26.5 A*-Algorithm

792

Motivation A*

m Dijkstra Algorithm searches
for all shortest paths, in all
directions.

793

Motivation A*

ot
W
w
W
ot
D

m Dijkstra Algorithm searches
for all shortest paths, in all
directions.

m which is correct, because
the algorithm does not

9 1 @0 1 9 - know about the graph’s

structure.

A* in Action

fu) = d.Ju] + h(u) (h =6, +d, Manhattan-Distance)

10 10 10
9 8 107 g 6 é 5 g 4 5 m Idea: equip algorithm with a
preferred direction by ways of a

8 7 316 2|5 3|4 43 5 ; ietic b

TR 5 5 5 2 $|hstanie he;£L§t|chh . |
A I I m The value of this heuristics needs

] 6 A A A 3 to underesUmate the distance to ¢
N 4@0 NARARS and is added to the found

S 6 4 4 4l s distance d, to s
2. 34 23 12 21 3 0@8

Keep backward path

fu) = dJfu) + h(u) (h=3d,+d,)

8 8] 8

8 |7 16 2|5 34
8 9_ 6

716Q85+14 213
s |6 Ig_ 6

6 2|5414432[3 3|2
s |6 Ig_ 6

5 314423 32 4]1
8 LG G G 6

t
4 4|3 3|2 415006

m The algorithm works like the
Dijkstra-algorithm

m For finding the next candidate of
R instead of the value d, the
value of f = h + d; is used

796

A*-Algorithm

Prerequisites
m Positively weighted, finite graph G = (V, E, ¢)
mseV,teV

m Distance estimate hy(v) < hy(v) == 6(v,t) Vv e V.

m Wanted: shortest path p: s ~ ¢

797

A*-Algorithm(G, s, t, h)

Input: Positively weighted Graph G' = (V, E, ¢), starting point s € V, end point
t € V, estimate h(v) < d(v,t)
Output: Existence and value of a shortest path from s to ¢

foreach v € V do
L d[u] < o0; flu] + oo; 7[u] < null

d[s] < 0; fls] < h(s); N « {s}; K « {}
while N # () do
u ExtractMinf(N); K + KuU{u}
if w =t then return success
foreach v € N7 (u) with d[v] > d[u] + c(u,v) do
L d[v] < d[u] + c(u,v); flv] < d[v] + h(v); 7[v] + u
N+~ NU{v}; K + K —{v}

return failure

798

What if » does not underestimate

A

Flu) = dJu] + h(u) (h =62+ 52)

26 22 Q(Il
32 25 120 217 3J6

260 1 1(4_1 P m Algorithm can terminate with the
o5 1 18@>§E~1 _0 219 wrong result when h does not
14 1§_ 13 under-estimate the distance to ¢.
20 |13 1,842/5 3J4 m although the heuristics looks
22 14, g__ 6 reasonable otherwise (it is
17 25210“1445 1@92 %L 1 . monotonic, for instance)
16 69 54 6/1 ?0@8

Revisiting nodes

m The A*-algorithm can re-insert nodes that had been extracted from R
before.

m This can lead to suboptimal behavior (w.rt. running time of the
algorithm).

m If 1, in addition to being admissible (h(v) < h(v) for all v € V), fulfils
monotonicity, i.e. if for all (u,u) € E:

~

h(u') < h(u) + c(u',u)

then the A*-Algorithm is equivalent to the Dijsktra-algorithm with edge
weights é(u, v) = ¢(u,v) + h(u) — h(v), and no node is re-inserted into R.
m |t is not always possible to find monotone heuristics.

800

Fu) = dJu] + h(u)
8 8] 8
8 |7 16 25 3l4
8 9
710@%_04}_0 ol3
8 16 '§ 3
625¢~1TO32
8 12 2_ 1
5 3|0 2'5 0 4}
% 1376 6 6
i
440‘3 415006

m Algorithm terminates correctly
even if the distance heuristic is
not monotonic

m |t is then possible that nodes are
removed and re-inserted into R
multiple times.

801

Conclusion

m The A*-Algorithm is an extension of the Dijkstra algortihm by a distance
heuristic A.

m A* = Dijkstraif h = 0
m If 4 underestimates the real distance, the algorithm works correctly.
m If b is monotone in addition, then the algorithm works efficiently.

m In practical applications (e.g. routing), the choice of & is often intuitive
and leads to a significant improvement over Dijkstra.

802

26.6 A*-Algorithm

Proof of correctness Not relevant for the exam

803

Notation

Let f(v) be the distance of a shortest path from s to ¢ via v, thus

f(w):=468(s,v)+d(v,t)
g9(v) h(v)

@ 9(v) C h(v) C

let p be a shortest path from s to t.

It holds that f(s) = d(s,t) and f(v) = f(s) forallv € p.

Let g(v) := d[v] be an estimate of g(v) in the algorithm above. It holds that
3(v) > g(v). i

h(v) is an estimate of h(v) with h(v) < h(v).

804

Why the Algorithm Works

Lemma 24

Let uw € V and, at a time during the execution of the algorithm, u & M.
Let p be a shortest path from s to u. Then there is a u' € p with g(u') =
g(u')and v’ € R.

The lemma states that there is always a node in the open set R with the
minimal distance from s already computed and that belongs to a shortest
path (if existing).

805

Illustration and Proof

v eER

Proof: If s € R, then g(s) = g(s) = 0. Therefore, let s ¢ R.
Letp = <S = U, U1, ..., U = U> and A = {u’b €Epu; € Ma./g\(ul) = g(uz)}
A # (), because s € A,

Let m = max{i : u; € A}, u* = u,,. Then u* # u, since u & M. Let v/ = up, 1.

1. g(u') < g(u*) + e(u*,u’) because «’ has already been relaxed
2. g(u*) = g(u*) (because u* € A)

3. g(u') > g(u') (construction of §)

4. g(u') = g(u*) + c(u*,u') (because p optimal)

Therefore: g(u') = g(u’) and thus also v’ € R because v’ ¢ A. |

806

Corollary

Corollary 25

If h(u) < h(u) for all w € V and A*- Algorithmus has not yet terminated.
The for each shortest path p from s t t there is some node v’ € p with

A

fW') < o(s,t) = f(2).
If there is a shortest path p from s to ¢, then there is always a node in the
open set R that underestimates the overal distance and that is on the
shortest path.

807

Proof of the Corollary

Proof:
From the lemma: Ju’ € p with g(u') = g(u').
Therefore:

Because p is shortest path: f(u') = (s, t).

808

Admissibility

Theorem 26

If there is a shortest path from s to t and h(u) < h(u) ¥ u € V then A*
terminates with g(t) = (s, t)

Proof: If the algorithm terminates, then it termines with ¢ with

f(t) =g(t) +0=g(t). That is because g overestimates g at most and by
the corollary above that algorithm always finds an element v € R with
fv) <d(s, t).

The algorithm terminates in finitely many steps. For finite graphs the

maximal number of relaxing steps is bounded.
4

“TFor a 6-graph the maximum number of relaxing steps before R contains only nodes
with f(s) > d(s, t) is limited as well. The exact argument can be found in the seminal
article Hart, P. E; Nilsson, N. J.; Raphael, B. (1968). "A Formal Basis for the Heuristic
Determination of Minimum Cost Paths"

809

27. Transitive Closure, All Pairs Shortest
Paths

Reflexive transitive closure [Ottman/Widmayer, Kap. 9.2 Cormen et al, Kap.
25.2] Floyd-Warshall Algorithm [Ottman/Widmayer, Kap. 9.5.3 Cormen et al,
Kap. 25.2]

810

Adjacency Matrix Product

— O — O N
— O O O
OO H O
— O O O
O OO OO
N~ —

I
™
—
OO —H O
— O — O O
— O O O
— O 4 O O
O OO OO
N~

I

O

<

I

Q

8n

Interpretation

Theorem 27

Let G = (V, E) be a graph and k € N. Then the element ag? of the matrix
(ag?)lgmgn = (Ag)* provides the number of paths with length k from v;
to (3

812

[Proof]

By Induction.
Base case: straightforward for k = 1. a;; = a!’).)
Hypothesis: claim is true for all k <1
Step (I — [+ 1) —)@
I+1 = l
az(‘,;_) = Z aE,Z; N (1)

ap; = 1 iff egde k to j, 0 otherwise. Sum counts the number paths of
length [from node v; to all nodes v, that provide a direct direction to
node v, i.e. all paths with length [+ 1.

813

Relation

Given a finite set V

(Binary) Relation R on V: Subset of the cartesian product
VxV={(ablacV,beV}

Relation R C V x V is called

m reflexive, if (v,v) € Rforallv eV

m symmetric, if (v,w) € R = (w,v) € R

m transitive, if (v,2) € R, (z,w) € R= (v,w) € R

The (Reflexive) Transitive Closure R* of R is the smallest extension
R C R* CV x V such that R* is reflexive and transitive.

814

Graphs and Relations

Graph G = (V, E)
adjacencies Ag = Relation E CV x V over V

m reflexive < q,; = 1 foralli =1,...,n. (loops)
m symmetric < a,;; = a;, forall4,j =1,...,n (undirected)
m transitive < (u,v) € F, (v,w) € E = (u,w) € E. (reachability)

815

Reflexive Transitive Closure

Reflexive transitive closure of G < Reachability relation £*: (v,w) € E*
iff 3 path from node v to w.

01001 L
000 10 01110
0100 0 01110
0010 0 01110
000 10 0 L 1 11

816

Algorithm A - A

Input: (Adjacency-)Matrix A = (a;;)i j=1..n
Output: Matrix Product B = (b;j)ij=1.. = A- A

B+ 0
for r < 1 tondo
for c+ 1 ton do
for k< 1tondo
L ‘7 bre < bre + apg - age

return B

Counts number of paths of length 2

// Number of Paths

817

Algorithm A® A

Input: Adjacency-Matrix A = (a;j)ij=1..n
Output: Modified Matrix Product B = (b;j)ij=1.. = A® A
B+ A // Keep paths
for r < 1 to n do
for c + 1 ton do
for k < 1ton do
L ‘ bre < max{byc, Grk - Qke} // Path: yes/no

return B

Computes which paths of length 1 and 2 exist

818

Computation of the Reflexive Transitive Closure

Goal: computation of B = (b;;)1<; j<n With b;; = 1 < (v;,v;) € E* First idea:

m Start with B < A and set b;; = 1 for each i (Reflexivity.).
m Compute

B,=®B
=1

with powers of 2 B, := B® B, By := By ® By, Bs = B, ® B, ...
= running time n?[log, n|

819

Improvement: Algorithm of Warshall (1962)

Inductive procedure: all paths known over nodes from {v; : ¢ < k}. Add
node vy.

11 1 11
01 110
01 1 10
0O 1 1 10
0O 1 1 11

820

Algorithm TransitiveClosure(A¢)

Input: Adjacency matrix Ag = (aij)ij=1..n
Output: Reflexive transitive closure B = (b;;); j=1..n of G
B + AG
for k< 1tondo
bk <+ 1 // Reflexivity
for r < 1 ton do
forc< 1tondo
L ‘ bre < max{brc, by - bie} // All paths via vy,

return B

Runtime ©(n?).

821

Correctness of the Algorithm (Induction)

Invariant (k): all paths via nodes with maximal index < k considered.

m Base case (k = 1): All directed paths (all edges) in Ag considered.
m Hypothesis: invariant (k) fulfilled.

m Step (k — k + 1): For each path from v; to v; via nodes with maximal
index k: by the hypothesis b;; = 1 and b;; = 1. Therefore in the k-th
iteration: b;; < 1.

(v<r) (v<r)

822

All shortest Paths

Compute the weight of a shortest path for each pair of nodes.

m |V|x Application of Dijkstra’s Shortest Path algorithm

O(|V]-(IE| +|V]) -1og |V]) (with Fibonacci Heap: O(|V |*log |V |+ V|- |E|))
m |V|x Application of Bellman-Ford: O(|E| - [V]?)
m There are better ways!

823

Induction via node number

Consider weights of all shortest paths S* with intermediate nodes in*

VE .= {vy,...,v}, provided that weights for all shortest paths S*~1 with

intermediate nodes in V¥~! are given.

® v; no intermediate node of a shortest path of v; ~ v; in V*: Weight of a
shortest path v; ~ v; in S*~1 is then also weight of shortest path in S*.

m v, intermediate node of a shortest path v; ~ v; in V*: Sub-paths
v; ~ v and vy ~ v; contain intermediate nodes only from S*1.

“|ike for the algorithm of the reflexive transitive closure of Warshall

824

Induction via node number

d*(u,v) = Minimal weight of a path u ~ v with intermediate nodes in V*
Induktion

d"(u,v) = min{d" " (u,v), d* (u, k) + d* " (k,v)}(k > 1)
d°(u,v) = c(u,v)

825

Algorithm Floyd-Warshall(G)

Input: Graph G = (V, E, ¢) without negative weight cycles.
Output: Minimal weights of all paths d
d' ¢
for k < 1 to |V| do
for i < 1 to |V]| do
for j < 1 to |V]| do
L - d¥(vi,v;) = min{d* (v, v;), d¥ (v, vg) + dF g, vj)}

Runtime: ©(|V]?)
Remark: Algorithm can be executed with a single matrix d (in place).

826

Reweighting

Idea: Reweighting the graph in order to apply Dijkstra’s algorithm.

The following does not work. The graphs are not equivalent in terms of
shortest paths.

827

Reweighting

Other Idea: “Potential” (Height) on the nodes
m G = (V,E, c) aweighted graph.

m Mappingh:V - R

m New weights

¢(u,v) = c(u,v) + h(u) — h(v), (u,v € V)

828

Reweighting

Observation: A path p is shortest path in in G = (V, E, ¢) iff it is shortest
pathinin G = (V,E,¢)

k

Z C\V;— 177)1 = Zc(vi*hvi) + h(vifl) - h(vl)

=1

=1
k
= h(vo> — h(vk) + Z C(Ui_l, Ui) = c(p) + h(vo) — h('l)k)
=1

E

Thus é(p) minimal in all vg ~ v <= ¢(p) minimal in all vy ~ vg.
Weights of cycles are invariant: &(vy, . .., vk = vg) = ¢(vg, - .., Vp = vg)

829

Johnson’s Algorithm

Add a new node s ¢ V:

G'=(V',E')

V' =V U{s}

E'=EU{(s,v):veV}
d(u,v) = c(u,v), u#s

d(s,v)=0(weV)

830

Johnson’s Algorithm

If no negative cycles, choose as height function the weight of the shortest
paths from s,

h(v) = d(s,v).
For a minimal weight d of a path the following triangular inequality holds:
d(s,v) < d(s,u) ~+ c(u,v).
Substitution yields h(v) < h(u) + c¢(u,v). Therefore

¢(u,v) = c(u,v) + h(u) — h(v) > 0.

831

Algorithm Johnson(G)

Input: Weighted Graph G = (V, E, ¢)
Output: Minimal weights of all paths D.

New node s. Compute G’ = (V' E',)

if BellmanFord(G’, s) = false then return “graph has negative cycles”

foreach v € V' do
| h(v) « d(s,v) // d aus BellmanFord Algorithmus
foreach (u,v) € E’ do
- é(u,v) < c(u,v) + h(u) — h(v)
foreach u € V do }
d(u,-) < Dijkstra(G’, u)
foreach v € V do
L D(u,v) < d(u,v) + h(v) — h(u)

832

Analysis

Runtimes
m Computation of G- O(|V|)
m Bellman Ford G": O(|V] - |E|)
m |V|x Dijkstra O(|V| - |E| - log |V])
(with Fibonacci Heap: O(|V |*log |V| + |V - | E]))
Overal O(|V|- |E| - log|V])
(O([VPlog [V]+ V|- |E]))

833

	A*-Algorithm
	A*-Algorithm
	Transitive Closure, All Pairs Shortest Paths
	Graphs and Relations
	Floyd-Warshall Algorithm
	Johnson Algorithm

