26.5 A*-Algorithm

Motivation A*

 Dijkstra Algorithm searches for all shortest paths, in all directions.

Motivation A*

- Dijkstra Algorithm searches for all shortest paths, in all directions.
- which is correct, because the algorithm does not know about the graph's structure.

A* in Action

 $\hat{f}(u) = d_s[u] + \hat{h}(u)$ ($\hat{h} = \delta_x + \delta_y$ Manhattan-Distance)

- Idea: equip algorithm with a preferred direction by ways of a distance heuristic h
- The value of this heuristics needs to underestimate the distance to t and is added to the found distance d_s to s

Keep backward path

$$\hat{f}(u) = d_s[u] + \hat{h}(u) \quad (\hat{h} = \delta_x + \delta_y)$$

- The algorithm works like the Dijkstra-algorithm
- For finding the next candidate of *R* instead of the value d_s the value of $\hat{f} = \hat{h} + d_s$ is used

A*-Algorithm

Prerequisites

- \blacksquare Positively weighted, finite graph G=(V,E,c)
- $\blacksquare \ s \in V \text{, } t \in V$
- Distance estimate $\hat{h}_t(v) \leq h_t(v) := \delta(v, t) \ \forall \ v \in V.$
- $\blacksquare \text{ Wanted: shortest path } p: s \rightsquigarrow t$

A*-Algorithm(G, s, t, \hat{h})

Input: Positively weighted Graph G = (V, E, c), starting point $s \in V$, end point $t \in V$, estimate $\hat{h}(v) \le \delta(v, t)$

Output: Existence and value of a shortest path from s to t

$$\begin{split} & \text{foreach } u \in V \text{ do} \\ & \left\lfloor \begin{array}{c} d[u] \leftarrow \infty; \ \widehat{f}[u] \leftarrow \infty; \ \pi[u] \leftarrow \text{null} \\ d[s] \leftarrow 0; \ \widehat{f}[s] \leftarrow \widehat{h}(s); \ N \leftarrow \{s\}; \ K \leftarrow \{\} \\ & \text{while } N \neq \emptyset \text{ do} \\ & u \leftarrow \text{ExtractMin}_{\widehat{f}}(N); \ K \leftarrow K \cup \{u\} \\ & \text{if } u = t \text{ then return success} \\ & \text{foreach } v \in N^+(u) \text{ with } d[v] > d[u] + c(u,v) \text{ do} \\ & \left\lfloor \begin{array}{c} d[v] \leftarrow d[u] + c(u,v); \ \widehat{f}[v] \leftarrow d[v] + \widehat{h}(v); \ \pi[v] \leftarrow u \\ & N \leftarrow N \cup \{v\}; \ K \leftarrow K - \{v\} \\ \end{array} \right. \end{split}$$

return failure

What if \hat{h} does not underestimate

$$\hat{f}(u) = d_s[u] + \hat{h}(u)$$
 $(\hat{h} = \delta_x^2 + \delta_y^2)$

- Algorithm can terminate with the wrong result when \hat{h} does not under-estimate the distance to t.
- although the heuristics looks reasonable otherwise (it is monotonic, for instance)

Revisiting nodes

- The A*-algorithm can re-insert nodes that had been extracted from *R* before.
- This can lead to suboptimal behavior (w.r.t. running time of the algorithm).
- If \hat{h} , in addition to being admissible $(\hat{h}(v) \le h(v)$ for all $v \in V$), fulfils monotonicity, i.e. if for all $(u, u') \in E$:

$$\widehat{h}(u') \le \widehat{h}(u) + c(u', u)$$

then the A*-Algorithm is equivalent to the Dijsktra-algorithm with edge weights $\tilde{c}(u, v) = c(u, v) + \hat{h}(u) - \hat{h}(v)$, and no node is re-inserted into *R*. It is not always possible to find monotone heuristics.

A crazy \hat{h}

$$\hat{f}(u) = d_s[u] + \hat{h}(u)$$

- Algorithm terminates correctly even if the distance heuristic is not monotonic
- It is then possible that nodes are removed and re-inserted into R multiple times.

Conclusion

- The A*-Algorithm is an extension of the Dijkstra algorithm by a distance heuristic \hat{h} .
- A* = Dijkstra if $\hat{h} \equiv 0$
- If \hat{h} underestimates the real distance, the algorithm works correctly.
- If \hat{h} is monotone in addition, then the algorithm works efficiently.
- In practical applications (e.g. routing), the choice of \hat{h} is often intuitive and leads to a significant improvement over Dijkstra.

26.6 A*-Algorithm

Proof of correctness Not relevant for the exam

Notation

Let f(v) be the distance of a shortest path from s to t via v, thus

$$f(v) := \underbrace{\delta(s, v)}_{g(v)} + \underbrace{\delta(v, t)}_{h(v)}$$

$$s \xrightarrow{g(v)} v \xrightarrow{h(v)} t$$

let p be a shortest path from s to t. It holds that $f(s) = \delta(s, t)$ and f(v) = f(s) for all $v \in p$. Let $\hat{g}(v) := d[v]$ be an estimate of g(v) in the algorithm above. It holds that $\hat{g}(v) \ge g(v)$. $\hat{h}(v)$ is an estimate of h(v) with $\hat{h}(v) \le h(v)$.

Why the Algorithm Works

Lemma 24

Let $u \in V$ and, at a time during the execution of the algorithm, $u \notin M$. Let p be a shortest path from s to u. Then there is a $u' \in p$ with $\widehat{g}(u') = g(u')$ and $u' \in R$.

The lemma states that there is always a node in the open set R with the minimal distance from s already computed and that belongs to a shortest path (if existing).

Illustration and Proof

Proof: If $s \in R$, then $\hat{q}(s) = q(s) = 0$. Therefore, let $s \notin R$. Let $p = \langle s = u_0, u_1, \dots, u_k = u \rangle$ and $\Delta = \{u_i \in p, u_i \in M, \widehat{g}(u_i) = g(u_i)\}.$ $\Delta \neq \emptyset$, because $s \in \Delta$. Let $m = \max\{i : u_i \in \Delta\}$, $u^* = u_m$. Then $u^* \neq u$, since $u \notin M$. Let $u' = u_{m+1}$. 1. $\widehat{g}(u') \leq \widehat{g}(u^*) + c(u^*, u')$ because u' has already been relaxed 2. $\widehat{q}(u^*) = q(u^*)$ (because $u^* \in \Delta$) 3. $\hat{q}(u') \geq q(u')$ (construction of \hat{q}) 4. $q(u') = q(u^*) + c(u^*, u')$ (because p optimal) Therefore: $\widehat{q}(u') = q(u')$ and thus also $u' \in R$ because $u' \notin \Delta$.

Corollary

Corollary 25

If $\hat{h}(u) \leq h(u)$ for all $u \in V$ and A*- Algorithmus has not yet terminated. The for each shortest path p from s t t there is some node $u' \in p$ with $\hat{f}(u') \leq \delta(s,t) = f(t)$.

If there is a shortest path p from s to t, then there is always a node in the open set R that underestimates the overal distance and that is on the shortest path.

Proof of the Corollary

Proof:

From the lemma: $\exists u' \in p$ with $\widehat{g}(u') = g(u')$. Therefore:

$$\widehat{f}(u') = \widehat{g}(u') + \widehat{h}(u')$$
$$= g(u') + \widehat{h}(u')$$
$$\leq g(u') + h(u') = f(u')$$

Because p is shortest path: $f(u') = \delta(s, t)$.

Admissibility

Theorem 26

If there is a shortest path from s to t and $\hat{h}(u) \leq h(u) \ \forall \ u \in V$ then A^{*} terminates with $\hat{g}(t) = \delta(s, t)$

Proof: If the algorithm terminates, then it termines with t with $f(t) = \hat{g}(t) + 0 = g(t)$. That is because \hat{g} overestimates g at most and by the corollary above that algorithm always finds an element $v \in R$ with $f(v) \leq \delta(s, t)$.

The algorithm terminates in finitely many steps. For finite graphs the maximal number of relaxing steps is bounded.

41

⁴¹For a δ -graph the maximum number of relaxing steps before R contains only nodes with $\hat{f}(s) > \delta(s,t)$ is limited as well. The exact argument can be found in the seminal article Hart, P. E.; Nilsson, N. J.; Raphael, B. (1968). "A Formal Basis for the Heuristic Determination of Minimum Cost Paths".

27. Transitive Closure, All Pairs Shortest Paths

Reflexive transitive closure [Ottman/Widmayer, Kap. 9.2 Cormen et al, Kap. 25.2] Floyd-Warshall Algorithm [Ottman/Widmayer, Kap. 9.5.3 Cormen et al, Kap. 25.2]

Adjacency Matrix Product

$$B := A_G^2 = \begin{pmatrix} 0 & 1 & 1 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 1 \end{pmatrix}^2 = \begin{pmatrix} 0 & 1 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 1 & 1 & 2 \end{pmatrix}$$

Interpretation

Theorem 27

Let G = (V, E) be a graph and $k \in \mathbb{N}$. Then the element $a_{i,j}^{(k)}$ of the matrix $(a_{i,j}^{(k)})_{1 \leq i,j \leq n} = (A_G)^k$ provides the number of paths with length k from v_i to v_j .

[Proof]

By Induction.

Base case: straightforward for k = 1. $a_{i,j} = a_{i,j}^{(1)}$. **Hypothesis:** claim is true for all $k \le l$ **Step (** $l \rightarrow l + 1$ **):** $a_{i,j}^{(l+1)} = \sum_{k=1}^{n} a_{i,k}^{(l)} \cdot a_{k,j}$

 $a_{k,j} = 1$ iff egde k to j, 0 otherwise. Sum counts the number paths of length l from node v_i to all nodes v_k that provide a direct direction to node v_j , i.e. all paths with length l + 1.

Relation

Given a finite set V

(Binary) **Relation** R on V: Subset of the cartesian product $V \times V = \{(a, b) | a \in V, b \in V\}$ Relation $R \subseteq V \times V$ is called

- **reflexive**, if $(v, v) \in R$ for all $v \in V$
- **symmetric**, if $(v, w) \in R \Rightarrow (w, v) \in R$
- **Transitive**, if $(v, x) \in R$, $(x, w) \in R \Rightarrow (v, w) \in R$

The (Reflexive) Transitive Closure R^* of R is the smallest extension $R \subseteq R^* \subseteq V \times V$ such that R^* is reflexive and transitive.

Graphs and Relations

Graph G = (V, E)adjacencies $A_G \cong$ Relation $E \subseteq V \times V$ over V

reflexive
$$\Leftrightarrow a_{i,i} = 1$$
 for all $i = 1, \dots, n$. (loops)

- **symmetric** $\Leftrightarrow a_{i,j} = a_{j,i}$ for all $i, j = 1, \dots, n$ (undirected)
- **transitive** \Leftrightarrow $(u, v) \in E$, $(v, w) \in E \Rightarrow (u, w) \in E$. (reachability)

Reflexive Transitive Closure

Reflexive transitive closure of $G \Leftrightarrow$ **Reachability relation** E^* : $(v, w) \in E^*$ iff \exists path from node v to w.

Algorithm $A \cdot A$

Input: (Adjacency-)Matrix $A = (a_{ij})_{i,j=1...n}$ **Output:** Matrix Product $B = (b_{ij})_{i,j=1...n} = A \cdot A$

 $B \leftarrow 0$ for $r \leftarrow 1$ to n do
for $c \leftarrow 1$ to n do
for $k \leftarrow 1$ to n do $b_{rc} \leftarrow b_{rc} + a_{rk} \cdot a_{kc}$

// Number of Paths

return B

Counts number of paths of length ${\bf 2}$

Algorithm $A \otimes A$

Input: Adjacency-Matrix $A = (a_{ij})_{i,j=1...n}$ **Output:** Modified Matrix Product $B = (b_{ij})_{i,j=1...n} = A \otimes A$

```
\begin{array}{ll} B \leftarrow A & // \text{ Keep paths} \\ \text{for } r \leftarrow 1 \text{ to } n \text{ do} \\ & & & \\ for \ c \leftarrow 1 \text{ to } n \text{ do} \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\
```

return B

Computes which paths of length 1 and 2 exist

Computation of the Reflexive Transitive Closure

Goal: computation of $B = (b_{ij})_{1 \le i,j \le n}$ with $b_{ij} = 1 \Leftrightarrow (v_i, v_j) \in E^*$ First idea:

Start with $B \leftarrow A$ and set $b_{ii} = 1$ for each *i* (Reflexivity.). Compute

$$B_n = \bigotimes_{i=1}^n B$$

with powers of 2 $B_2 := B \otimes B$, $B_4 := B_2 \otimes B_2$, $B_8 = B_4 \otimes B_4 \dots$ \Rightarrow running time $n^3 \lceil \log_2 n \rceil$

Improvement: Algorithm of Warshall (1962)

Inductive procedure: all paths known over nodes from $\{v_i : i < k\}$. Add node v_k .

Algorithm TransitiveClosure(A_G)

Input: Adjacency matrix $A_G = (a_{ij})_{i,j=1...n}$ **Output:** Reflexive transitive closure $B = (b_{ij})_{i,j=1...n}$ of G

 $B \leftarrow A_G$ for $k \leftarrow 1$ to n do $b_{kk} \leftarrow 1$ for $r \leftarrow 1$ to n do $\begin{bmatrix} \text{for } c \leftarrow 1 \text{ to } n \text{ do} \\ b_{rc} \leftarrow \max\{b_{rc}, b_{rk} \cdot b_{kc}\} \end{bmatrix}$

// Reflexivity

All paths via v_k

 $\mathbf{return}\ B$

Runtime $\Theta(n^3)$.

Correctness of the Algorithm (Induction)

Invariant (k**)**: all paths via nodes with maximal index < k considered.

- **Base case (**k = 1**)**: All directed paths (all edges) in A_G considered.
- **Hypothesis**: invariant (*k*) fulfilled.
- **Step** $(k \rightarrow k + 1)$: For each path from v_i to v_j via nodes with maximal index k: by the hypothesis $b_{ik} = 1$ and $b_{kj} = 1$. Therefore in the k-th iteration: $b_{ij} \leftarrow 1$.

All shortest Paths

Compute the weight of a shortest path for each pair of nodes.

- |V| × Application of Dijkstra's Shortest Path algorithm $\mathcal{O}(|V| \cdot (|E| + |V|) \cdot \log |V|)$ (with Fibonacci Heap: $\mathcal{O}(|V|^2 \log |V| + |V| \cdot |E|)$)
- $|V| \times \text{Application of Bellman-Ford: } \mathcal{O}(|E| \cdot |V|^2)$
- There are better ways!

Induction via node number

Consider weights of all shortest paths S^k with intermediate nodes in⁴² $V^k := \{v_1, \ldots, v_k\}$, provided that weights for all shortest paths S^{k-1} with intermediate nodes in V^{k-1} are given.

- v_k no intermediate node of a shortest path of $v_i \rightsquigarrow v_j$ in V^k : Weight of a shortest path $v_i \rightsquigarrow v_j$ in S^{k-1} is then also weight of shortest path in S^k .
- v_k intermediate node of a shortest path $v_i \rightsquigarrow v_j$ in V^k : Sub-paths $v_i \rightsquigarrow v_k$ and $v_k \rightsquigarrow v_j$ contain intermediate nodes only from S^{k-1} .

⁴²like for the algorithm of the reflexive transitive closure of Warshall

Induction via node number

 $d^k(u,v)$ = Minimal weight of a path $u \rightsquigarrow v$ with intermediate nodes in V^k Induktion

$$\begin{aligned} &d^{k}(u,v) = \min\{d^{k-1}(u,v), d^{k-1}(u,k) + d^{k-1}(k,v)\}(k \ge 1) \\ &d^{0}(u,v) = c(u,v) \end{aligned}$$

Algorithm Floyd-Warshall(G)

Input: Graph G = (V, E, c) without negative weight cycles. Output: Minimal weights of all paths d $d^0 \leftarrow c$ for $k \leftarrow 1$ to |V| do for $i \leftarrow 1$ to |V| do $d^k(v_i, v_j) = \min\{d^{k-1}(v_i, v_j), d^{k-1}(v_i, v_k) + d^{k-1}(v_k, v_j)\}$

Runtime: $\Theta(|V|^3)$

Remark: Algorithm can be executed with a single matrix d (in place).

Reweighting

Idea: Reweighting the graph in order to apply Dijkstra's algorithm. The following does **not** work. The graphs are not equivalent in terms of shortest paths.

Reweighting

Other Idea: "Potential" (Height) on the nodes

- G = (V, E, c) a weighted graph.
- Mapping $h: V \to \mathbb{R}$
- New weights

$$\tilde{c}(u,v) = c(u,v) + h(u) - h(v), (u,v \in V)$$

Reweighting

Observation: A path p is shortest path in in G = (V, E, c) iff it is shortest path in in $\tilde{G} = (V, E, \tilde{c})$

$$\tilde{c}(p) = \sum_{i=1}^{k} \tilde{c}(v_{i-1}, v_i) = \sum_{i=1}^{k} c(v_{i-1}, v_i) + h(v_{i-1}) - h(v_i)$$
$$= h(v_0) - h(v_k) + \sum_{i=1}^{k} c(v_{i-1}, v_i) = c(p) + h(v_0) - h(v_k)$$

Thus $\tilde{c}(p)$ minimal in all $v_0 \rightsquigarrow v_k \iff c(p)$ minimal in all $v_0 \rightsquigarrow v_k$. Weights of cycles are invariant: $\tilde{c}(v_0, \ldots, v_k = v_0) = c(v_0, \ldots, v_k = v_0)$

Johnson's Algorithm

Add a new node $s \notin V$:

$$G' = (V', E', c')$$

$$V' = V \cup \{s\}$$

$$E' = E \cup \{(s, v) : v \in V\}$$

$$c'(u, v) = c(u, v), \ u \neq s$$

$$c'(s, v) = 0(v \in V)$$

Johnson's Algorithm

If no negative cycles, choose as height function the weight of the shortest paths from s,

$$h(v) = d(s, v).$$

For a minimal weight d of a path the following triangular inequality holds:

$$d(s,v) \le d(s,u) + c(u,v).$$

Substitution yields $h(v) \leq h(u) + c(u, v)$. Therefore

$$\tilde{c}(u,v) = c(u,v) + h(u) - h(v) \ge 0.$$

Algorithm Johnson(G)

Input: Weighted Graph G = (V, E, c)**Output:** Minimal weights of all paths D.

New node s. Compute G' = (V', E', c')if BellmanFord(G', s) = false then return "graph has negative cycles" foreach $v \in V'$ do $h(v) \leftarrow d(s, v) / / d$ aus BellmanFord Algorithmus foreach $(u, v) \in E'$ do $= \tilde{c}(u,v) \leftarrow c(u,v) + h(u) - h(v)$ foreach $u \in V$ do $\tilde{d}(u, \cdot) \leftarrow \mathsf{Dijkstra}(\tilde{G}', u)$ foreach $v \in V$ do $D(u,v) \leftarrow \tilde{d}(u,v) + h(v) - h(u)$

Analysis

Runtimes

- Computation of $G': \mathcal{O}(|V|)$
- Bellman Ford $G': \mathcal{O}(|V| \cdot |E|)$
- $|V| \times \text{Dijkstra } \mathcal{O}(|V| \cdot |E| \cdot \log |V|)$ (with Fibonacci Heap: $\mathcal{O}(|V|^2 \log |V| + |V| \cdot |E|)$)

 $\begin{array}{l} \text{Overal } \mathcal{O}(|V| \cdot |E| \cdot \log |V|) \\ (\mathcal{O}(|V|^2 \log |V| + |V| \cdot |E|)) \end{array}$