26.5 A*-Algorithm

- Dijkstra Algorithm searches for all shortest paths, in all directions.
- which is correct, because the algorithm does not know about the graph's structure.

- Dijkstra Algorithm searches for all shortest paths, in all directions.
- which is correct, because the algorithm does not know about the graph's structure.

- Dijkstra Algorithm searches for all shortest paths, in all directions.
- which is correct, because the algorithm does not know about the graph's structure.

- Dijkstra Algorithm searches for all shortest paths, in all directions.
- which is correct, because the algorithm does not know about the graph's structure.

- Dijkstra Algorithm searches for all shortest paths, in all directions.
- which is correct, because the algorithm does not know about the graph's structure.

- Dijkstra Algorithm searches for all shortest paths, in all directions.
- which is correct, because the algorithm does not know about the graph's structure.

- Dijkstra Algorithm searches for all shortest paths, in all directions.
- which is correct, because the algorithm does not know about the graph's structure.

- Dijkstra Algorithm searches for all shortest paths, in all directions.
- which is correct, because the algorithm does not know about the graph's structure.

- Dijkstra Algorithm searches for all shortest paths, in all directions.
- which is correct, because the algorithm does not know about the graph's structure.

- Dijkstra Algorithm searches for all shortest paths, in all directions.
- which is correct, because the algorithm does not know about the graph's structure.

$$\hat{f}(u) = \frac{d_s[u]}{h(u)} + \hat{h}(u)$$
 ($\hat{h} = \delta_x + \delta_y$ Manhattan-Distance)

- Idea: equip algorithm with a preferred direction by ways of a distance heuristic \hat{h}
- The value of this heuristics needs to underestimate the distance to t and is added to the found distance d_s to s

$$\hat{f}(u) = \frac{d_s[u]}{h(u)} + \hat{h}(u)$$
 ($\hat{h} = \delta_x + \delta_y$ Manhattan-Distance)

9	8	7	6	5	4
8	7	6	5	4	3
7	6	5	4	3	$_2$
6	5	$\frac{s}{4}$	3	2	1
5	4	3	2	1	$\begin{bmatrix} t \\ 0 \end{bmatrix}$

- Idea: equip algorithm with a preferred direction by ways of a distance heuristic \hat{h}
- The value of this heuristics needs to underestimate the distance to t and is added to the found distance d_s to s

$$\hat{f}(u) = d_s[u] + \hat{h}(u)$$
 ($\hat{h} = \delta_x + \delta_y$ Manhattan-Distance)

9	8	7	6	5	4
8	7	6	5	$ _4$	3
7	6	5	4	3	2
6	5	$\begin{bmatrix} & 4 \\ 4 & 0 \end{bmatrix}$	3	2	1
5	4	3	2	1	$\begin{bmatrix} 1 \\ 0 \end{bmatrix}$

- Idea: equip algorithm with a preferred direction by ways of a distance heuristic \hat{h}
- The value of this heuristics needs to underestimate the distance to t and is added to the found distance d_s to s

$$\hat{f}(u) = d_s[u] + \hat{h}(u)$$
 ($\hat{h} = \delta_x + \delta_y$ Manhattan-Distance)

9	8	7	6	5	4
8	7	6	5	4	3
7	6	6 5 1	4	3	2
6	6 5 1	4 0	3 1	2	1
5	4	4 3 1	2	1	0

- Idea: equip algorithm with a preferred direction by ways of a distance heuristic \hat{h}
- The value of this heuristics needs to underestimate the distance to t and is added to the found distance d_s to s

$$\hat{f}(u) = d_s[u] + \hat{h}(u)$$
 ($\hat{h} = \delta_x + \delta_y$ Manhattan-Distance)

9	8		7		6		5		4
8	7		6		5		4	_	3
7	6		5	6 1	4	6 2	3		2
6	5	6	4	$0 \frac{4}{0}$	3	4 1	2	4 2	1
5	4	6 2	3	4 1	2	4 2	1		0^{t}

- Idea: equip algorithm with a preferred direction by ways of a distance heuristic \hat{h}
- The value of this heuristics needs to underestimate the distance to t and is added to the found distance d_s to s

$$\hat{f}(u) = d_s[u] + \hat{h}(u)$$
 ($\hat{h} = \delta_x + \delta_y$ Manhattan-Distance)

9	8	7		6		5		4
8	7	6		5		4		3
7	6	5	6	4	6 2	3	6	2
6		$\begin{bmatrix} 6 \\ 1 \end{bmatrix} 4$	4	3	$\frac{1}{4}$	2	$\frac{3}{4}$	1
5	4	$\begin{bmatrix} 6 \\ 2 \end{bmatrix}_3$	$\frac{3}{4}$	2	$\frac{1}{4}$	1	4 3	$\begin{bmatrix} t \\ 0 \end{bmatrix}$

- Idea: equip algorithm with a preferred direction by ways of a distance heuristic \hat{h}
- The value of this heuristics needs to underestimate the distance to t and is added to the found distance d_s to s

$$\hat{f}(u) = d_s[u] + \hat{h}(u)$$
 ($\hat{h} = \delta_x + \delta_y$ Manhattan-Distance)

9		8		7		6		5		4
8		7		6	8	5	8 3	4	8	3
7		6	8	5	$\frac{2}{6}$	4	$\frac{3}{6}$	3	6	2
6	8	5	$\frac{2}{6}$	s	4	3	4	2	$\frac{3}{4}$	1
5	2 8 3	4	6	3	4	2	$\frac{1}{4}$	1	$\frac{2}{4}$	$\frac{1}{0}t$

- Idea: equip algorithm with a preferred direction by ways of a distance heuristic \hat{h}
- The value of this heuristics needs to underestimate the distance to t and is added to the found distance d_s to s

$$\hat{f}(u) = d_s[u] + \hat{h}(u)$$
 ($\hat{h} = \delta_x + \delta_y$ Manhattan-Distance)

					10		10		10		
9		8		7	3	6	4	5	5	4	
			10		8		8		8		8
8		7	3	6	2	5	3	4	4	3	5
	10		8		$\frac{2}{6}$		6		6		
7	3	6	$\frac{2}{6}$	5	1	4	$\overline{2}$	3	3	2	
	8		6		$\frac{4}{s}$		4		4		
6	2 8	5	1	4	0	3	1	2	2	1	
	8		6		4		4		4		_
5	3	4	2	3	1	2	$\overline{2}$	1	3	0	t

- Idea: equip algorithm with a preferred direction by ways of a distance heuristic \hat{h}
- The value of this heuristics needs to underestimate the distance to t and is added to the found distance d_s to s

$$\hat{f}(u) = d_s[u] + \hat{h}(u)$$
 ($\hat{h} = \delta_x + \delta_y$ Manhattan-Distance)

					10		10		10		
9		8		7	3	6	4	5	5	4	
			10		8		8		8		8
8		7	3	6	2	5	3	4	$\overline{4}$	3	5
	10		8		$\frac{2}{6}$		6		6		8
7	3	6	$\frac{2}{6}$	5	1	4	$\overline{2}$	3	3	2	6
	8		6		$\frac{4}{s}$		4		4		
6	2	5	1	4	0	3	1	2	$\overline{2}$	1	
	2 8		6		4		4		4		_
5	3	4	2	3	1	2	$\overline{2}$	1	3	0	t

- Idea: equip algorithm with a preferred direction by ways of a distance heuristic \hat{h}
- The value of this heuristics needs to underestimate the distance to t and is added to the found distance d_s to s

$$\hat{f}(u) = d_s[u] + \hat{h}(u)$$
 ($\hat{h} = \delta_x + \delta_y$ Manhattan-Distance)

			10	10	10	
9	8	7	3	6 4	5 5	4
		10	8	8	8	8
8	7	3 6	2	5 3	4 4	3 5
10)	8	6	6	6	8
7 3	6	2 5	1	4 2	3 3	2 6
8		$\begin{array}{c c} 2 & 5 \\ \hline 6 & \end{array}$	4	4	4	8
6 2	5	$1 \mid 4$	s_0	3 1	2	1 7
8		6	4	4	4	8
5 3	$ _4$	$2 \mid 3$	1	2 2	1 3	$\begin{bmatrix} t \\ 0 \end{bmatrix}$

- Idea: equip algorithm with a preferred direction by ways of a distance heuristic \hat{h}
- The value of this heuristics needs to underestimate the distance to t and is added to the found distance d_s to s

$$\hat{f}(u) = \frac{d_s[u]}{h(u)} + \hat{h}(u) \quad (\hat{h} = \delta_x + \delta_y)$$

- The algorithm works like the Dijkstra-algorithm
- For finding the next candidate of R instead of the value d_s the value of $\hat{f} = \hat{h} + d_s$ is used

$$\hat{f}(u) = \frac{d_s[u]}{h(u)} + \hat{h}(u) \quad (\hat{h} = \delta_x + \delta_y)$$

8	7	6	5	4
7	$\frac{s}{6}$	5	4	3
6	5	4	3	2
5	4	3	2	1
4	3	2	1	$\begin{bmatrix} t \\ 0 \end{bmatrix}$

- The algorithm works like the Dijkstra-algorithm
- For finding the next candidate of R instead of the value d_s the value of $\hat{f} = \hat{h} + d_s$ is used

$$\hat{f}(u) = \frac{d_s[u]}{h(u)} + \hat{h}(u) \quad (\hat{h} = \delta_x + \delta_y)$$

8	7	6	5	4
7	$\begin{array}{c} & 6 \\ 6 & 0 \end{array}$	5	4	3
6	5	4	3	2
5	4	3	2	1
4	3	2	1	$\begin{bmatrix} t \\ 0 \end{bmatrix}$

- The algorithm works like the Dijkstra-algorithm
- For finding the next candidate of R instead of the value d_s the value of $\hat{f} = \hat{h} + d_s$ is used

$$\hat{f}(u) = \frac{d_s[u]}{h(u)} + \hat{h}(u) \quad (\hat{h} = \delta_x + \delta_y)$$

		8	3				
8		7		6		5	4
	8	s	3		6		
7	1	6 (5	1	4	3
6		5	1	4		3	2
5		4		3		2	1
							4
4		3		2		1	$\begin{bmatrix} t \\ 0 \end{bmatrix}$

- The algorithm works like the Dijkstra-algorithm
- For finding the next candidate of R instead of the value d_s the value of $\hat{f} = \hat{h} + d_s$ is used

$$\hat{f}(u) = \frac{d_s[u]}{h(u)} + \hat{h}(u) \quad (\hat{h} = \delta_x + \delta_y)$$

			8		8			
8		7	1	6	2	5		4
	8	(s)	6		6		6	
7	1	6-1	0	5	1	4	2	3
	8		6		6			
6	2	5	1	4	2	3		2
			6					
5		4	2	3		2		1
								4
4		3		2		1		$\begin{bmatrix} t \\ 0 \end{bmatrix}$

- The algorithm works like the Dijkstra-algorithm
- For finding the next candidate of R instead of the value d_s the value of $\hat{f} = \hat{h} + d_s$ is used

$$\hat{f}(u) = \frac{d_s[u]}{h(u)} + \hat{h}(u) \quad (\hat{h} = \delta_x + \delta_y)$$

			8		8		8	
8		7	1	6	2	5	3	4
	8	(8	6		6		$\frac{3}{6}$	
7	1	6-	<0	5	1	4	2 6	3
	8		6		$\frac{1}{6}$		6	
6	2	5-1	$\frac{1}{6}$	4	2 6	3	3	2
	8		6		6			
5	3	4	2 6	3	3	2		1
			6					4
4		3	3	2		1		$\begin{bmatrix} t \\ 0 \end{bmatrix}$

- The algorithm works like the Dijkstra-algorithm
- For finding the next candidate of R instead of the value d_s the value of $\hat{f} = \hat{h} + d_s$ is used

$$\hat{f}(u) = \frac{d_s[u]}{h(u)} + \hat{h}(u) \quad (\hat{h} = \delta_x + \delta_y)$$

			8		8		8	
8		7	1	6	2	5	3	4
	8	(8	6		6		6	
7	1	6-	9	5	1	4	$\frac{2}{6}$	3
	8		6		6		6	
6	2	5-	1	4-	$\frac{2}{6}$	3	3	2
	8		6		6		$\frac{3}{6}$	
5	3	4-	2 6	3	3	2	4	1
	8		6		6			
4	4	3	3	2	4	1		$\begin{bmatrix} t \end{bmatrix}$

- The algorithm works like the Dijkstra-algorithm
- For finding the next candidate of R instead of the value d_s the value of $\hat{f} = \hat{h} + d_s$ is used

$$\hat{f}(u) = \frac{d_s[u]}{h(u)} + \hat{h}(u) \quad (\hat{h} = \delta_x + \delta_y)$$

			8		8		8	
8		7	1	6	2	5	3	4
	8	(5	6		6		6	
7	1	6-	0	5-1	1	$\overline{4}$	$\frac{2}{6}$	3
	8		6		6		6	
6	2	5-1	1	4-1	2	3	3	2
	8		6		6		$\frac{3}{6}$	
5	3	4-1	2	3	3	2	4	1
	8		6		6		6	
4	4	3	3	2	4	1	5	$\begin{bmatrix} t \end{bmatrix}$

- The algorithm works like the Dijkstra-algorithm
- For finding the next candidate of R instead of the value d_s the value of $\hat{f} = \hat{h} + d_s$ is used

Keep backward path

$$\hat{f}(u) = \frac{d_s[u]}{h(u)} + \hat{h}(u) \quad (\hat{h} = \delta_x + \delta_y)$$

			8		8		8	
8		7	1	6	2	5	$\frac{3}{6}$	4
	8	(8	6		6		6	
7	1	6-	$\langle 0 \rangle$	5	1	4	$\frac{2}{6}$	3
	8		6		6		6	
6	2	5-1	1	4-	2	3	3	2
	8		6		6		$\frac{3}{6}$	
5	3	4-1	2	3	3	2	4	1
	8		6		6		6	6
4	4	3	3	2	4	1	5	$\begin{bmatrix} t \\ 0 \end{bmatrix}$

- The algorithm works like the Dijkstra-algorithm
- For finding the next candidate of R instead of the value d_s the value of $\hat{f} = \hat{h} + d_s$ is used

Keep backward path

$$\hat{f}(u) = \frac{d_s[u]}{h(u)} + \hat{h}(u) \quad (\hat{h} = \delta_x + \delta_y)$$

			8		8		8	
8		7	1	6	2	5	3	4
	8	(5	6		6		6	
7	1	6	0	5-	1	4	$\frac{2}{6}$	3
	8		6		6		6	
6	2	5-	1	4-	2	3	$\frac{3}{6}$	2
	8		6		6		6	
5	3	4-	2	3	3	$\overline{2}$	4	1
	8		6		6		6	t
4	4	3	3	2	4	1	5	0^{ι}

- The algorithm works like the Dijkstra-algorithm
- For finding the next candidate of R instead of the value d_s the value of $\hat{f} = \hat{h} + d_s$ is used

A*-Algorithm

Prerequisites

- Positively weighted, finite graph G = (V, E, c)
- $\blacksquare s \in V, t \in V$
- Distance estimate $\hat{h}_t(v) \leq h_t(v) := \delta(v,t) \ \forall \ v \in V$.
- Wanted: shortest path $p: s \leadsto t$

A*-Algorithm (G, s, t, \hat{h})

Input: Positively weighted Graph G=(V,E,c), starting point $s\in V$, end point $t\in V$, estimate $\widehat{h}(v)\leq \delta(v,t)$

Output: Existence and value of a shortest path from s to t

return failure

$$\hat{f}(u) = \frac{d_s[u]}{h(u)} + \hat{h}(u) \quad (\hat{h} = \delta_x^2 + \delta_y^2)$$

- Algorithm can terminate with the wrong result when \hat{h} does not under-estimate the distance to t.
- although the heuristics looks reasonable otherwise (it is monotonic, for instance)

$$\hat{f}(u) = \frac{\mathbf{d}_s[u]}{h} + \hat{h}(u) \quad (\hat{h} = \delta_x^2 + \delta_y^2)$$

32	25	20	17	16
25	18	13	10	9
20	13	8	5	4
17	10	5	2	1
16	9	4	1	$\begin{bmatrix} 0 & t \end{bmatrix}$

- Algorithm can terminate with the wrong result when \hat{h} does not under-estimate the distance to t.
- although the heuristics looks reasonable otherwise (it is monotonic, for instance)

$$\hat{f}(u) = \frac{\mathbf{d}_s[u]}{h} + \hat{h}(u) \quad (\hat{h} = \delta_x^2 + \delta_y^2)$$

32	25	20	17	16
25		18 0 13	10	9
20	13	8	5	4
17	10	5	2	1
16	9	4	1	$\begin{bmatrix} t \\ 0 \end{bmatrix}$

- Algorithm can terminate with the wrong result when \hat{h} does not under-estimate the distance to t.
- although the heuristics looks reasonable otherwise (it is monotonic, for instance)

$$\hat{f}(u) = \frac{\mathbf{d}_s[u]}{h} + \hat{h}(u) \quad (\hat{h} = \delta_x^2 + \delta_y^2)$$

		26		
32	25	1 20	17	16
	26	18	14	
25	1 18	0 13	1 10	9
		14		
20	13	1 8	5	4
17	10	5	2	1
				$\overline{}_t$
16	9	4	1	0^{ι}

- Algorithm can terminate with the wrong result when \hat{h} does not under-estimate the distance to t.
- although the heuristics looks reasonable otherwise (it is monotonic, for instance)

$$\hat{f}(u) = \frac{\mathbf{d}_s[u]}{h} + \hat{h}(u) \quad (\hat{h} = \delta_x^2 + \delta_y^2)$$

		26		22			
32	25	5 1	20	2	17		16
	26	s		14		12	
25	1 18	30	13	1	10	2	9
		14		10			
20	13	3 1	8	2	5		4
17	10)	5		2		1
							t
16	9		4		1		0^{ι}

- Algorithm can terminate with the wrong result when \hat{h} does not under-estimate the distance to t.
- although the heuristics looks reasonable otherwise (it is monotonic, for instance)

$$\hat{f}(u) = \frac{d_s[u]}{h(u)} + \hat{h}(u) \quad (\hat{h} = \delta_x^2 + \delta_y^2)$$

- Algorithm can terminate with the wrong result when \hat{h} does not under-estimate the distance to t.
- although the heuristics looks reasonable otherwise (it is monotonic, for instance)

$$\hat{f}(u) = \frac{\mathbf{d}_s[u]}{h} + \hat{h}(u) \quad (\hat{h} = \delta_x^2 + \delta_y^2)$$

			26		22			
32		25	1	20	2	17		16
	26	(8	18		14		12	
25	1	18	0	$\overline{13}$	$\frac{1}{10}$	10	2	9
			14		10		13	
20		13	1	8-	2 8	5	3	4
			14		8		$\frac{3}{6}$	
17		10	4	5	3	2	4	1
								4
16		9		4		1		0^{t}

- Algorithm can terminate with the wrong result when \hat{h} does not under-estimate the distance to t.
- although the heuristics looks reasonable otherwise (it is monotonic, for instance)

$$\hat{f}(u) = \frac{d_s[u]}{h(u)} + \hat{h}(u) \quad (\hat{h} = \delta_x^2 + \delta_y^2)$$

			26		22		20	
32		25	1	20	2	17	3	16
	26		18		14		12	
25	1	18^{9}	0	$\overline{13}$	1	10	2	9
			14		10		13	
20		13	1	8-	2	5	$\frac{3}{6}$	4
			14		8		6	
17		10	4	5	3	2	4	1
								+
16		9		4		1		$0 \ t$

- Algorithm can terminate with the wrong result when \hat{h} does not under-estimate the distance to t.
- although the heuristics looks reasonable otherwise (it is monotonic, for instance)

$$\hat{f}(u) = \frac{d_s[u]}{h(u)} + \hat{h}(u) \quad (\hat{h} = \delta_x^2 + \delta_y^2)$$

		26	22	20	
32	25	120	2 17	3 16	
	26	18	14	12	
25	1 18	0 13	1 10	$\frac{1}{2}$ 9	
		14	10	13	
20	13	1 8-	2 5	3 4	
	22	14	8	$\frac{3}{6}$	
17	5 10	45	$\frac{3}{2}$	$\frac{1}{4}$ 1	
		14			
16	9	5 4	1	$ _0 ^t$	

- Algorithm can terminate with the wrong result when \hat{h} does not under-estimate the distance to t.
- although the heuristics looks reasonable otherwise (it is monotonic, for instance)

$$\hat{f}(u) = \frac{d_s[u]}{h(u)} + \hat{h}(u) \quad (\hat{h} = \delta_x^2 + \delta_y^2)$$

		26	22	20
32	25	120	2 17	3 16
	26	18	14	12
25	1 18	0 13	110	2 9
		14	10	13
20	13	1 8-	$2\overline{5}$	$3 \mid 4$
	22	14	8	3 4 6
17	5 10	45	$\frac{3}{2}$	$4 \mid 1$
	22	14	10	
16	6 9	$5 \mid 4$	6 1	$\begin{vmatrix} 0 \end{vmatrix}^t$

- Algorithm can terminate with the wrong result when \hat{h} does not under-estimate the distance to t.
- although the heuristics looks reasonable otherwise (it is monotonic, for instance)

$$\hat{f}(u) = \frac{d_s[u]}{h(u)} + \hat{h}(u) \quad (\hat{h} = \delta_x^2 + \delta_y^2)$$

- Algorithm can terminate with the wrong result when \hat{h} does not under-estimate the distance to t.
- although the heuristics looks reasonable otherwise (it is monotonic, for instance)

$$\hat{f}(u) = \frac{\mathbf{d}_s[u]}{\mathbf{d}_s[u]} + \hat{h}(u) \quad (\hat{h} = \delta_x^2 + \delta_y^2)$$

			26	4	22		20	
32		25	1 2	20	2	17	3	16
	26	(5	.18		14		12	
25	1	18	01	.3	1	10	2	9
			14		10		13	
20		13	1 8	8	2	5	3	4
	22		14		8		$\frac{3}{6}$	
17	5	10	4	5	3	2	4	1
	22		14		10		8	8
16	6	9	5 4	4	6	1	7	$\begin{bmatrix} t \\ 0 \end{bmatrix}$

- Algorithm can terminate with the wrong result when \hat{h} does not under-estimate the distance to t.
- although the heuristics looks reasonable otherwise (it is monotonic, for instance)

Revisiting nodes

- The A*-algorithm can re-insert nodes that had been extracted from R before.
- This can lead to suboptimal behavior (w.r.t. running time of the algorithm).
- If \hat{h} , in addition to being admissible $(\hat{h}(v) \leq h(v))$ for all $v \in V$, fulfils monotonicity, i.e. if for all $(u, u') \in E$:

$$\hat{h}(u') \le \hat{h}(u) + c(u', u)$$

then the A*-Algorithm is equivalent to the Dijsktra-algorithm with edge weights $\tilde{c}(u,v)=c(u,v)+\hat{h}(u)-\hat{h}(v)$, and no node is re-inserted into R.

■ It is not always possible to find monotone heuristics.

$$\hat{f}(u) = d_s[u] + \hat{h}(u)$$

- Algorithm terminates correctly even if the distance heuristic is not monotonic
- It is then possible that nodes are removed and re-inserted into *R* multiple times.

$$\hat{f}(u) = \frac{d_s[u]}{h(u)} + \hat{h}(u)$$

8	7	6	5	4
7	$0 \frac{s}{0}$	0	0	3
6	5	1	0	2
5	0	0	0	1
4	0	2	1	$\begin{bmatrix} 1 & t & 0 \end{bmatrix}$

- Algorithm terminates correctly even if the distance heuristic is not monotonic
- It is then possible that nodes are removed and re-inserted into R multiple times.

$$\hat{f}(u) = d_s[u] + \hat{h}(u)$$

8	7	6	5	4
7	$\begin{bmatrix} s & 0 \\ 0 & 0 \end{bmatrix}$	0	0	3
6	5	1	0	2
5	0	0	0	1
4	0	2	1	$\begin{bmatrix} t \\ 0 \end{bmatrix}$

- Algorithm terminates correctly even if the distance heuristic is not monotonic
- It is then possible that nodes are removed and re-inserted into R multiple times.

$$\hat{f}(u) = \frac{d_s[u]}{h(u)} + \hat{h}(u)$$

		8				
8	7	1	6		5	4
8	3	s^0		1		
	$1 \mid 0$	6 6	0	1	0	3
		6				
6	5	1	1		0	2
5	0		0		0	1
						t
4	0		2		1	0

- Algorithm terminates correctly even if the distance heuristic is not monotonic
- It is then possible that nodes are removed and re-inserted into *R* multiple times.

$$\hat{f}(u) = d_s[u] + \hat{h}(u)$$

			8		8			
8		7	1	6	2	5		4
	8	(s)	9		1		2	
7	1	0^{3}	0	0	1	0	2	3
			6		2			
6		5	1	1	2	0		2
5		0		0		0		1
								4
4		0		2		1		$\begin{bmatrix} t \\ 0 \end{bmatrix}$

- Algorithm terminates correctly even if the distance heuristic is not monotonic
- It is then possible that nodes are removed and re-inserted into R multiple times.

$$\hat{f}(u) = \frac{d_s[u]}{h(u)} + \hat{h}(u)$$

			8		8		8	
8		7	1	6	2	5	3	4
	8	(s)	9		1		$\frac{3}{2}$	
7	1	0^{3}	0	0	1	0	2 3	3
			6		$\frac{1}{2}$		3	
6		5	1	1	2	0	3	2
					$\frac{2}{3}$			
5		0		0	3	0		1
								4
4		0		2		1		$\begin{bmatrix} t \\ 0 \end{bmatrix}$

- Algorithm terminates correctly even if the distance heuristic is not monotonic
- It is then possible that nodes are removed and re-inserted into *R* multiple times.

$$\hat{f}(u) = d_s[u] + \hat{h}(u)$$

			8		8		8	
8		7	1	6	2	5	$\frac{3}{2}$	4
	8	(s)	9		1			
7	1	0^{3}	0	0	1	0	$\frac{2}{3}$	3
			6		$\frac{1}{2}$		3	
6		5	1	1	2	0	$\frac{3}{4}$	2
			4		$\frac{2}{3}$		4	
5		0	4	0	3	0	4	1
								4
4		0		2		1		$\begin{bmatrix} t \\ 0 \end{bmatrix}$

- Algorithm terminates correctly even if the distance heuristic is not monotonic
- It is then possible that nodes are removed and re-inserted into *R* multiple times.

$$\hat{f}(u) = \frac{d_s[u]}{h(u)} + \hat{h}(u)$$

			8		8		8	
8		7	1	6	2	5	$\frac{3}{2}$	4
	8	(s)	9		1		2	
7	1	0^{3}	0	0	1	0	2	3
			6		3		$\frac{2}{3}$	
6		5	1	1	2	0	3	2
	10		4		3		4	
5	5	0	4	6	3	0	4	1
			5					4
4		0	5	2		1		$\begin{bmatrix} t \\ 0 \end{bmatrix}$

- Algorithm terminates correctly even if the distance heuristic is not monotonic
- It is then possible that nodes are removed and re-inserted into *R* multiple times.

$$\hat{f}(u) = d_s[u] + \hat{h}(u)$$

			8		8		8	
8		7	1	6	2	5	3	4
	8	\widehat{s}	9		1		2	
7	1	0	0	0	1	0	2	3
			6		3		3	
6		5	1	14	2	0	3	2
	10		4		3		4	
5	5	0	4	6	3	0	4	1
	10		5		8			
4	6	0	5	2	6	1		$\begin{bmatrix} t \\ 0 \end{bmatrix}$

- Algorithm terminates correctly even if the distance heuristic is not monotonic
- It is then possible that nodes are removed and re-inserted into *R* multiple times.

$$\hat{f}(u) = \frac{d_s[u]}{h(u)} + \hat{h}(u)$$

			8		8		8	
8		7	1	6	2	5	3	4
	8	(8	9		1		$\frac{3}{2}$	
7	1	0-1	0	0-1	1	0	2	3
	8		6		3		$\frac{2}{3}$	
6	2	5	1	1-1	2	0	3	2
	10		2		3		4	
5	5	0-1	2	6	3	0	4	1
	10		5		8			
4	6	0	5	2	6	1		$\begin{bmatrix} t \\ 0 \end{bmatrix}$

- Algorithm terminates correctly even if the distance heuristic is not monotonic
- It is then possible that nodes are removed and re-inserted into R multiple times.

$$\hat{f}(u) = \frac{d_s[u]}{h(u)} + \hat{h}(u)$$

			8		8		8	
8		7	1	6	2	5	3	4
	8	(s)	9		1		$\frac{3}{2}$	
7	1	04	9	0-	1	0	2	3
	8		6		3		$\frac{2}{3}$	
6	2	5	1	1-	2	0	3	2
	(8)		2		3		4	
5	3	0-1	2	0	3	0	4	1
	10		3		8			
4	6	0	3	2	6	1		$\begin{bmatrix} t \\ 0 \end{bmatrix}$

- Algorithm terminates correctly even if the distance heuristic is not monotonic
- It is then possible that nodes are removed and re-inserted into R multiple times.

$$\hat{f}(u) = \frac{d_s[u]}{h(u)} + \hat{h}(u)$$

			8		8		8	
8		7	1	6	2	5	3	4
	8	(5	9		1		$\frac{3}{2}$	
7	1	04	$\langle 0 \rangle$	0-	1	0	2	3
	8		6		3		$\frac{2}{3}$	
6	2	5-1	1	1-	2	0	3	2
	(8)		2		3		4	
5	3	0-1	2	0	3	0	4	1
	(8)		3		6			
4	4	0	3	2	4	1		$\begin{bmatrix} t \\ 0 \end{bmatrix}$

- Algorithm terminates correctly even if the distance heuristic is not monotonic
- It is then possible that nodes are removed and re-inserted into R multiple times.

$$\hat{f}(u) = \frac{d_s[u]}{h(u)} + \hat{h}(u)$$

			8		8		8	
8		7	1	6	2	5	$\frac{3}{2}$	4
	8	(8	9		1		2	
7	1	0-	9	0-	1	0	$\frac{2}{3}$	3
	8		6		3		3	
6	2 [8)	5-1	1	1-1	2	0	3	2
	(8)		2		3		4	
5	3	0-	2	0	3	0	4	1
	(8)		3		6		6	6
4	4	0	3	2	4	1	5	$\begin{bmatrix} t \\ 0 \end{bmatrix}$

- Algorithm terminates correctly even if the distance heuristic is not monotonic
- It is then possible that nodes are removed and re-inserted into *R* multiple times.

$$\hat{f}(u) = d_s[u] + \hat{h}(u)$$

			8		8		8	
8		7	1	6	2	5	$\frac{3}{2}$	4
	8	(8	9		1		2	
7	1	0	0	0-	1	0	$\frac{2}{3}$	3
	8		6		3		3	
6	2	5-	1	1-	2	0	3	2
	2 [8)		2		3		4	
5	3	0-	2	0	3	0	4	1
	[8]		3		6		6	6
4	4	0	3	2	4	1	5	$\begin{bmatrix} t \\ 6 \end{bmatrix}$

- Algorithm terminates correctly even if the distance heuristic is not monotonic
- It is then possible that nodes are removed and re-inserted into R multiple times.

Conclusion

- The A*-Algorithm is an extension of the Dijkstra algorithm by a distance heuristic \hat{h} .
- \blacksquare A* = Dijkstra if $\hat{h} \equiv 0$
- lacksquare If \hat{h} underestimates the real distance, the algorithm works correctly.
- \blacksquare If \hat{h} is monotone in addition, then the algorithm works efficiently.
- In practical applications (e.g. routing), the choice of \hat{h} is often intuitive and leads to a significant improvement over Dijkstra.
- Correctness proof in the handout

27. Transitive Closure, All Pairs Shortest Paths

Reflexive transitive closure [Ottman/Widmayer, Kap. 9.2 Cormen et al, Kap. 25.2] Floyd-Warshall Algorithm [Ottman/Widmayer, Kap. 9.5.3 Cormen et al, Kap. 25.2]

Adjacency Matrix Product

$$B := A_G^2 = \begin{pmatrix} 0 & 1 & 1 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 1 \end{pmatrix}^2 = \begin{pmatrix} 0 & 1 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 1 & 1 & 2 \end{pmatrix}$$

Interpretation

Theorem 27

Let G=(V,E) be a graph and $k\in\mathbb{N}$. Then the element $a_{i,j}^{(k)}$ of the matrix $(a_{i,j}^{(k)})_{1\leq i,j\leq n}=(A_G)^k$ provides the number of paths with length k from v_i to v_j .

Graphs and Relations

Graph
$$G = (V, E)$$

adjacencies $A_G =$ Relation $E \subseteq V \times V$ over V

Graphs and Relations

```
Graph G=(V,E) adjacencies A_G \cong \text{Relation } E \subseteq V \times V \text{ over } V
```

- **reflexive** $\Leftrightarrow a_{i,i} = 1$ for all i = 1, ..., n. (loops)
- **symmetric** $\Leftrightarrow a_{i,j} = a_{j,i}$ for all $i, j = 1, \dots, n$ (undirected)
- transitive \Leftrightarrow $(u,v) \in E$, $(v,w) \in E \Rightarrow (u,w) \in E$. (reachability)

Reflexive Transitive Closure

Reflexive transitive closure of $G \Leftrightarrow \textbf{Reachability relation } E^*: (v, w) \in E^*$ iff \exists path from node v to w.

[0	1	0	0	1
0 0 0 0 0	0	0	1	$\begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \end{bmatrix}$
0	1	0	0	0
0	0	1	0	0
0	0	0	1	0

Algorithm $A \cdot A$

return B

```
Input: (Adjacency-)Matrix A=(a_{ij})_{i,j=1...n}

Output: Matrix Product B=(b_{ij})_{i,j=1...n}=A\cdot A

B\leftarrow 0

for r\leftarrow 1 to n do

  for c\leftarrow 1 to n do

  for k\leftarrow 1 to n do

  brc\leftarrow b_{rc}+a_{rk}\cdot a_{kc} // Number of Paths
```

Counts number of paths of length 2

Algorithm $A \otimes A$

Computes which paths of length 1 and 2 exist

Computation of the Reflexive Transitive Closure

Goal: computation of $B=(b_{ij})_{1\leq i,j\leq n}$ with $b_{ij}=1\Leftrightarrow (v_i,v_j)\in E^*$

Computation of the Reflexive Transitive Closure

Goal: computation of $B=(b_{ij})_{1\leq i,j\leq n}$ with $b_{ij}=1\Leftrightarrow (v_i,v_j)\in E^*$ First idea:

- Start with $B \leftarrow A$ and set $b_{ii} = 1$ for each i (Reflexivity.).
- Compute

$$B_n = \bigotimes_{i=1}^n B$$

how

Computation of the Reflexive Transitive Closure

Goal: computation of $B = (b_{ij})_{1 \le i,j \le n}$ with $b_{ij} = 1 \Leftrightarrow (v_i, v_j) \in E^*$ First idea:

- Start with $B \leftarrow A$ and set $b_{ii} = 1$ for each i (Reflexivity.).
- Compute

$$B_n = \bigotimes_{i=1}^n B$$

with powers of 2 $B_2:=B\otimes B$, $B_4:=B_2\otimes B_2$, $B_8=B_4\otimes B_4$... \Rightarrow running time $n^3\lceil\log_2 n\rceil$

1	1	0	0	1
$\begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}$	1 0 1 0 0	0		0
0	1	0	0	0
0	0	1	0	0
0	0	0	1	0 0 0 0

Γ1	1	0	1	1
$\begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}$	1	0	1	0
0	1 0	0	1	0
0	0	1	0	0
0	0	0	1	1 0 0 0 0

1	1	0	1	1
0	1	0	1	0
0	1	1	1	0
0	1	1	1	0
$\begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}$	0	0	1	1 0 0 0 0

Γ1	1	1	1	1
$\begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}$	1	1	1	0
0	1	1	1	0
0	1	1	1	0
0	1	1	1	1 0 0 0 0

$\begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}$	1	1	1	1 0 0 0
0	1	1	1	0
0	1	1	1	0
0	1	1	1	0
0	1	1	1	1_

Algorithm TransitiveClosure(A_G)

```
Input: Adjacency matrix A_G = (a_{ij})_{i,j=1...n}
Output: Reflexive transitive closure B = (b_{ij})_{i,j=1...n} of G
B \leftarrow A_G
for k \leftarrow 1 to n do
     b_{kk} \leftarrow 1
                                                                                                     Reflexivity
     for r \leftarrow 1 to n do
   for c \leftarrow 1 to n do b_{rc} \leftarrow \max\{b_{rc}, b_{rk} \cdot b_{kc}\}
                                                                                         // All paths via v_k
return B
Runtime \Theta(n^3).
```

Correctness of the Algorithm (Induction)

Invariant (k**)**: all paths via nodes with maximal index < k considered.

- Base case (k = 1): All directed paths (all edges) in A_G considered.
- **Hypothesis**: invariant (k) fulfilled.
- **Step** $(k \to k+1)$: For each path from v_i to v_j via nodes with maximal index k: by the hypothesis $b_{ik} = 1$ and $b_{kj} = 1$. Therefore in the k-th iteration: $b_{ij} \leftarrow 1$.

All shortest Paths

Compute the weight of a shortest path for each pair of nodes.

- |V| × Application of Dijkstra's Shortest Path algorithm $\mathcal{O}(|V| \cdot (|E| + |V|) \cdot \log |V|)$ (with Fibonacci Heap: $\mathcal{O}(|V|^2 \log |V| + |V| \cdot |E|)$)
- lacksquare $|V| imes ext{Application of Bellman-Ford: } \mathcal{O}(|E| \cdot |V|^2)$
- There are better ways!

Induction via node number

Consider weights of all shortest paths S^k with intermediate nodes in $V^k := \{v_1, \ldots, v_k\}$, provided that weights for all shortest paths S^{k-1} with intermediate nodes in V^{k-1} are given.

- v_k no intermediate node of a shortest path of $v_i \leadsto v_j$ in V^k : Weight of a shortest path $v_i \leadsto v_j$ in S^{k-1} is then also weight of shortest path in S^k .
- v_k intermediate node of a shortest path $v_i \leadsto v_j$ in V^k : Sub-paths $v_i \leadsto v_k$ and $v_k \leadsto v_j$ contain intermediate nodes only from S^{k-1} .

⁴²like for the algorithm of the reflexive transitive closure of Warshall

Induction via node number

 $d^k(u,v)$ = Minimal weight of a path $u\leadsto v$ with intermediate nodes in V^k Induktion

$$d^k(u,v) = \min\{d^{k-1}(u,v), d^{k-1}(u,k) + d^{k-1}(k,v)\}(k \ge 1)$$

$$d^0(u,v) = c(u,v)$$

Algorithm Floyd-Warshall(G)

Runtime: $\Theta(|V|^3)$

Remark: Algorithm can be executed with a single matrix d (in place).

Reweighting

Idea: Reweighting the graph in order to apply Dijkstra's algorithm. The following does **not** work. The graphs are not equivalent in terms of shortest paths.

Reweighting

Other Idea: "Potential" (Height) on the nodes

- \blacksquare G = (V, E, c) a weighted graph.
- \blacksquare Mapping $h:V\to\mathbb{R}$
- New weights

$$\tilde{c}(u,v) = c(u,v) + h(u) - h(v), (u,v \in V)$$

Reweighting

Observation: A path p is shortest path in in G=(V,E,c) iff it is shortest path in in $\tilde{G}=(V,E,\tilde{c})$

$$\tilde{c}(p) = \sum_{i=1}^{k} \tilde{c}(v_{i-1}, v_i) = \sum_{i=1}^{k} c(v_{i-1}, v_i) + h(v_{i-1}) - h(v_i)$$

$$= h(v_0) - h(v_k) + \sum_{i=1}^{k} c(v_{i-1}, v_i) = c(p) + h(v_0) - h(v_k)$$

Thus $\tilde{c}(p)$ minimal in all $v_0 \leadsto v_k \Longleftrightarrow c(p)$ minimal in all $v_0 \leadsto v_k$. Weights of cycles are invariant: $\tilde{c}(v_0,\ldots,v_k=v_0)=c(v_0,\ldots,v_k=v_0)$

Johnson's Algorithm

Add a new node $s \notin V$:

$$G' = (V', E', c')$$

$$V' = V \cup \{s\}$$

$$E' = E \cup \{(s, v) : v \in V\}$$

$$c'(u, v) = c(u, v), \ u \neq s$$

$$c'(s, v) = 0(v \in V)$$

Johnson's Algorithm

If no negative cycles, choose as height function the weight of the shortest paths from s,

$$h(v) = d(s, v).$$

For a minimal weight d of a path the following triangular inequality holds:

$$d(s,v) \le d(s,u) + c(u,v).$$

Substitution yields $h(v) \leq h(u) + c(u, v)$. Therefore

$$\tilde{c}(u,v) = c(u,v) + h(u) - h(v) \ge 0.$$

Algorithm Johnson(G)

```
Input: Weighted Graph G = (V, E, c)
Output: Minimal weights of all paths D.
New node s. Compute G' = (V', E', c')
if BellmanFord(G', s) = false then return "graph has negative cycles"
foreach v \in V' do
 h(v) \leftarrow d(s,v) // d aus BellmanFord Algorithmus
foreach (u,v) \in E' do
\tilde{c}(u,v) \leftarrow c(u,v) + h(u) - h(v)
foreach u \in V do
    \tilde{d}(u,\cdot) \leftarrow \mathsf{Dijkstra}(\tilde{G}',u)
    foreach v \in V do
  D(u,v) \leftarrow \tilde{d}(u,v) + h(v) - h(u)
```

Analysis

Runtimes

- Computation of G': $\mathcal{O}(|V|)$
- Bellman Ford G': $\mathcal{O}(|V| \cdot |E|)$
- $|V| \times \text{Dijkstra } \mathcal{O}(|V| \cdot |E| \cdot \log |V|)$ (with Fibonacci Heap: $\mathcal{O}(|V|^2 \log |V| + |V| \cdot |E|)$)

Overal
$$\mathcal{O}(|V| \cdot |E| \cdot \log |V|)$$

 $(\mathcal{O}(|V|^2 \log |V| + |V| \cdot |E|))$