7.6,4}, {5,8}, {10}}
)))
/N /N T
2 3 7 4 8
T
9

roots = names (representatives) of the sets,
trees = elements of the sets

102

857

Implementation Union-Find

) D, 5
/N N T
2 3 7 4 8
T
9
Representation as array:

Index 1 2 3 4
Parent 1 1 1 6

(G108, |
[I)]
[S2REN |

ot 0o

wW ©

102

[———

858

Implementation Union-Find

Index 1 2 3 45 6 7 8 9 10
Parent 1 1 1 6 5 6 6 5 3 10
Make-Set(i) p[i] + i; return i
Find(:) while (p[i] # i) do i < p]i]

return ¢

Union(i,) * plj] < 4;

44 and j need to be names (roots) of the sets. Otherwise use Union(Find(s),Find(35))

Optimisation of the runtime for Find

Tree may degenerate. Example: Union(8,7), Union(7,6), Union(6, 5), ...

Index 1 2 3 45 6 7 8 ..
Parent 1 1 2 3 4 5 6 7 .
Worst-case running time of Find in O(n).

860

Optimisation of the runtime for Find

Idea: always append smaller tree to larger tree. Requires additional size
information (array) g

Make-Set(i) pli] « 4; g[i] « 1; return i

if g[j] > g[i] then swap(i, j)
Union(i,7) plj] ¢

if g[i] = g[j] then g[i] + g[i] + 1

= Tree depth (and worst-ase running time for Find) in ©(logn)

861

[Observation]

Theorem 29

The method above (union by size) preserves the following property of
the trees: a tree of height h has at least 2" nodes.

Immediate consequence: runtime Find = O(logn).

862

[Proof]

Induction: by assumption, sub-trees have at
least 2" nodes. WLOG: hy < hy

B hy < hi:

h(Tl D TQ) =h = g(TI D Tg) > 2h

| h2 :hli

9(Ty) > g(Tp) > 2"
=g(Th & Tp) = g(Th) + g(Tp) > 2 - 2" = 2h(T1&T)

ha

15

heo

863

Alterantive improvement

Link all nodes to the root when Find is called.
Find(s):
ji
while (p[i] # i) do i < p]i]
while (j # i) do
t<J
j < plJ]
plt] <1
return ¢
Cost: amortised nearly constant (inverse of the Ackermann-function).*

“When combined with union by size, we do not go into any details here. Cf. Cormen et
al, Kap. 21.4

864

Running time of Kruskal's Algorithm

m Sorting of the edges: O(|E|log|E|) = O(|E|log|V]). *°

m Initialisation of the Union-Find data structure ©(|V])

m |E|x Union(Find(x),Find(y)): O(|E|log |E|) = O(|E|log |V]).
Overal ©(|E|log |V]).

“because G is connected: |V| < |E| < [V[?
865

28.5 Algorithm Jarnik, Prim, Dijkstra

866

Algorithm of Jarnik (1930), Prim, Dijkstra (1959)

ldea: start with some v € V' and grow the spanning tree from here by the
acceptance rule.

A0

S+ {’Uo}

for i < 1 to |V| do
Choose cheapest (u,v) mitu e S, v ¢ S
A+ AU{(u,v)}
S« SU{v} // (Coloring)

Remark: a union-Find data structure is not required. It suffices to color
nodes when they are added to S.

867

Implementation and Running time

Implementation like with Dijkstra’s ShortestPath. Only difference:

Shortest Paths —> Minimum Spanning Tree
Relax (u,v): Relax (u,v):
if ds[v] > dlu] + c(u, v) then if ds[v] > ¢(u,v) then
ds[v] < ds[u] + c(u,v) ds[v] < c(u,v)
ms[v] <~ u Ts[v] < u

m With Min-Heap: costs O(|E] - log |V |):

m Initialization (node coloring) O(|V])
m |V|x ExtractMin = O(|V|log |V]),
B |E|x Insert or DecreaseKey: O(|E|log |V),

m With a Fibonacci-Heap: O(|E| + V] - log |V]).

868

Application Examples

m Network-Design: find the cheapest / shortest network that connects all
nodes.

m Approximation of a solution of the travelling salesman problem: find a
round-trip, as short as possible, that visits each node once.

869

28.7 Fibonacci Heaps

872

Fibonacci Heaps

Data structure for elements with key with operations

m MakeHeap(): Return new heap without elements

m Insert(H,z): Add z to H

m Minimum(H): return a pointer to element m with minimal key

m ExtractMin(H): return and remove (from H) pointer to the element m
m Union(H,, H,): return a heap merged from H; and H,

m DecreaseKey(H, z, k): decrease the key of z in H to k

m Delete (H,z): remove element z from H

873

Advantage over binary heap?

MakeHeap
Insert
Minimum
ExtractMin
Union
DecreaseKey
Delete

Binary Heap
(worst-Case)
©(1)
O(logn)
o(1)
O(logn)
©(n)
O(logn)
O(logn)

Fibonacci Heap
(amortized)
O(1)

o(1)

o(1)
O(logn)
©(1)

o(1)
O(logn)

874

Structure

Set of trees that respect the Min-Heap property. Nodes that can be
marked.

JINC T /N

18 52 38 30 26 46

39 41 35

875

Implementation

Doubly linked lists of nodes with a marked-flag and number of children.

Pointer to minimal Element and number nodes.

n=14
min
RN T >
234 (74 (3% 174 U
/io 1 i0 [0
184624538 580 26 <46
$0 i0 0

876

Simple Operations

MakeHeap (trivial)
Minimum (trivial)
Insert(H, e)

1. Insert new element into root-list
2. If key is smaller than minimum, reset min-pointer.

m Union (Hy, H>)

1. Concatenate root-lists of H; and Hs
2. Reset min-pointer.

m Delete(H, e)

1. DecreaseKey(H, e, —c0)
2. ExtractMin(H)

877

ExtractMin

1. Remove minimal node m from the root list
2. Insert children of m into the root list

3. Merge heap-ordered trees with the same degrees until all trees have a
different degree:
Array of degrees a[0,...,n| of elements, empty at beginning. For each
element e of the root list:

a Let g be the degree of e

b If a[g] = nil: alg] < e.

c If e := alg] # nil: Merge e with ¢’ resutling in ¢’ and set a[g] + nil. Set
e’ unmarked. Re-iterate with e <— ¢’ having degree g + 1.

878

DecreaseKey (H, e, k)

1. Remove e from its parent node p (if existing) and decrease the degree
of p by one.
2. Insert(H,e)
3. Avoid too thin trees:
a If p = nil then done.

b If pis unmarked: mark p and done.
¢ If p marked: unmark p and cut p from its parent pp. Insert (H, p). Iterate

with p < pp.

A sketch of the amoritized analysis is in the handout.

879

[Estimation of the degree]

Theorem 30

Let p be a node of a F-Heap H. If child nodes of p are sorted by time of
insertion (Union), then it holds that the ith child node has a degree of
at least i — 2.

Proof: p may have had more children and lost by cutting. When the ith child p;

was linked, p and p; must at least have had degree : — 1. p; may have lost at least
one child (marking!), thus at least degree i — 2 remains.

880

[Estimation of the degree]

Theorem 31

Every node p with degree k of a F-Heap is the root of a subtree with at
least Fy1 nodes. (F: Fibonacci-Folge)

Proof: Let Sy be the minimal number of successors of a node of degree & in a
F-Heap plus 1 (the node itself). Clearly Sy = 1, S; = 2. With the previous theorem
Sp > 2+ Zf;OQ S,k > 2 (p and nodes p; each 1). For Fibonacci numbers it holds
that (induction) Fj, > 24 Y2¥ , Fi, k > 2 and thus (also induction) Sy, > Fjyo.
Fibonacci numbers grow exponentially fast (O(¢*)) Consequence: maximal
degree of an arbitrary node in a Fibonacci-Heap with n nodes is O(logn).

881

[Amortized worst-case analysis Fibonacci Heap]

t(H): number of trees in the root list of H, m(H): number of marked nodes
In H not within the root-list, Potential function ®(H) = t(H) +2-m(H). At
the beginnning ®(H) = 0. Potential always non-negative.

Amortized costs:

m Insert(H, z): '(H) = t(H) + 1, m'(H) = m(H), Increase of the potential: 1,
Amortized costs ©(1) +1 = O(1)

m Minimum(H): Amortized costs = real costs = ©(1)

m Union(H,, H,): Amortized costs = real costs = ©(1)

882

[Amortized costs of ExtractMin]

m Number trees in the root list t(H).

m Real costs of ExtractMin operation O(logn + t(H)).

m When merged still O(logn) nodes.

m Number of markings can only get smaller when trees are merged
m Thus maximal amortized costs of ExtractMin

O(logn+t(H))+ O(logn) — O(t(H)) = O(logn).

883

[Amortized costs of DecreaseKey]

m Assumption: DecreaseKey leads to ¢ cuts of a node from its parent node,
real costs O(c)

m ¢ nodes are added to the root list
m Delete (¢ — 1) mark flags, addition of at most one mark flag
m Amortized costs of DecreaseKey:

O)+ (tH)+c)+2-(m(H)—c+2)) — (t(H)+2m(H)) = O(1)

884

	Minimum Spanning Trees
	Motivation
	Algorithm of Kruskal
	General Rules
	Abstract Data Type Union-Find
	Algorithm Jarnik, Prim, Dijkstra
	Applications
	Fibonacci Heaps

