26.5 A*-Algorithm

792

Motivation A*

m Dijkstra Algorithm searches
s for all shortest paths, in all
directions.

Motivation A*

m Dijkstra Algorithm searches
s for all shortest paths, in all
directions.

Motivation A*

m Dijkstra Algorithm searches
(s) for all shortest paths, in all
directions.

Motivation A*

m Dijkstra Algorithm searches
(s) for all shortest paths, in all
directions.

Motivation A*

m Dijkstra Algorithm searches
(s) for all shortest paths, in all
directions.

Motivation A*

m Dijkstra Algorithm searches
(s) for all shortest paths, in all
directions.

Motivation A*

m Dijkstra Algorithm searches
for all shortest paths, in all
directions.

793

Motivation A*

m Dijkstra Algorithm searches
for all shortest paths, in all
directions.

m which is correct, because
the algorithm does not

s know about the graph’s

structure.

Motivation A*

m Dijkstra Algorithm searches
for all shortest paths, in all
directions.

m which is correct, because
the algorithm does not

s know about the graph’s

structure.

Motivation A*

m Dijkstra Algorithm searches
for all shortest paths, in all
directions.

m which is correct, because
the algorithm does not
know about the graph’s
structure.

—

Motivation A*

m Dijkstra Algorithm searches
for all shortest paths, in all

2 directions.
9 1 9 m which is correct, because
the algorithm does not
9 1 @0 1 9 know about the graph’s

structure.

no
—
o

Motivation A*

m Dijkstra Algorithm searches
for all shortest paths, in all
directions.

m which is correct, because
the algorithm does not

9 1 @0 1 9 know about the graph’s

structure.

Motivation A*

m Dijkstra Algorithm searches
for all shortest paths, in all
directions.

m which is correct, because
the algorithm does not

9 1 @0 1 9 know about the graph’s

structure.

Motivation A*

m Dijkstra Algorithm searches
for all shortest paths, in all

ot
i~
w
i~
ot

directions.

3 9 1 9 3 m which is ;orrect, because
the algorithm does not

9 1 @0 1 9 know about the graph’s
structure.

Motivation A*

m Dijkstra Algorithm searches
for all shortest paths, in all

ot
i~
w
i~
ot
(@)

directions.

3 9 1 9 3 6 m which is ;orrect, because
the algorithm does not

9 1 @0 1 9 know about the graph’s
structure.

Motivation A*

m Dijkstra Algorithm searches
for all shortest paths, in all

ot
i~
w
i~
ot
(@)

directions.

3 9 1 9 3 6 m which is ;orrect, because
the algorithm does not

9 1 @0 1 9 - know about the graph’s
structure.

Motivation A*

m Dijkstra Algorithm searches
for all shortest paths, in all

ot
i~
w
i~
ot
(@)

directions.

3 9 1 9 3 6 m which is ;orrect, because
the algorithm does not

9 1 @0 1 9 - know about the graph’s
structure.

794

fu) = d.Ju] + h(u) (h =6, +d, Manhattan-Distance)

m |dea: equip algorithm with a
preferred direction by ways of a
distance heuristic h

m The value of this heuristics needs
to underestimate the distance to ¢

S and is added to the found

distance d, to s

fuw) = dyfu] + h(u)

(h = 6, + &, Manhattan-Distance)

9 8 7 6 5
8 7 6 5 4
7 6 5 4 3
6 5 4 3 2
54 3 0o

m |dea: equip algorithm with a
preferred direction by ways of a
distance heuristic h

m The value of this heuristics needs
to underestimate the distance to ¢
and is added to the found
distance d, to s

fuw) = dyfu] + h(u)

(h = 6, + &, Manhattan-Distance)

9 8 7 6 5
8 7 6 5 4
7 6 5 4 3
6 5 4 3 2
54 3 0o

m |dea: equip algorithm with a
preferred direction by ways of a
distance heuristic h

m The value of this heuristics needs
to underestimate the distance to ¢
and is added to the found
distance d, to s

fuw) = dyfu] + h(u)

(h = 6, + &, Manhattan-Distance)

9 18 7 |6 15

8 |7 16 |5 4
6

7 16 |5 1|4 |3
o

6 |5 114703 12
4

54 13 12 1

m |dea: equip algorithm with a
preferred direction by ways of a
distance heuristic h

m The value of this heuristics needs
to underestimate the distance to ¢
and is added to the found
distance d, to s

fu) = d.Ju] + h(u) (h =6, +d, Manhattan-Distance)

9 8 [T 6 |5 |4 m Idea: equip algorithm with a
preferred direction by ways of a
8§ |7 |6 - 5 - 4 3 distance heuristic A
7 6 5 1l4 9|3 5 m The value ofth|s heur|§t|cs needs
6 A A A to underesUmate the distance to ¢
6 |5 1 4@0 P B and is added to the found
6 4 4 distance d; to s
t
5 4 23 12 21 0

fu) = d.Ju] + h(u) (h =6, +d, Manhattan-Distance)

9 8 [T 6 |5 |4 m Idea: equip algorithm with a
preferred direction by ways of a
8§ |7 |6 - 5 - 4 - 3 distance heuristic A
7 6 5 14 23 sl m The value ofth|s heur|§t|cs needs
6 A A A to underesUmate the distance to ¢
6 |5 1 4@0 5 1 sl and is added to the found
6 4 4 4 distance d; to s
t
5 4 2.3 12 21 3]0

fu) = d.Ju] + h(u) (h =6, +d, Manhattan-Distance)

9 8 |7 2 6 2 5 2 4 m Idea: equip algorithm with a
preferred direction by ways of a
8 |7 o 6 %; 5 g 4 g 3 distance heuristic A
7 6 205 114 2l3 slo m The value ofth|s heur|§t|cs needs
g 6 A A A to underesUmate the distance to ¢
6 2@ 4@0 5 1 sl and is added to the found
S 6 4 4 1 distance d; to s
t
534 23 12 21 3J0

fu) = d.Ju] + h(u) (h =6, +d, Manhattan-Distance)

10 10 10
9 8 107 g 6 él 5 g 4 m Idea: equip algorithm with a
preferred direction by ways of a

8 7 36 2|5 3|4 43 5 ; ietic b

TR 5 5 5 ?lhstanie he;trlrlst|chh . |
7 a6 el571 14921393l m The value of this heuristics needs

] 6 A A A to underesUmate the distance to ¢
N 4@0 5 1 sl and is added to the found

S 6 4 4 1 distance d; to s

t

534 23 12 21 3l0

fu) = d.Ju] + h(u) (h =6, +d, Manhattan-Distance)

10 10 10
9 8 107 g 6 él 5 g 4 5 m Idea: equip algorithm with a
preferred direction by ways of a

8 7 316 2|5 3|4 43 5 ; ietic b

TR 5 5 5 2 ?lhstanie he;trlrlst|chh . |
7 a6 7al571 1491391 6 m The value of this heuristics needs

] 6 A A A to underesUmate the distance to ¢
N 4@0 5 1 sl and is added to the found

S 6 4 4 1 distance d; to s

t

534 23 12 21 3l0

fu) = d.Ju] + h(u) (h =6, +d, Manhattan-Distance)

10 10 10
9 8 107 g 6 él 5 g 4 5 m Idea: equip algorithm with a
preferred direction by ways of a

8 7 316 2|5 3|4 43 5 ; ietic b

TR 5 5 5 2 ?lhstanie he;trlrlst|chh . |
A I I m The value of this heuristics needs

] 6 A A A 3 to underesUmate the distance to ¢
N 4@0 NARARS and is added to the found

S 6 4 4 4l s distance d, to s
2. 34 23 12 21 3 0@8

795

Keep backward path

fu) = dJfu) + h(u) (h=3d,+d,)

m The algorithm works like the
Dijkstra-algorithm

m For finding the next candidate of
R instead of the value d, the
value of f = h + d, is used

Keep backward path

fu) = dJfu) + h(u) (h=3d,+d,)

s m The algorithm works like the
T 1615 4 3 Dijkstra-algorithm

m For finding the next candidate of
R insteadA of ‘Ehe value d, the
value of f = h +d, is used

Keep backward path

fu) = dJfu) + h(u) (h=3d,+d,)

s m The algorithm works like the
T 16 05 4 |3 Dijkstra-algorithm

m For finding the next candidate of
R insteadA of ‘Ehe value d, the
value of f = h +d, is used

Keep backward path

fu) = dJfu) + h(u) (h=3d,+d,)

8
8 7 116) 4
8 @6 6 m The algorithm works like the
T 116 g 5 14 I3 Dijkstra-algorithm
6 5 104 5 5 m For finding the next candidate of

R insteadA of ‘Ehe value d, the
value of f = h +d, is used

Keep backward path

flu) =dJul + h(u) (h=08,+96,)
8 8

8 7 116 215 4

8 @g._ 6 6 m The algorithm works like the
7 213 6 K 5 (1), 4 243 Dijkstra-algorithm

m For finding the next candidate of
6 215 (13 4 23 2 R insteadAof‘Ehe value d, the
5 4 923 > 1 value of f = h +d, Is used
t

4 3 2 1 0

Keep backward path

fu) =dJfu] +h(u) (h=06,4+3,)

8 8 8
8 7 116 25 3p4

= m The algorithm works like the
7 213 6 K 5T(1), 4 g 3 Dijkstra-algorithm
m For finding the next candidate of

6 % 5Té 4 g N R instead of the value d; the
5 314 2l3 3lo 1 value of f = h +d, is used

0) t
4 3 3|2 1 0

Keep backward path

fu) = dJfu) + h(u) (h=3d,+d,)

8 8 8

8 7 116 25 3p4

= m The algorithm works like the
7 213 6 i 5T1 4 g 3 Dijkstra-algorithm

g—— m For finding the next candidate of
6 % 5Té 4T6 3 g 2 R instead of the value d; the
5 304423 39 a]i value of f = h +d, Is used
8 16 6 y

4 413 3|2 4|1 0

Keep backward path

fu) = dJfu) + h(u) (h=3d,+d,)

8 8 8

8 7 116 25 3p4

= m The algorithm works like the
7 213 6 i 5T1 4 g 3 Dijkstra-algorithm

g—— m For finding the next candidate of
6 % 5Té 4T 3 g 2 R instead of the value d; the
5 34423 g——z i value of f = h +d, Is used
8 Ig_ 6 6 y

4 413 2 4/1 5|0

Keep backward path

(h =46, +6,)

f(u) = d[u] + h(u)
8 8 8
8 7 16 25 3)4
8@%_ G .
7 16K0[54114 2|3
8 16 Ig__G
6 2/541/442(3 3|2
8 16 Ig__6
5 34023 22 4N
8 2_ g_ 6
4432’2 T80

m The algorithm works like the
Dijkstra-algorithm

m For finding the next candidate of
R instead of the value d, the
value of f = h + d, is used

Keep backward path

(h =46, +6,)

Fu) = dy[u] + h(u)
8 8] 8
8 |7 16 2|5 34
I
7 1 54104 213
s |6 Ig__G
6 2|5414432[3 3|2
s |6 Ig__6
5 314423 32 4]1
8 LG G G 6
t
4 4|3 3|2 415006

m The algorithm works like the
Dijkstra-algorithm

m For finding the next candidate of
R insteadA of ‘Ehe value d, the
value of f = h +d, is used

796

Prerequisites

m Positively weighted, finite graph G = (V, E, ¢)
mseV,teV

m Distance estimate hy(v) < hy(v) := d(v,t) Vv € V.
m Wanted: shortest path p: s ~ ¢

797

A*-Algorithm(G, s, t, h)

Input: Positively weighted Graph G' = (V, E, ¢), starting point s € V, end point
t € V, estimate h(v) < (v, 1)
Output: Existence and value of a shortest path from s to ¢

foreach v € V do
L d[u] < o0; flu] + oo; 7[u] < null

d[s] < 0; fls] < h(s); N « {s}; K « {}
while N # () do
u ExtractMinf(N); K + KuU{u}
if w =t then return success
foreach v € N7 (u) with d[v] > d[u] + c(u,v) do
L d[v] « d[u] + c(u,v); flv] < d[v] + h(v); w[v] u
N+~ NU{v}; K + K —{v}

return failure
798

What if » does not underestimate

A

Flu) = dJu] + h(u) (h =62+ 52)

m Algorithm can terminate with the
wrong result when A does not
under-estimate the distance to ¢.

m although the heuristics looks

reasonable otherwise (it is
monotonic, for instance)

What if » does not underestimate

A

Flu) = dJu] + h(u) (h =62+ 52)

32 25 20 Q17 I16

m Algorithm can terminate with the

25 188 13 10 9 wrong result when iL does not
under-estimate the distance to ¢.
20 13 |8 5 4 m although the heuristics looks

reasonable otherwise (it is

17 10 |5 monotonic, for instance)

|)
—_

16 19 4 1 0

What if » does not underestimate

A

Flu) = dJu] + h(u) (h =62+ 52)

32 25 20 Q17 I16

18 m Algorithm can terminate with the

25 188 013 10 9 wrong result when h does not
under-estimate the distance to ¢.

20 13 |8 5 4 m although the heuristics looks

reasonable otherwise (it is

17 10 |5 monotonic, for instance)

|)
—_

16 19 4 1 0

What if » does not underestimate

A

Flu) = dJu] + h(u) (h =62+ 52)

26 I1
32 25 120 17 J6 _ _ _
26 18 14 m Algorithm can terminate with the
25 1 18<S>0 13 1010 9 wrong result when iL does not
14 under-estimate the distance to ¢.
20 |13 18 5 4 m although the heuristics looks
reasonable otherwise (it is
17 10 512 1 monotonic, for instance)
t
16 9 4 1 0

What if » does not underestimate

A

Flu) = dJu] + h(u) (h =62+ 52)

26 22 Il
32 25 120 2017 |6 _ _ _
26 1 14 12 m Algorithm can terminate with the
o5 1 18<S>§1_3 110 2k wrong result when h does not
14 10 under-estimate the distance to ¢.
20 13 18 2|5 4 m although the heuristics looks
reasonable otherwise (it is
17 10 512 1 monotonic, for instance)
t
16 9 4 1 0

What if » does not underestimate

A

Flu) = dJu] + h(u) (h =62+ 52)

26 22 Il
32 25 120 2117 J6 _ _ _
26 1 14 P m Algorithm can terminate with the
25 1 18<S>§1_31~1 10 219 wrong result when iL does not
14 110 19 under-estimate the distance to ¢.
20 13 1.8 2|5 3J4 m although the heuristics looks
8 reasonable otherwise (it is
17 10 532 1 monotonic, for instance)
t
16 9 4 1 0

What if » does not underestimate

A

Flu) = dJu] + h(u) (h =62+ 52)

26 22 Il
32 25 120 217 6

26 1 14 19 m Algorithm can terminate with the
o5 1 18<S>§1_3‘]~1 10 209 wrong result when h does not
14 110 19 under-estimate the distance to t.
20 13 18425 34 m although the heuristics looks
4 18 6 reasonable otherwise (it is
17 10 45 32 4]1 monotonic, for instance)

16 19 4 1 0

What if » does not underestimate

A

Flu) = dJu] + h(u) (h =62+ 52)

260 22 211

32 25 120 2117 3Ji6 _ _ _
26 1 1 P m Algorithm can terminate with the

o5 1 18<S>§1_3‘]~1 _O 219 wrong result when h does not

14 11 13 under-estimate the distance to t.
20 13 1 84~§5 314 m although the heuristics looks

14 | g__ 6 reasonable otherwise (it is
17 10 4.5 2 A]1 monotonic, for instance)

t

16 9 4 1 0

What if » does not underestimate

A

Flu) = dJu] + h(u) (h =62+ 52)

260 22 Z(Il
32 25 120 217 3Ji6 _ _ _
26 1 1 p m Algorithm can terminate with the
o5 1 15@;1_%1 10 2lo wrong result when h does not
14 I1§ 13 under-estimate the distance to t.
20 13 18425 34 m although the heuristics looks
22 14 1 g__ 6 reasonable otherwise (it is
17 510 4% 2 A1 monotonic, for instance)
14
t
16 9 54 1 0

What if » does not underestimate

A

Flu) = dJu] + h(u) (h =62+ 52)

20 22 211
32 25 120 2117 3Ji6 _ _ _
26 1 1 P m Algorithm can terminate with the
o5 1 18<S>§1_3‘]~1 _O 219 wrong result when h does not
14 11 13 under-estimate the distance to ¢.
20 13 1 84~§5 314 m although the heuristics looks
22 14| g__ 6 reasonable otherwise (it is
17 5101~4-g 2 A1 monotonic, for instance)
22 11410 y
16 6|9 5|4 6]1 0

What if » does not underestimate

A

Flu) = dJu] + h(u) (h =62+ 52)

26 22 2(Il

32 25 120 217 36
"
25 118701311

14 |1§
20 13 18T

m Algorithm can terminate with the
9 wrong result when h does not
under-estimate the distance to ¢.

4 m although the heuristics looks

)

kol
~poofs w0 oo
—_

ol

22 14 g_ reasonable otherwise (it is
17 510T4-g monotonic, for instance)
22 11 1§ 8
16 6|9 ?4 1 _0@8

What if » does not underestimate

A

Flu) = dJu] + h(u) (h =62+ 52)

26 22 Q(Il
32 25 120 217 3J6

260 1 1(4_1 P m Algorithm can terminate with the
o5 1 18@§§~1 10 2lo wrong result when h does not
14 1§_ 13 under-estimate the distance to ¢.
20 |13 1,842/5 3J4 m although the heuristics looks
22 14, ?__ 6 reasonable otherwise (it is
17 25210-1445 f;)g %L 1 . monotonic, for instance)
16 69 54 6/1 ?0@8

799

Revisiting nodes

m The A*-algorithm can re-insert nodes that had been extracted from R
before.

m This can lead to suboptimal behavior (w.rt. running time of the
algorithm).

m If 1, in addition to being admissible (h(v) < h(v) for all v € V), fulfils
monotonicity, i.e. if for all (u,u’) € E:

~

h(u') < h(u) + c(u',u)

then the A*-Algorithm is equivalent to the Dijsktra-algorithm with edge
weights ¢(u, v) = c¢(u,v) + h(u) — h(v), and no node is re-inserted into R.
m |t is not always possible to find monotone heuristics.

800

m Algorithm terminates correctly
even if the distance heuristic is
not monotonic

m |t is then possible that nodes are
removed and re-inserted into R
multiple times.

m Algorithm terminates correctly
even if the distance heuristic is
not monotonic

m |t is then possible that nodes are
removed and re-inserted into R
multiple times.

m Algorithm terminates correctly
even if the distance heuristic is
not monotonic

m |t is then possible that nodes are
removed and re-inserted into R
multiple times.

m Algorithm terminates correctly
even if the distance heuristic is
not monotonic

m |t is then possible that nodes are
removed and re-inserted into R
multiple times.

m Algorithm terminates correctly
even if the distance heuristic is
not monotonic

m |t is then possible that nodes are
removed and re-inserted into R
multiple times.

8 8 8
7 16 215 3
G TR I
0 0410 2

6/ 12 3
5 111 2|0 3

3

0 0 3.0
0 2 1

m Algorithm terminates correctly
even if the distance heuristic is
not monotonic

m |t is then possible that nodes are
removed and re-inserted into R
multiple times.

e 00 WD DN OO

m Algorithm terminates correctly
even if the distance heuristic is
not monotonic

m |t is then possible that nodes are
removed and re-inserted into R
multiple times.

J

ol

=]

e 00 WD DN OO

)
ot OT;J;I;J;H @&D)—‘ co

m Algorithm terminates correctly
even if the distance heuristic is
not monotonic

m |t is then possible that nodes are
removed and re-inserted into R
multiple times.

=]

e 00 WD DN OO

@]

m Algorithm terminates correctly
even if the distance heuristic is
not monotonic

m |t is then possible that nodes are
removed and re-inserted into R
multiple times.

8 8] 8
7 116 2|5 3
8@8_ %_ 2
1 0K0 0410 2
8 16 Ig_ 3
215 1/142/0 3
10 2 Iz_ 4
504&’5 0 4
10 1558
60 5/2 61

m Algorithm terminates correctly
even if the distance heuristic is
not monotonic

m |t is then possible that nodes are
removed and re-inserted into R
multiple times.

8 8] 8
7 116 2|5 3
8@8_ %_ 2
1 0K0 0410 2
8 16 Ig_ 3
25411420 3
'8)*2 Iz_ 4
30420 30 4
10 137 %
610 3|2 6/1

m Algorithm terminates correctly
even if the distance heuristic is
not monotonic

m |t is then possible that nodes are
removed and re-inserted into R
multiple times.

8 8 8
7 1 215 3
8 2
10@%04}-0 2
8 16 Ig_ 3
25481114210 3
8 *2 Iz_ 4
30|2 0 4
8 3 6
.3 4

m Algorithm terminates correctly
even if the distance heuristic is
not monotonic

m |t is then possible that nodes are
removed and re-inserted into R
multiple times.

ol

=]

—

CYM»-& =G0 WD DN 0o

D O

m Algorithm terminates correctly
even if the distance heuristic is
not monotonic

m |t is then possible that nodes are
removed and re-inserted into R
multiple times.

8 8 8
7 16 25 3l4
ioale,
1 oaT0 213
s 16 Ig_ 3
2/541142/0 3|2
8 2 Iz_ 4
30F%20 3o 4h
8 137 6 G 6
t
40‘32415006

m Algorithm terminates correctly
even if the distance heuristic is
not monotonic

m |t is then possible that nodes are
removed and re-inserted into R
multiple times.

801

Conclusion

m The A*-Algorithm is an extension of the Dijkstra algortihm by a distance
heuristic A.

m A* = Dijkstra if h = 0
m If 4 underestimates the real distance, the algorithm works correctly.
m If b is monotone in addition, then the algorithm works efficiently.

m In practical applications (e.g. routing), the choice of & is often intuitive
and leads to a significant improvement over Dijkstra.

m Correctness proof in the handout

802

27. Transitive Closure, All Pairs Shortest
Paths

Reflexive transitive closure [Ottman/Widmayer, Kap. 9.2 Cormen et al, Kap.
25.2] Floyd-Warshall Algorithm [Ottman/Widmayer, Kap. 9.5.3 Cormen et al,
Kap. 25.2]

810

)
(@)
>

©
(@)
el

(ol
x

o
)
(g0]

=
>
(®)
c
Q
(&)

ik
©
<<

8n

Interpretation

Theorem 27

Let G = (V, E) beagraph and k € N. Then the element az(,kj) of the matrix

(GEZ))lgi’an = (Ag)* provides the number of paths with length k from v,

to Uj.

812

Graphs and Relations

Graph G = (V, E)
adjacencies Ag = Relation E CV x V over V

815

Graphs and Relations

Graph G = (V, E)
adjacencies Ag = Relation E CV x V over V

m reflexive < q,; = 1 foralli =1,...,n. (loops)
m symmetric < a,;; = a;, forall4,j =1,...,n (undirected)
m transitive < (u,v) € E, (v,w) € E = (u,w) € E. (reachability)

815

Reflexive Transitive Closure

Reflexive transitive closure of G < Reachability relation £*: (v,w) € E*
iff 3 path from node v to w.

01001 L
000 10 01110
0100 0 01110
0010 0 01110
000 10 0 L 1 11

816

Algorithm A- A

Input: (Adjacency-)Matrix A = (a;;)i j=1..n
Output: Matrix Product B = (b;j)ij=1.. = A- A
B+ 0
for r < 1 ton do

for c+ 1 ton do

for £ < 1 ton do
‘7 bre <= bre + arg * pe // Number of Paths

return B

Counts number of paths of length 2

817

Algorithm A® A

Input: Adjacency-Matrix A = (a;j)ij=1..n
Output: Modified Matrix Product B = (b;j)ij=1.. = A® A
B+ A // Keep paths
for r < 1 to n do
for c<1tondo
for k < 1ton do
L | bre ¢ max{bc, ark - age} // Path: yes/no

return B

Computes which paths of length 1 and 2 exist

818

Computation of the Reflexive Transitive Closure

Goal: computation of B = (b;;)1<i j<n With b;; = 1 & (v;,v;) € E*

819

Computation of the Reflexive Transitive Closure

Goal: computation of B = (b;;)1<i j<n With b;; = 1 < (v;,v;) € E* First idea:
m Start with B < A and set b;; = 1 for each i (Reflexivity.).

m Compute

how

819

Computation of the Reflexive Transitive Closure

Goal: computation of B = (b;;)1<i j<n With b;; = 1 < (v;,v;) € E* First idea:

m Start with B < A and set b;; = 1 for each i (Reflexivity.).
m Compute

B,=®B
=1

with powers of 2 By := B® B, By := B, ® By, Bs = By ® By ...
= running time n?[log, n|

819

Improvement: Algorithm of Warshall (1962)

Inductive procedure: all paths known over nodes from {v; : ¢ < k}. Add
node vy.

S OO O
OO = O =
O = O OO
_ o O = O
o OO O -

820

Improvement: Algorithm of Warshall (1962)

Inductive procedure: all paths known over nodes from {v; : ¢ < k}. Add
node vy.

S OO O
O O ==
oOR O oo
—_ O = =
OO OO

820

Improvement: Algorithm of Warshall (1962)

Inductive procedure: all paths known over nodes from {v; : i < k}. Add
node vy.

SO O O
O =
O = = O O
= = = = =
OO OO

820

Improvement: Algorithm of Warshall (1962)

Inductive procedure: all paths known over nodes from {v; : i < k}. Add
node vy.

11 1 11
01 110
01 1 10
0O 1 1 10
01 1 10

820

Improvement: Algorithm of Warshall (1962)

Inductive procedure: all paths known over nodes from {v; : i < k}. Add
node vy.

co oo~
— e e e
— e e e
e T e T
===

820

Algorithm TransitiveClosure(A¢)

Input: Adjacency matrix Ag = (aij)ij=1..n
Output: Reflexive transitive closure B = (bi;); j=1..n of G
B + AG
for k< 1tondo
bk < 1 // Reflexivity
for r < 1 ton do
forc< 1tondo
L ‘ bre < max{brc, by - bie} // All paths via vy,

return B

Runtime ©(n?).

821

Correctness of the Algorithm (Induction)

Invariant (k): all paths via nodes with maximal index < k considered.

m Base case (k = 1): All directed paths (all edges) in Ag considered.
m Hypothesis: invariant (k) fulfilled.

m Step (k — k + 1): For each path from v; to v; via nodes with maximal
index k: by the hypothesis b;; = 1 and b;; = 1. Therefore in the k-th
iteration: b;; < 1.

(v<k) (v<k)

822

All shortest Paths

Compute the weight of a shortest path for each pair of nodes.

m |V|x Application of Dijkstra’s Shortest Path algorithm

O(|V]-(IE| +|V]) -1og |V]) (with Fibonacci Heap: O(|V |*log |V |+ V|- |E|))
m |V|x Application of Bellman-Ford: O(|E| - [V]?)
m There are better ways!

823

Induction via node number

Consider weights of all shortest paths S* with intermediate nodes in*
VE .= {vy,...,v}, provided that weights for all shortest paths S*~1 with
intermediate nodes in V¥~! are given.

® v; no intermediate node of a shortest path of v; ~ v; in V*: Weight of a
shortest path v; ~ v; in S*~! is then also weight of shortest path in S*.

m v, intermediate node of a shortest path v; ~ v; in V*: Sub-paths
v; ~ v and vy ~ v; contain intermediate nodes only from S*1.

“|ike for the algorithm of the reflexive transitive closure of Warshall
824

Induction via node number

d*(u,v) = Minimal weight of a path u ~ v with intermediate nodes in V*
Induktion

d"(u,v) = min{d" " (u,v), d* (u, k) + d* " (k,v)}(k > 1)
d°(u,v) = c(u,v)

825

Algorithm Floyd-Warshall(G)

Input: Graph G = (V, E, ¢) without negative weight cycles.
Output: Minimal weights of all paths d
d ¢
for k < 1 to |V]| do
for i < 1 to |V]| do
for j < 1 to |V]| do
L - d¥ (v, v;) = min{d* (v, v;), d¥ L (v, o) + dF (g, v) }

Runtime: ©(|V]?)
Remark: Algorithm can be executed with a single matrix d (in place).

826

Idea: Reweighting the graph in order to apply Dijkstra’s algorithm.

The following does not work. The graphs are not equivalent in terms of
shortest paths.

827

Other Idea: “Potential” (Height) on the nodes
m G = (V,E, c) aweighted graph.

m Mappingh:V - R

m New weights

¢(u,v) = c(u,v) + h(u) — h(v), (u,v € V)

828

Observation: A path p is shortest path in in G = (V, E, ¢) iff it is shortest
pathinin G = (V,E,¢)

k

Z C\V;— 177)2 = ZC(,‘)i*l?vi) + h(vifl) - h(v’t)

=1

;1
= h(Uo) — h(vk) + Z C(Ui_l, Ui) = C(p) + h(vo) — h(vk)

E

Thus &(p) minimal in all vg ~» v, <= ¢(p) minimal in all vy ~ vg.
Weights of cycles are invariant: &(vy, . .., vk = vg) = ¢(vg, - .., Vp = vg)

829

Johnson’s Algorithm

Add a new node s ¢ V:
G' = (V' E /)
V' =V U{s}
E'=EU{(s,v):veV}
d(u,v) = c(u,v), u#s
d(s,v) =0(weV)

830

Johnson’s Algorithm

If no negative cycles, choose as height function the weight of the shortest
paths from s,

h(v) = d(s,v).
For a minimal weight d of a path the following triangular inequality holds:
d(s,v) < d(s,u)~+ c(u,v).
Substitution yields h(v) < h(u) + c¢(u,v). Therefore

¢(u,v) = c(u,v) + h(u) — h(v) > 0.

831

Algorithm Johnson(G)

Input: Weighted Graph G = (V, E, ¢)
Output: Minimal weights of all paths D.

New node s. Compute G’ = (V' E',)
if BellmanFord(G’, s) = false then return “graph has negative cycles”

foreach v € V' do
| h(v) « d(s,v) // d aus BellmanFord Algorithmus

foreach (u,v) € E’ do
- é(u,v) < c(u,v) + h(u) — h(v)
foreach v € V do
d(u,-) + Dijkstra(G’, u)
foreach v € V do
L D(u,v) < d(u,v) + h(v) — h(u)

832

Runtimes
m Computation of G- O(|V|)
m Bellman Ford G": O(|V] - |E|)
m |V|x Dijkstra O(|V| - |E| - log |V])
(with Fibonacci Heap: O(|V|?log |V| + |V| - | E]))
Overal O(|V|- |E| - log|V])
(O([VPlog [V]+ V|- |E]))

833

	A*-Algorithm
	Transitive Closure, All Pairs Shortest Paths
	Graphs and Relations
	Floyd-Warshall Algorithm
	Johnson Algorithm

