26. Shortest Paths

Motivation, Universal Algorithm, Dijkstra’s algorithm on distance graphs,
Bellman-Ford Algorithm, Floyd-Warshall Algorithm, Johnson Algorithm

[Ottman/Widmayer, Kap. 9.5 Cormen et al, Kap. 24.1-24.3, 25.2-25.3]
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Route Finding

Provided cities A - Z and distances between cities

What is the shortest path from A to Z?
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A weighted graph G = (V, E, ¢) is a graph G = (V, E) with an edge weight
function c: £ — R. c(e) is called weight of the edge e.
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Weighted Paths

Given: G = (V,E,¢),c: E = R,s,te€V.
Path: p = (s = vg,v1,..., 00 =), (vi,vi) EE(0<i < k)
Weight: c(p) := 21 c((vi, vig1)).

/\QJ
AN ~
N |

Path with weight 9
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Shortest Paths

Notation: we write
TR oder piu~>v

and mean a path p from u to v

Wanted: 6(u, v) = minimal weight of a path from « to v:

5(u,v) 00 no path from u to v
U, V) = )
min{c(p) : u ~> v} otherwise

In the following we call a path with minimal weight simply a shortest path.
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Trivial algorithm?

Try out all paths?

t
(at least 2IVI/2 paths from s to t)

= Inefficient. There can be exponentially many paths.
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Simplest Case
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Simplest Case

Constant edge weight (every edge has weight 1)

= Solution: Breadth First Search O(|V| + |E|)
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Dijkstra’s Algorithm: Observation
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Dijkstra’s Algorithm: Observation

important assumption: all weights are positive.

@? Shortest path s ~ u has length [ (exactly).
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this node w.
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Dijkstra’s Algorithm: Observation

important assumption: all weights are positive.

@? Shortest path s ~ u has length [ (exactly).

@? Upper bound:
Shortest path s ~» u has length at most .

General Observation: The smallest upper bound of a(n orange) node u
constitutes the exact length of the shortest path from s to w.
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Dijkstra’s Algorithm: Basic Idea (Greedy)

V is split into:

m K: nodes with known shortest path

BN =, .x N"(v)\ K:successors of K
= an upper bound is known

mR-—V\(AUN) remaining nodes
= nothing is known yet

Greedy:

Starting with N = {s}, until N = (): node from N with smallest upper

bound joins K, and its neighbors join N.

Invariants:

m after i steps: shortest paths to i nodes known (| K| = ).
m for all nodes in v € N: the upper bound is the (exact) length of shortest
path s ~» e —uv from s to v with nodes only from Ku{v}. o
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Is the following constellation of upper bounds possible?
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~Z XN
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K={)
N = {s}
R ={a,b,c,d,e, f,t}

m



Known shortest paths from s:
§~>5:0

K ={s}
N = {}
R ={a,b,c,d,e, f,t}
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R ={de, f,t}

Known shortest paths from s:
§~>5:0

Outgoing edges:
s—a:4
s—b:2
s—c:H
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K = {s,b}
N = {a,c}
R ={de, f,t}

Known shortest paths from s:
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Outgoing edges:
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N ={a,c,e}
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Known shortest paths from s:
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K = {s,b}
N ={a,c,e}
R:{d7fvt}

Known shortest paths from s:
§~>5:0
s~ b: 2

Outgoing edges:
s—c: b
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K ={s,b,a}
N ={c¢e}
R:{d7fvt}

Known shortest paths from s:
§~>5:0
s~ b:2
s~ a3

Outgoing edges:
s—c: b
s—b—a:3
s—b—e: 1l
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K ={s,b,a}
N ={c,e,d}
R:{f>t}

Known shortest paths from s:
§~>5:0
s~ b:2
s~ a3

Outgoing edges:
s—c: b
s—>b—a—d: 6
s—b—e: 1l
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K ={s,b,a,c}
N ={e,d, f}
R={f1}

Known shortest paths from s:
§~>5:0
s~ b:2
s~ a3
S~»c:b

Outgoing edges:
s—c: b
s—>b—a—d: 6
s—b—e: 1l
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K ={s,b,a,c}

N ={e,d, f}
R = {t}

Known shortest paths from s:
§~>5:0
s~ b:2
s~ a3
S~»c:b

Outgoing edges:
s—>b—a—d: 6
s—=b—e: 1l
s—c— .7
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N:{67f}
R = {1}

Known shortest paths from s:
s~ 5:0 s~ d: 6

s~ b:2

s~ a3
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K:{S7b7a7c7d7-f}
N = {e}
R = {t}

Known shortest paths from s:

s~ 5:0 s~ d: 6
s~ b:2 s~ fi 7
s~a:3
s~ c: b

Outgoing edges:
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s—c— .7
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N = {e,t}
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Known shortest paths from s:
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K ={s,b,a,c,d, f,e}
N = {t}
R ={}

Known shortest paths from s:

s~ 5:0 s~ d: 6
s~ b:2 s~ fi 7
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K ={s,b,a,c,d, f,e}
N = {t}
R ={}

Known shortest paths from s:

s~ 5:0 s~ d: 6
s~ b:2 s~ fi 7
s~>a:3 s~»e: 10
s~ c: b

Outgoing edges:
s—=b—a—>d—e—1t:11
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K ={s,b,a,c¢,d, f,e,t}
N ={}
R={}

Known shortest paths from s:

s~ 5:0 s~ d: 6
s~ b:2 s~ fi 7
s~>a:3 s~»e: 10
s~ c: b s~t:11

Outgoing edges:
s—=b—a—>d—e—1t:11

m



K ={s,b,a,c¢,d, f,e,t}
N ={}
R={}

Known shortest paths from s:

s~ 5:0 s~ d: 6
s~ b:2 s~ fi 7
s~>a:3 s~»e: 10
s~ c: b s~t:11

Outgoing edges:

m
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Which nodes are in K (known shortest paths) after six steps of Dijkstra’s
algorithm with starting node A?
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Ingredients of an Algorithm

Wanted: shortest paths from a starting node s.
m Weight of the shortest path found so far

d; : V=R

At the beginning: d,[v] = oo forallv € V.
Goal: d,[v] = d(s,v) forallv e V.

B Predecessor of a node
TV =V

Initially 7s[v] undefined for each node v € V/
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Algorithm: Dijkstra(G, s)

Input: Positively weighted Graph G = (V| E, ¢),
starting point s € V,
Output: Length d of the shortest paths from s and
predecessor 7, for each node

foreach u € V do E

| dslu] <= o0; ms[u] < null 0
ds[s] < 0; N < {s}
while N # () do

u < argmingey dsful; N < N\ {u}
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ds[s] < 0; N < {s}
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o/ w N =

daae
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Implementation: Data Structure for N?

Required operations:
m Insert((p, k)): O(log|V])
add key (node) k
with value (upper bound) p
m ExtractMin(): O(log |V])
remove element with smallest value
B DecreaseKey((p, k)): O(log|V|)
update the value of key &k to p

= MinHeap with nodes from N as keys and with upper bounds as value
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Two possibilities:
m tracking position:
store at nodes or external

m or avoid DecreaseKey:
with Lazy Deletion

Lazy Deletion:

m Re-insert node with smaller upper bound
m Mark nodes "deleted" once extracted

= Memory consumption of heap can grow to O(|E|) instead of ©(|V)
= Because |E| < V]2 Insert and ExtractMin still in O(log |[V']?) = O(log |V])
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Algorithm: Dijkstra(G, s) with Lazy Deletion
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Algorithm: Dijkstra(G, s) with Lazy Deletion

Input: Positively weighted Graph G = (V, E, ¢), starting point s € V,
Output: Length dg of the shortest paths from s and predecessor 7 for each node
foreach v € V do

| dy[u] = 00; T[u] < null
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Algorithm: Dijkstra(G, s) with Lazy Deletion

Input: Positively weighted Graph G = (V, E, ¢), starting point s € V,
Output: Length dg of the shortest paths from s and predecessor 7 for each node
foreach v € V do

| dy[u] = 00; T[u] < null

K = {}; dyfs] « 0: N  {s}
while N # () do
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Algorithm: Dijkstra(G, s) with Lazy Deletion

Input: Positively weighted Graph G = (V, E, ¢), starting point s € V,
Output: Length dg of the shortest paths from s and predecessor 7 for each node
foreach v € V do
| dy[u] = 00; T[u] < null
K ={}; dq[s] + 0; N < {s}
while N # () do
d,u < ExtractMin(N)
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Algorithm: Dijkstra(G, s) with Lazy Deletion

Input: Positively weighted Graph G = (V, E, ¢), starting point s € V,
Output: Length dg of the shortest paths from s and predecessor 7 for each node
foreach v € V do

| dy[u] = 00; T[u] < null

K ={}; dq[s] + 0; N < {s}
while N # () do

d,u < ExtractMin(N)

if u ¢ K then
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Algorithm: Dijkstra(G, s) with Lazy Deletion

Input: Positively weighted Graph G = (V, E, ¢), starting point s € V,
Output: Length dg of the shortest paths from s and predecessor 7 for each node
foreach v € V do

| dy[u] = 00; T[u] < null

K ={}; dq[s] + 0; N < {s}
while N # () do

d,u < ExtractMin(N)

if u ¢ K then

K + KU{u}
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Algorithm: Dijkstra(G, s) with Lazy Deletion

Input: Positively weighted Graph G = (V, E, ¢), starting point s € V,
Output: Length dg of the shortest paths from s and predecessor 7 for each node
foreach v € V do

| dy[u] = 00; T[u] < null

K ={}; dq[s] + 0; N < {s}
while N # () do

d,u < ExtractMin(N)

if u ¢ K then

K + KU{u}

foreach v € N (u) do
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Algorithm: Dijkstra(G, s) with Lazy Deletion

Input: Positively weighted Graph G = (V, E, ¢), starting point s € V,
Output: Length dg of the shortest paths from s and predecessor 7 for each node
foreach v € V do

| dy[u] = 00; T[u] < null

K ={}; dq[s] + 0; N < {s}
while N # () do
d,u < ExtractMin(N)
if u ¢ K then
K + KU{u}
foreach v € N (u) do
if d+ c(u,v) < ds[v] then
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Algorithm: Dijkstra(G, s) with Lazy Deletion

Input: Positively weighted Graph G = (V, E, ¢), starting point s € V,
Output: Length dg of the shortest paths from s and predecessor 7 for each node
foreach v € V do

| dy[u] = 00; T[u] < null

K ={}; dq[s] + 0; N < {s}
while N # () do
d,u < ExtractMin(N)
if u ¢ K then
K + KU{u}
foreach v € N (u) do

if d+ c(u,v) < ds[v] then

ds[v] < d + c(u,v); ms[v] < u
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Algorithm: Dijkstra(G, s) with Lazy Deletion

Input: Positively weighted Graph G = (V, E, ¢), starting point s € V,
Output: Length dg of the shortest paths from s and predecessor 7 for each node
foreach v € V do

| dy[u] = 00; T[u] < null

K ={}; dq[s] + 0; N < {s}

while N # () do

d,u < ExtractMin(N)

if u ¢ K then

K + KU{u}

foreach v € N (u) do

if d+ c(u,v) < ds[v] then

ds[v] < d + c(u,v); ms[v] < u
Insert((d + c(u,v),v))

777



Algorithm: Dijkstra(G, s) with Lazy Deletion

Input: Positively weighted Graph G = (V, E, ¢), starting point s € V,
Output: Length dg of the shortest paths from s and predecessor 7 for each node
foreach v € V do

| dy[u] = 00; T[u] < null

K ={}; dq[s] + 0; N < {s}

while N # () do

d,u < ExtractMin(N)

if u ¢ K then

K + KU{u}

foreach v € N (u) do

if d+ c(u,v) < ds[v] then

ds[v] < d + c(u,v); ms[v] < u
Insert((d + c(u,v),v))
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Algorithm: Dijkstra(G, s) with Lazy Deletion

Input: Positively weighted Graph G = (V, E, ¢), starting point s € V,
Output: Length dg of the shortest paths from s and predecessor 7 for each node
foreach v € V do

| dy[u] = 00; T[u] < null o
Initialization: O(|V|)

K ={}i ds[s] < 0; N+ {s} (V| + |E|) times ExtractMin: O((|V| + |E]) -
while N 75 () do log ’V|)
d,u + ExtractMin(NV) (|E| + 1) times Insert: O(|E| - log [V);

if u ¢ K then )
Overall: O((|V| + |E]) - log |V
Ee = Overalt: O((|V| + | ) - log V1)

foreach v € N (u) do
if d+ c(u,v) < ds[v] then
ds[v] < d + c(u,v); ms[v] < u
Insert((d + c(u,v),v))

Running time:
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Runtime of Dijkstra (without Lazy Deletion)

m |V|x ExtractMin: O(|V|log |V )
B |E|x Insert or DecreaseKey: O(|E|log |V])
m 1x Init: O(|V])

m Overal®® 40
O((IV] + [E]) log [V])

¥For connected graphs: O(|E|log|V])
“0Can be improved when a data structure optimized for ExtractMin and DecreaseKey ist

used (Fibonacci Heap), then runtime O(|E| + |V|log |V]).
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m |s the shortest path always unique? No!

Dijkstra’s algorithm finds one (any) shortest path.
m s there always at least one shortest path? No! Negative cycles.
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26.3 General Algorithm

Why Dijkstra is correct and how to generalize.
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Observations (1)

Triangle Inequality

Forall s,u,v € V:
d(s,v) < d(s,u) + d(u,v)

A shortest path from s to v cannot be longer than a shortest path from s to v that
has to include u
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Observations (2)

Optimal Substructure

Sub-paths of shortest paths are shortest paths. Let p = (vg,...,vx) be a
shortest path from v, to v,. Then each of the sub-paths p;; = (v;, ..., v;)
(0 <i < j < k)is ashortest path from v; to v;.

@@ RD-9@

If not, then one of the sub-paths could be shortened which immediately leads to
a contradiction.
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Observations (3)

Shortest paths do not contain cycles

1. Shortest path contains a negative cycle: there is no shortest path,
contradiction

2. Path contains a positive cycle: removing the cycle from the path will reduce
the weight. Contradiction.

3. Path contains a cycle with weight 0: removing the cycle from the path will not
change the weight. Remove the cycle (convention).
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General Algorithm

1. Initialise ds and 7, dg[v] = oo, ms[v] = null for each v € V
2. Setd,[s] «+ 0
3. Choose an edge (u,v) € E
Relax(u, v):
if ds[u] + c(u,v) < dg[v] then
ds[v] + ds[u] + e(u,v)
ms[v] «— u
return true

return false

4. Repeat 3 until nothing can be relaxed any more.
(until d[v] < dg[u] + c(u,v) V(u,v) € E)
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It is Safe to Relax

At any time in the algorithm above it holds

ds[v] > d(s,v) Yo eV
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It is Safe to Relax

At any time in the algorithm above it holds
ds[v] > d(s,v) Yo eV

In the relaxation step:

8(s,v) < (s, u) + d(u,v) [Triangle Inequality].

§(s,u) < ds[u] [Induction Hypothesis].

5(u,v) < c(u,v) [Minimality of §]
= ds[u] + c(u,v) > (s, v
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Central Question

How / in which order should edges be chosen in above algorithm?
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Special Case: Directed Acyclic Graph (DAG)

DAG = topological sorting returns optimal visiting order

U1 V4 Us
2 —1 2 3
NSNS
S Vs -2 Vg -1
N NS
4 2 ~ 2 ~
Vg Us > U7

—2

Top. Sort: = Order s, v1, v9, v3, V4, Vg, U5, Vs, V7.
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Special Case: Directed Acyclic Graph (DAG)

DAG = topological sorting returns optimal visiting order

2 —2 3

U1 V4 Ug

/ \ Ve \2\ V

0 -3 ~1 0

S Vs -2 Vg —1
]/ /

4 4 2 Y 4 2 ¥ _§

Vg Us > U7

—2

Top. Sort: = Order s, v1, v9, v3, V4, Vg, U5, Vs, V7.
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Other Cases

m Special case: c== 1= BFS
m Special Case: Positive Edge Weights = Dijkstra @

m General Weighted Graphs: cycles with negative weights can shorten the
path, a shortest path is not guaranteed to exist.
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Dynamic Programming Approach (Bellman)

Induction over number of edges d|i, v]: Shortest path from s to v via
maximally i edges.

ds[i, v] = min{d,[i — 1,v], (m)inE(dS[i — 1, u] + c(u,v))
u,v)e
ds[0, s] = 0,d4[0,v] = 00 Vv # s.
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Dynamic Programming Approach (Bellman)

n—1

- OO

0 ---

8 3
Q=
8 8
o 8|8

Algorithm: Iterate over last row until the relaxation steps do not provide
any further changes, maximally n — 1 iterations. If still changes, then there
Is no shortest path.

790



Algorithm Bellman-Ford(G, s)

Input: Graph G = (V, E, ¢), starting point s € V
Output: If return value true, minimal weights d for all shortest paths from s,
otherwise no shortest path.

foreach v € V do
| dy[u] < 00; ms[u]  null
ds[s] < 0;
for i + 1 to |V| do
f + false
foreach (u,v) € E do
. f <+ fVRelax(u,v)

if f = false then return true

return false;

Runtime O(|E| - |V]).
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