
26.5 A*-Algorithm
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Motivation A*
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Dijkstra Algorithm searches
for all shortest paths, in all
directions.
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Dijkstra Algorithm searches
for all shortest paths, in all
directions.
which is correct, because
the algorithm does not
know about the graph’s
structure.
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A* in Action

f̂(u) = ds[u] + ĥ(u) (ĥ = δx + δy Manhattan-Distance)
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Idea: equip algorithm with a
preferred direction by ways of a
distance heuristic ĥ
The value of this heuristics needs
to underestimate the distance to t
and is added to the found
distance ds to s
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Keep backward path

f̂(u) = ds[u] + ĥ(u) (ĥ = δx + δy)
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The algorithm works like the
Dijkstra-algorithm
For �nding the next candidate of
R instead of the value ds the
value of f̂ = ĥ+ ds is used
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A*-Algorithm

Prerequisites
Positively weighted, �nite graph G = (V,E, c)
s ∈ V , t ∈ V
Distance estimate ĥt(v) ≤ ht(v) := δ(v, t) ∀ v ∈ V .
Wanted: shortest path p : s t
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A*-Algorithm(G, s, t, ĥ)
Input: Positively weighted Graph G = (V,E, c), starting point s ∈ V , end point

t ∈ V , estimate ĥ(v) ≤ δ(v, t)
Output: Existence and value of a shortest path from s to t

foreach u ∈ V do

d[u]←∞; f̂ [u]←∞; π[u]← null

d[s]← 0; f̂ [s]← ĥ(s); N ← {s}; K ← {}
while N 6= ∅ do

u← ExtractMin
f̂

(N); K ← K ∪ {u}
if u = t then return success
foreach v ∈ N+(u) with d[v] > d[u] + c(u, v) do

d[v]← d[u] + c(u, v); f̂ [v]← d[v] + ĥ(v); π[v]← u
N ← N ∪ {v}; K ← K − {v}

return failure
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What if ĥ does not underestimate

f̂(u) = ds[u] + ĥ(u) (ĥ = δ2
x + δ2

y)
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Algorithm can terminate with the
wrong result when ĥ does not
under-estimate the distance to t.
although the heuristics looks
reasonable otherwise (it is
monotonic, for instance)
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Revisiting nodes

The A*-algorithm can re-insert nodes that had been extracted from R
before.
This can lead to suboptimal behavior (w.r.t. running time of the
algorithm).
If ĥ, in addition to being admissible (ĥ(v) ≤ h(v) for all v ∈ V ), ful�ls
monotonicity, i.e. if for all (u, u′) ∈ E:

ĥ(u′) ≤ ĥ(u) + c(u′, u)

then the A*-Algorithm is equivalent to the Dijsktra-algorithm with edge
weights c̃(u, v) = c(u, v) + ĥ(u)− ĥ(v), and no node is re-inserted into R.
It is not always possible to �nd monotone heuristics.
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A crazy ĥ

f̂(u) = ds[u] + ĥ(u)
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Algorithm terminates correctly
even if the distance heuristic is
not monotonic
It is then possible that nodes are
removed and re-inserted into R
multiple times.
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Conclusion

The A*-Algorithm is an extension of the Dijkstra algortihm by a distance
heuristic ĥ.
A* = Dijkstra if ĥ ≡ 0
If ĥ underestimates the real distance, the algorithm works correctly.
If ĥ is monotone in addition, then the algorithm works e�ciently.
In practical applications (e.g. routing), the choice of ĥ is often intuitive
and leads to a signi�cant improvement over Dijkstra.
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26.6 A*-Algorithm

Proof of correctness Not relevant for the exam
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Notation
Let f(v) be the distance of a shortest path from s to t via v, thus

f(v) := δ(s, v)︸ ︷︷ ︸
g(v)

+ δ(v, t)︸ ︷︷ ︸
h(v)

s v t
g(v) h(v)

let p be a shortest path from s to t.
It holds that f(s) = δ(s, t) and f(v) = f(s) for all v ∈ p.
Let ĝ(v) := d[v] be an estimate of g(v) in the algorithm above. It holds that
ĝ(v) ≥ g(v).
ĥ(v) is an estimate of h(v) with ĥ(v) ≤ h(v).
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Why the Algorithm Works

Lemma 24
Let u ∈ V and, at a time during the execution of the algorithm, u 6∈ M .
Let p be a shortest path from s to u. Then there is a u′ ∈ p with ĝ(u′) =
g(u′) and u′ ∈ R.

The lemma states that there is always a node in the open set R with the
minimal distance from s already computed and that belongs to a shortest
path (if existing).
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Illustration and Proof

∆
u∗ u′ ∈ R

s u1 u2 u3 u4 u

Proof: If s ∈ R, then ĝ(s) = g(s) = 0. Therefore, let s 6∈ R.
Let p = 〈s = u0, u1, . . . , uk = u〉 and ∆ = {ui ∈ p, ui ∈M, ĝ(ui) = g(ui)}.
∆ 6= ∅, because s ∈ ∆.
Let m = max{i : ui ∈ ∆}, u∗ = um. Then u∗ 6= u, since u 6∈M . Let u′ = um+1.
1. ĝ(u′) ≤ ĝ(u∗) + c(u∗, u′) because u′ has already been relaxed
2. ĝ(u∗) = g(u∗) (because u∗ ∈ ∆)
3. ĝ(u′) ≥ g(u′) (construction of ĝ)
4. g(u′) = g(u∗) + c(u∗, u′) (because p optimal)

Therefore: ĝ(u′) = g(u′) and thus also u′ ∈ R because u′ 6∈ ∆. �
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Corollary

Corollary 25

If ĥ(u) ≤ h(u) for all u ∈ V and A*- Algorithmus has not yet terminated.
The for each shortest path p from s t t there is some node u′ ∈ p with
f̂(u′) ≤ δ(s, t) = f(t).

If there is a shortest path p from s to t, then there is always a node in the
open set R that underestimates the overal distance and that is on the
shortest path.
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Proof of the Corollary

Proof:
From the lemma: ∃u′ ∈ p with ĝ(u′) = g(u′).
Therefore:

f̂(u′) = ĝ(u′) + ĥ(u′)
= g(u′) + ĥ(u′)
≤ g(u′) + h(u′) = f(u′)

Because p is shortest path: f(u′) = δ(s, t). �
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Admissibility

Theorem 26

If there is a shortest path from s to t and ĥ(u) ≤ h(u) ∀ u ∈ V then A*
terminates with ĝ(t) = δ(s, t)

Proof: If the algorithm terminates, then it termines with t with
f(t) = ĝ(t) + 0 = g(t). That is because ĝ overestimates g at most and by
the corollary above that algorithm always �nds an element v ∈ R with
f(v) ≤ δ(s, t).
The algorithm terminates in �nitely many steps. For �nite graphs the
maximal number of relaxing steps is bounded.
41 �41For a δ-graph the maximum number of relaxing steps before R contains only nodes
with f̂(s) > δ(s, t) is limited as well. The exact argument can be found in the seminal
article Hart, P. E.; Nilsson, N. J.; Raphael, B. (1968). "A Formal Basis for the Heuristic
Determination of Minimum Cost Paths". 809



27. Transitive Closure, All Pairs Shortest
Paths

Re�exive transitive closure [Ottman/Widmayer, Kap. 9.2 Cormen et al, Kap.
25.2] Floyd-Warshall Algorithm [Ottman/Widmayer, Kap. 9.5.3 Cormen et al,
Kap. 25.2]
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Adjacency Matrix Product

1 2

4

3

5

B := A2
G =


0 1 1 1 0
0 0 0 0 0
0 1 0 1 1
0 0 0 0 0
0 0 1 0 1



2

=


0 1 0 1 1
0 0 0 0 0
0 0 1 0 1
0 0 0 0 0
0 1 1 1 2
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Interpretation

Theorem 27

LetG = (V,E) be a graph and k ∈ N. Then the element a(k)
i,j of the matrix

(a(k)
i,j )1≤i,j≤n = (AG)k provides the number of paths with length k from vi

to vj .
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[Proof]

By Induction.
Base case: straightforward for k = 1. ai,j = a

(1)
i,j .

Hypothesis: claim is true for all k ≤ l
Step (l→ l + 1):

a
(l+1)
i,j =

n∑
k=1

a
(l)
i,k · ak,j

ak,j = 1 i� egde k to j, 0 otherwise. Sum counts the number paths of
length l from node vi to all nodes vk that provide a direct direction to
node vj , i.e. all paths with length l + 1.

i k j

(l)

(l)
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Relation

Given a �nite set V
(Binary) Relation R on V : Subset of the cartesian product
V × V = {(a, b)|a ∈ V, b ∈ V }
Relation R ⊆ V × V is called
re�exive, if (v, v) ∈ R for all v ∈ V
symmetric, if (v, w) ∈ R⇒ (w, v) ∈ R
transitive, if (v, x) ∈ R, (x,w) ∈ R⇒ (v, w) ∈ R

The (Re�exive) Transitive Closure R∗ of R is the smallest extension
R ⊆ R∗ ⊆ V × V such that R∗ is re�exive and transitive.
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Graphs and Relations

Graph G = (V,E)
adjacencies AG =̂ Relation E ⊆ V × V over V
re�exive⇔ ai,i = 1 for all i = 1, . . . , n. (loops)
symmetric⇔ ai,j = aj,i for all i, j = 1, . . . , n (undirected)
transitive ⇔ (u, v) ∈ E, (v, w) ∈ E ⇒ (u,w) ∈ E. (reachability)
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Re�exive Transitive Closure
Re�exive transitive closure of G ⇔ Reachability relation E∗: (v, w) ∈ E∗
i� ∃ path from node v to w.
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Algorithm A · A

Input: (Adjacency-)Matrix A = (aij)i,j=1...n

Output: Matrix Product B = (bij)i,j=1...n = A ·A

B ← 0
for r ← 1 to n do

for c← 1 to n do
for k ← 1 to n do

brc ← brc + ark · akc // Number of Paths

return B

Counts number of paths of length 2
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Algorithm A⊗ A

Input: Adjacency-Matrix A = (aij)i,j=1...n

Output: Modified Matrix Product B = (bij)i,j=1...n = A⊗A

B ← A // Keep paths
for r ← 1 to n do

for c← 1 to n do
for k ← 1 to n do

brc ← max{brc, ark · akc} // Path: yes/no

return B

Computes which paths of length 1 and 2 exist
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Computation of the Re�exive Transitive Closure

Goal: computation of B = (bij)1≤i,j≤n with bij = 1⇔ (vi, vj) ∈ E∗ First idea:

Start with B ← A and set bii = 1 for each i (Re�exivity.).
Compute

Bn =
n⊗

i=1
B

with powers of 2 B2 := B ⊗B, B4 := B2 ⊗B2, B8 = B4 ⊗B4 ...
⇒ running time n3dlog2 ne
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Improvement: Algorithm of Warshall (1962)

Inductive procedure: all paths known over nodes from {vi : i < k}. Add
node vk.
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1 1 1 1 1
0 1 1 1 0
0 1 1 1 0
0 1 1 1 0
0 1 1 1 1
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Algorithm TransitiveClosure(AG)

Input: Adjacency matrix AG = (aij)i,j=1...n

Output: Reflexive transitive closure B = (bij)i,j=1...n of G

B ← AG

for k ← 1 to n do
bkk ← 1 // Reflexivity
for r ← 1 to n do

for c← 1 to n do
brc ← max{brc, brk · bkc} // All paths via vk

return B

Runtime Θ(n3).
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Correctness of the Algorithm (Induction)

Invariant (k): all paths via nodes with maximal index < k considered.
Base case (k = 1): All directed paths (all edges) in AG considered.
Hypothesis: invariant (k) ful�lled.
Step (k → k + 1): For each path from vi to vj via nodes with maximal
index k: by the hypothesis bik = 1 and bkj = 1. Therefore in the k-th
iteration: bij ← 1.

vi vk vj

(v<k) (v<k)
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All shortest Paths

Compute the weight of a shortest path for each pair of nodes.
|V |× Application of Dijkstra’s Shortest Path algorithm
O(|V | · (|E|+ |V |) · log |V |) (with Fibonacci Heap: O(|V |2 log |V |+ |V | · |E|))
|V |× Application of Bellman-Ford: O(|E| · |V |2)
There are better ways!

823



Induction via node number

Consider weights of all shortest paths Sk with intermediate nodes in42
V k := {v1, . . . , vk}, provided that weights for all shortest paths Sk−1 with
intermediate nodes in V k−1 are given.
vk no intermediate node of a shortest path of vi  vj in V k: Weight of a
shortest path vi  vj in Sk−1 is then also weight of shortest path in Sk.
vk intermediate node of a shortest path vi  vj in V k: Sub-paths
vi  vk and vk  vj contain intermediate nodes only from Sk−1.

42like for the algorithm of the re�exive transitive closure of Warshall
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Induction via node number

dk(u, v) = Minimal weight of a path u v with intermediate nodes in V k

Induktion

dk(u, v) = min{dk−1(u, v), dk−1(u, k) + dk−1(k, v)}(k ≥ 1)
d0(u, v) = c(u, v)
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Algorithm Floyd-Warshall(G)

Input: Graph G = (V,E, c) without negative weight cycles.
Output: Minimal weights of all paths d
d0 ← c
for k ← 1 to |V | do

for i← 1 to |V | do
for j ← 1 to |V | do

dk(vi, vj) = min{dk−1(vi, vj), dk−1(vi, vk) + dk−1(vk, vj)}

Runtime: Θ(|V |3)
Remark: Algorithm can be executed with a single matrix d (in place).
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Reweighting

Idea: Reweighting the graph in order to apply Dijkstra’s algorithm.
The following does not work. The graphs are not equivalent in terms of
shortest paths.
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Reweighting

Other Idea: “Potential” (Height) on the nodes
G = (V,E, c) a weighted graph.
Mapping h : V → R

New weights

c̃(u, v) = c(u, v) + h(u)− h(v), (u, v ∈ V )
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Reweighting

Observation: A path p is shortest path in in G = (V,E, c) i� it is shortest
path in in G̃ = (V,E, c̃)

c̃(p) =
k∑

i=1
c̃(vi−1, vi) =

k∑
i=1

c(vi−1, vi) + h(vi−1)− h(vi)

= h(v0)− h(vk) +
k∑

i=1
c(vi−1, vi) = c(p) + h(v0)− h(vk)

Thus c̃(p) minimal in all v0  vk ⇐⇒ c(p) minimal in all v0  vk .
Weights of cycles are invariant: c̃(v0, . . . , vk = v0) = c(v0, . . . , vk = v0)

829



Johnson’s Algorithm

Add a new node s 6∈ V :

G′ = (V ′, E ′, c′)
V ′ = V ∪ {s}
E ′ = E ∪ {(s, v) : v ∈ V }

c′(u, v) = c(u, v), u 6= s

c′(s, v) = 0(v ∈ V )
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Johnson’s Algorithm

If no negative cycles, choose as height function the weight of the shortest
paths from s,

h(v) = d(s, v).

For a minimal weight d of a path the following triangular inequality holds:

d(s, v) ≤ d(s, u) + c(u, v).

Substitution yields h(v) ≤ h(u) + c(u, v). Therefore

c̃(u, v) = c(u, v) + h(u)− h(v) ≥ 0.
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Algorithm Johnson(G)
Input: Weighted Graph G = (V,E, c)
Output: Minimal weights of all paths D.

New node s. Compute G′ = (V ′, E′, c′)
if BellmanFord(G′, s) = false then return “graph has negative cycles”
foreach v ∈ V ′ do

h(v)← d(s, v) // d aus BellmanFord Algorithmus

foreach (u, v) ∈ E′ do
c̃(u, v)← c(u, v) + h(u)− h(v)

foreach u ∈ V do
d̃(u, ·)← Dijkstra(G̃′, u)
foreach v ∈ V do

D(u, v)← d̃(u, v) + h(v)− h(u)
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Analysis

Runtimes
Computation of G′: O(|V |)
Bellman Ford G′: O(|V | · |E|)
|V |× Dijkstra O(|V | · |E| · log |V |)
(with Fibonacci Heap: O(|V |2 log |V |+ |V | · |E|))

Overal O(|V | · |E| · log |V |)
(O(|V |2 log |V |+ |V | · |E|))

833


	A*-Algorithm
	A*-Algorithm
	Transitive Closure, All Pairs Shortest Paths
	Graphs and Relations
	Floyd-Warshall Algorithm
	Johnson Algorithm


