26.5 A*-Algorithm
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Prerequisites

m Positively weighted, finite graph G = (V, E, ¢)
mseV,teV

m Distance estimate hy(v) < hy(v) := d(v,t) Vv € V.
m Wanted: shortest path p: s ~ ¢
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A*-Algorithm(G, s, t, h)

Input: Positively weighted Graph G' = (V, E, ¢), starting point s € V, end point
t € V, estimate h(v) < (v, 1)
Output: Existence and value of a shortest path from s to ¢

foreach v € V do
L d[u] < o0; flu] + oo; 7[u] < null

d[s] < 0; fls] < h(s); N « {s}; K « {}
while N # () do
u ExtractMinf(N); K + KuU{u}
if w =t then return success
foreach v € N7 (u) with d[v] > d[u] + c(u,v) do
L d[v] « d[u] + c(u,v); flv] < d[v] + h(v); w[v]  u
N+~ NU{v}; K + K —{v}

return failure
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Revisiting nodes

m The A*-algorithm can re-insert nodes that had been extracted from R
before.

m This can lead to suboptimal behavior (w.rt. running time of the
algorithm).

m If 1, in addition to being admissible (h(v) < h(v) for all v € V), fulfils
monotonicity, i.e. if for all (u,u’) € E:

~

h(u') < h(u) + c(u',u)

then the A*-Algorithm is equivalent to the Dijsktra-algorithm with edge
weights ¢(u, v) = c¢(u,v) + h(u) — h(v), and no node is re-inserted into R.
m |t is not always possible to find monotone heuristics.
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Conclusion

m The A*-Algorithm is an extension of the Dijkstra algortihm by a distance
heuristic A.

m A* = Dijkstra if h = 0
m If 4 underestimates the real distance, the algorithm works correctly.
m If b is monotone in addition, then the algorithm works efficiently.

m In practical applications (e.g. routing), the choice of & is often intuitive
and leads to a significant improvement over Dijkstra.

m Correctness proof in the handout
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27. Transitive Closure, All Pairs Shortest
Paths

Reflexive transitive closure [Ottman/Widmayer, Kap. 9.2 Cormen et al, Kap.
25.2] Floyd-Warshall Algorithm [Ottman/Widmayer, Kap. 9.5.3 Cormen et al,
Kap. 25.2]
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Interpretation

Theorem 27

Let G = (V, E) beagraph and k € N. Then the element az(,kj) of the matrix

(GEZ))lgi’an = (Ag)* provides the number of paths with length k from v,

to Uj.
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Graphs and Relations

Graph G = (V, E)
adjacencies Ag = Relation E CV x V over V
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Graphs and Relations

Graph G = (V, E)
adjacencies Ag = Relation E CV x V over V

m reflexive < q,; = 1 foralli =1,...,n. (loops)
m symmetric < a,;; = a;, forall4,j =1,...,n (undirected)
m transitive < (u,v) € E, (v,w) € E = (u,w) € E. (reachability)
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Reflexive Transitive Closure

Reflexive transitive closure of G < Reachability relation £*: (v,w) € E*
iff 3 path from node v to w.

01001 L
000 10 01110
0100 0 01110
0010 0 01110
000 10 0 L 1 11
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Algorithm A- A

Input: (Adjacency-)Matrix A = (a;;)i j=1..n
Output: Matrix Product B = (b;j)ij=1.. = A- A
B+ 0
for r < 1 ton do

for c+ 1 ton do

for £ < 1 ton do
‘7 bre <= bre + arg * pe // Number of Paths

return B

Counts number of paths of length 2
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Algorithm A® A

Input: Adjacency-Matrix A = (a;j)ij=1..n
Output: Modified Matrix Product B = (b;j)ij=1.. = A® A
B+ A // Keep paths
for r < 1 to n do
for c<1tondo
for k < 1ton do
L | bre ¢ max{bc, ark - age} // Path: yes/no

return B

Computes which paths of length 1 and 2 exist

818



Computation of the Reflexive Transitive Closure

Goal: computation of B = (b;;)1<i j<n With b;; = 1 & (v;,v;) € E*
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Computation of the Reflexive Transitive Closure

Goal: computation of B = (b;;)1<i j<n With b;; = 1 < (v;,v;) € E* First idea:
m Start with B < A and set b;; = 1 for each i (Reflexivity.).

m Compute

how
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Computation of the Reflexive Transitive Closure

Goal: computation of B = (b;;)1<i j<n With b;; = 1 < (v;,v;) € E* First idea:

m Start with B < A and set b;; = 1 for each i (Reflexivity.).
m Compute

B,=®B
=1

with powers of 2 By := B® B, By := B, ® By, Bs = By ® By ...
= running time n?[log, n|
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Improvement: Algorithm of Warshall (1962)

Inductive procedure: all paths known over nodes from {v; : ¢ < k}. Add
node vy.

S OO O
OO = O =
O = O OO
_ o O = O
o OO O -
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Improvement: Algorithm of Warshall (1962)

Inductive procedure: all paths known over nodes from {v; : ¢ < k}. Add
node vy.
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Improvement: Algorithm of Warshall (1962)

Inductive procedure: all paths known over nodes from {v; : i < k}. Add
node vy.

SO O O
O =
O = = O O
= = = = =
OO OO
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Improvement: Algorithm of Warshall (1962)

Inductive procedure: all paths known over nodes from {v; : i < k}. Add
node vy.

11 1 11
01 110
01 1 10
0O 1 1 10
01 1 10
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Improvement: Algorithm of Warshall (1962)

Inductive procedure: all paths known over nodes from {v; : i < k}. Add
node vy.

co oo~
— e e e
— e e e
e T e T
===
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Algorithm TransitiveClosure(A¢)

Input: Adjacency matrix Ag = (aij)ij=1..n
Output: Reflexive transitive closure B = (bi;); j=1..n of G
B + AG
for k< 1tondo
bk < 1 // Reflexivity
for r < 1 ton do
forc< 1tondo
L ‘ bre < max{brc, by - bie} // All paths via vy,

return B

Runtime ©(n?).
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Correctness of the Algorithm (Induction)

Invariant (k): all paths via nodes with maximal index < k considered.

m Base case (k = 1): All directed paths (all edges) in Ag considered.
m Hypothesis: invariant (k) fulfilled.

m Step (k — k + 1): For each path from v; to v; via nodes with maximal
index k: by the hypothesis b;; = 1 and b;; = 1. Therefore in the k-th
iteration: b;; < 1.

(v<k) (v<k)
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All shortest Paths

Compute the weight of a shortest path for each pair of nodes.

m |V|x Application of Dijkstra’s Shortest Path algorithm

O(|V]-(IE| +|V]) -1og |V]) (with Fibonacci Heap: O(|V |*log |V |+ V|- |E|))
m |V|x Application of Bellman-Ford: O(|E| - [V]?)
m There are better ways!
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Induction via node number

Consider weights of all shortest paths S* with intermediate nodes in*
VE .= {vy,...,v}, provided that weights for all shortest paths S*~1 with
intermediate nodes in V¥~! are given.

® v; no intermediate node of a shortest path of v; ~ v; in V*: Weight of a
shortest path v; ~ v; in S*~! is then also weight of shortest path in S*.

m v, intermediate node of a shortest path v; ~ v; in V*: Sub-paths
v; ~ v and vy ~ v; contain intermediate nodes only from S*1.

“|ike for the algorithm of the reflexive transitive closure of Warshall
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Induction via node number

d*(u,v) = Minimal weight of a path u ~ v with intermediate nodes in V*
Induktion

d"(u,v) = min{d" " (u,v), d* (u, k) + d* " (k,v)}(k > 1)
d°(u,v) = c(u,v)
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Algorithm Floyd-Warshall(G)

Input: Graph G = (V, E, ¢) without negative weight cycles.
Output: Minimal weights of all paths d
d ¢
for k < 1 to |V]| do
for i < 1 to |V]| do
for j < 1 to |V]| do
L - d¥ (v, v;) = min{d* (v, v;), d¥ L (v, o) + dF (g, v) }

Runtime: ©(|V]?)
Remark: Algorithm can be executed with a single matrix d (in place).
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Idea: Reweighting the graph in order to apply Dijkstra’s algorithm.

The following does not work. The graphs are not equivalent in terms of
shortest paths.
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Other Idea: “Potential” (Height) on the nodes
m G = (V,E, c) aweighted graph.

m Mappingh:V - R

m New weights

¢(u,v) = c(u,v) + h(u) — h(v), (u,v € V)
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Observation: A path p is shortest path in in G = (V, E, ¢) iff it is shortest
pathinin G = (V,E,¢)

k

Z C\V;— 177)2 = ZC(,‘)i*l?vi) + h(vifl) - h(v’t)

=1

;1
= h(Uo) — h(vk) + Z C(Ui_l, Ui) = C(p) + h(vo) — h(vk)

E

Thus &(p) minimal in all vg ~» v, <= ¢(p) minimal in all vy ~ vg.
Weights of cycles are invariant: &(vy, . .., vk = vg) = ¢(vg, - .., Vp = vg)
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Johnson’s Algorithm

Add a new node s ¢ V:
G' = (V' E /)
V' =V U{s}
E'=EU{(s,v):veV}
d(u,v) = c(u,v), u#s
d(s,v) =0(weV)
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Johnson’s Algorithm

If no negative cycles, choose as height function the weight of the shortest
paths from s,

h(v) = d(s,v).
For a minimal weight d of a path the following triangular inequality holds:
d(s,v) < d(s,u)~+ c(u,v).
Substitution yields h(v) < h(u) + c¢(u,v). Therefore

¢(u,v) = c(u,v) + h(u) — h(v) > 0.
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Algorithm Johnson(G)

Input: Weighted Graph G = (V, E, ¢)
Output: Minimal weights of all paths D.

New node s. Compute G’ = (V' E', )
if BellmanFord(G’, s) = false then return “graph has negative cycles”

foreach v € V' do
| h(v) « d(s,v) // d aus BellmanFord Algorithmus

foreach (u,v) € E’ do
- é(u,v) < c(u,v) + h(u) — h(v)
foreach v € V do
d(u,-) + Dijkstra(G’, u)
foreach v € V do
L D(u,v) < d(u,v) + h(v) — h(u)
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Runtimes
m Computation of G- O(|V|)
m Bellman Ford G": O(|V] - |E|)
m |V|x Dijkstra O(|V| - |E| - log |V])
(with Fibonacci Heap: O(|V|?log |V| + |V| - | E]))
Overal O(|V|- |E| - log|V])
(O([VPlog [V]+ V|- |E]))
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