26. Shortest Paths

Motivation, Universal Algorithm, Dijkstra’s algorithm on distance graphs,
Bellman-Ford Algorithm, Floyd-Warshall Algorithm, Johnson Algorithm

[Ottman/Widmayer, Kap. 9.5 Cormen et al, Kap. 24.1-24.3, 25.2-25.3]

759

Route Finding

Provided cities A - Z and distances between cities

760

Route Finding

Provided cities A - Z and distances between cities

760

Route Finding

Provided cities A - Z and distances between cities

What is the shortest path from A to Z?

760

A weighted graph G = (V, E, ¢) is a graph G = (V, E) with an edge weight
function c: £ — R. c(e) is called weight of the edge e.

761

Weighted Paths

Given: G = (V,E,¢),c: E = R,s,te€V.
Path: p = (s = vg,v1,..., 00 =), (vi,vi) EE(0<i < k)
Weight: c(p) := 21 c((vi, vig1)).

/\QJ
AN ~
N |

Path with weight 9

762

Shortest Paths

Notation: we write
TR oder piu~>v

and mean a path p from u to v

Wanted: 6(u, v) = minimal weight of a path from « to v:

5(u,v) 00 no path from u to v
U, V) =)
min{c(p) : u ~> v} otherwise

In the following we call a path with minimal weight simply a shortest path.

763

Trivial algorithm?

764

Trivial algorithm?

Try out all paths?

764

Trivial algorithm?

Try out all paths?

S

e

764

Trivial algorithm?

Try out all paths?

[ERERERL,

764

Trivial algorithm?

Try out all paths?

[ERERERL,

(at least 2IVI/2 paths from s to t)

764

Trivial algorithm?

Try out all paths?

t
(at least 2IVI/2 paths from s to t)

= Inefficient. There can be exponentially many paths.

764

Simplest Case

765

Simplest Case

Constant edge weight (every edge has weight 1)

765

Simplest Case

Constant edge weight (every edge has weight 1)

@

765

Simplest Case

Constant edge weight (every edge has weight 1)

@

= Solution: Breadth First Search

765

Simplest Case

Constant edge weight (every edge has weight 1)

@

= Solution: Breadth First Search

765

Simplest Case

Constant edge weight (every edge has weight 1)

@

= Solution: Breadth First Search

765

Simplest Case

Constant edge weight (every edge has weight 1)

@

= Solution: Breadth First Search

765

Simplest Case

Constant edge weight (every edge has weight 1)

= Solution: Breadth First Search

765

Simplest Case

Constant edge weight (every edge has weight 1)

= Solution: Breadth First Search

765

Simplest Case

Constant edge weight (every edge has weight 1)

= Solution: Breadth First Search

765

Simplest Case

Constant edge weight (every edge has weight 1)

= Solution: Breadth First Search O(|V| + |E|)

765

Dijkstra’s Algorithm: Observation

767

Dijkstra’s Algorithm: Observation

important assumption: all weights are positive.

767

Dijkstra’s Algorithm: Observation

important assumption: all weights are positive.

767

Dijkstra’s Algorithm: Observation

important assumption: all weights are positive.

@? Shortest path s ~ u has length [(exactly).

767

Dijkstra’s Algorithm: Observation

important assumption: all weights are positive.

@? Shortest path s ~» u has length [(exactly).

@? Upper bound:
Shortest path s ~» u has length at most 1.

767

Dijkstra’s Algorithm: Observation

important assumption: all weights are positive.

@? Shortest path s ~» u has length [(exactly).

@? Upper bound:
Shortest path s ~» u has length at most 1.

Observation: Shortest outgoing edge (s, u) is the shortest path from s to
this node w.

767

Dijkstra’s Algorithm: Observation

important assumption: all weights are positive.

@? Shortest path s ~ u has length [(exactly).

@? Upper bound:
Shortest path s ~» u has length at most .

Observation: Shortest outgoing edge (s, u) is the shortest path from s to
this node w.

768

Dijkstra’s Algorithm: Observation

important assumption: all weights are positive.

@? Shortest path s ~ u has length [(exactly).

@? Upper bound:
Shortest path s ~» u has length at most .

Observation: Shortest outgoing edge (s, u) is the shortest path from s to
this node w.

768

Dijkstra’s Algorithm: Observation

important assumption: all weights are positive.

@? Shortest path s ~ u has length [(exactly).

@? Upper bound:
Shortest path s ~» u has length at most .

General Observation: The smallest upper bound of a(n orange) node u
constitutes the exact length of the shortest path from s to w.

768

Dijkstra’s Algorithm: Basic Idea (Greedy)

769

Dijkstra’s Algorithm: Basic Idea (Greedy)

V is split into:

769

Dijkstra’s Algorithm: Basic Idea (Greedy)

V is split into:
m K: nodes with known shortest path

769

Dijkstra’s Algorithm: Basic Idea (Greedy)

V is split into:
m K: nodes with known shortest path

BN =, .x N"(v)\ K:successors of K
= an upper bound is known

769

Dijkstra’s Algorithm: Basic Idea (Greedy)

V is split into:

m K: nodes with known shortest path

BN =, .x N"(v)\ K:successors of K
= an upper bound is known

mR-—V\(AUN) remaining nodes
= nothing is known yet

769

Dijkstra’s Algorithm: Basic Idea (Greedy)

V is split into:

m K: nodes with known shortest path

BN =, .x N"(v)\ K:successors of K
= an upper bound is known

mR-—V\(AUN) remaining nodes
= nothing is known yet

Greedy:

Starting with N = {s}, until N = (): node from N with smallest upper

bound joins K, and its neighbors join N.

769

Dijkstra’s Algorithm: Basic Idea (Greedy)

V is split into:

m K: nodes with known shortest path

BN =, .x N"(v)\ K:successors of K
= an upper bound is known

m R =V \(AUN) remaining nodes
= nothing is known yet

Greedy:
Starting with N = {s}, until N = (): node from N with smallest upper
bound joins K, and its neighbors join N.

Invariants:
m after i steps: shortest paths to i nodes known (| K| =).

769

Dijkstra’s Algorithm: Basic Idea (Greedy)

V is split into:

m K: nodes with known shortest path

BN =, .x N"(v)\ K:successors of K
= an upper bound is known

mR-—V\(AUN) remaining nodes
= nothing is known yet

Greedy:

Starting with N = {s}, until N = (): node from N with smallest upper

bound joins K, and its neighbors join N.

Invariants:

m after i steps: shortest paths to i nodes known (| K| =).
m for all nodes in v € N: the upper bound is the (exact) length of shortest
path s ~» e —uv from s to v with nodes only from Ku{v}. o

770

Is the following constellation of upper bounds possible?

770

Is the following constellation of upper bounds possible?

770

m

~Z XN

m

K={)
N = {s}
R ={a,b,c,d,e, f,t}

m

Known shortest paths from s:
§~>5:0

K ={s}
N = {}
R ={a,b,c,d,e, f,t}

m

K ={s}
N = {a,b,c}
R ={de, f,t}

Known shortest paths from s:
§~>5:0

Outgoing edges:
s—a:4
s—b:2
s—c:H

m

K = {s,b}
N = {a,c}
R ={de, f,t}

Known shortest paths from s:
§~>5:0
s~ b: 2

Outgoing edges:
s—a:4
s—b:2
s—c:H

m

K = {s,b}
N ={a,c,e}
R:{d7fvt}

Known shortest paths from s:
§~>5:0
s~ b: 2

Outgoing edges:
s—a:4
s—c:b
s—b—a:3
s—>b—e:ll
s—b—c:6

m

K = {s,b}
N ={a,c,e}
R:{d7fvt}

Known shortest paths from s:
§~>5:0
s~ b: 2

Outgoing edges:
s—c: b
s—b—a:3
s—b—e: 1l

m

K ={s,b,a}
N ={c¢e}
R:{d7fvt}

Known shortest paths from s:
§~>5:0
s~ b:2
s~ a3

Outgoing edges:
s—c: b
s—b—a:3
s—b—e: 1l

m

K ={s,b,a}
N ={c,e,d}
R:{f>t}

Known shortest paths from s:
§~>5:0
s~ b:2
s~ a3

Outgoing edges:
s—c: b
s—>b—a—d: 6
s—b—e: 1l

m

K ={s,b,a,c}
N ={e,d, f}
R={f1}

Known shortest paths from s:
§~>5:0
s~ b:2
s~ a3
S~»c:b

Outgoing edges:
s—c: b
s—>b—a—d: 6
s—b—e: 1l

m

K ={s,b,a,c}

N ={e,d, f}
R = {t}

Known shortest paths from s:
§~>5:0
s~ b:2
s~ a3
S~»c:b

Outgoing edges:
s—>b—a—d: 6
s—=b—e: 1l
s—c— .7

m

K ={s,b,a,c,d}

N:{67f}
R = {1}

Known shortest paths from s:
s~ 5:0 s~ d: 6

s~ b:2

s~ a3

S~»c:b

Outgoing edges:
s—>b—a—d: 6
s—=b—e: 1l
s—c— .7

m

K ={s,b,a,c,d}

N:{67f}
R = {1}

Known shortest paths from s:
s~ 5:0 s~ d: 6

s~ b:2

s~ a3

S~»c:b

Outgoing edges:
s—b—a—d—e: 10
s—=b—e: 1l
s—c— .7

m

K ={s,b,a,c,d}

N:{67f}
R = {1}

Known shortest paths from s:
s~ 5:0 s~ d: 6

s~ b:2

s~ a3

S~»c:b

Outgoing edges:

s—b—a—d—e: 10
s—c— .7

m

K:{S7b7a7c7d7-f}
N = {e}
R = {t}

Known shortest paths from s:

s~ 5:0 s~ d: 6
s~ b:2 s~ fi 7
s~a:3
s~ c: b

Outgoing edges:
s—>b—a—d—e: 10
s—c— .7

m

K ={s,b,a,c,d, f}
N = {e,t}
R ={}

Known shortest paths from s:

s~ 5:0 s~ d: 6
s~ b:2 s~ fi 7
s~a:3
s~ c: b

Outgoing edges:
s—>b—a—d—e: 10
s—c— f—t:18

m

K ={s,b,a,c,d, f,e}
N = {t}
R ={}

Known shortest paths from s:

s~ 5:0 s~ d: 6
s~ b:2 s~ fi 7
s~>a:3 s~»e: 10
s~ c: b

Outgoing edges:
s—>b—a—d—e: 10
s—c— f—t:18

m

K ={s,b,a,c,d, f,e}
N = {t}
R ={}

Known shortest paths from s:

s~ 5:0 s~ d: 6
s~ b:2 s~ fi 7
s~>a:3 s~»e: 10
s~ c: b

Outgoing edges:
s—b—a—d—e—t:11
s—c— f—t:18

m

K ={s,b,a,c,d, f,e}
N = {t}
R ={}

Known shortest paths from s:

s~ 5:0 s~ d: 6
s~ b:2 s~ fi 7
s~>a:3 s~»e: 10
s~ c: b

Outgoing edges:
s—=b—a—>d—e—1t:11

m

K ={s,b,a,c¢,d, f,e,t}
N ={}
R={}

Known shortest paths from s:

s~ 5:0 s~ d: 6
s~ b:2 s~ fi 7
s~>a:3 s~»e: 10
s~ c: b s~t:11

Outgoing edges:
s—=b—a—>d—e—1t:11

m

K ={s,b,a,c¢,d, f,e,t}
N ={}
R={}

Known shortest paths from s:

s~ 5:0 s~ d: 6
s~ b:2 s~ fi 7
s~>a:3 s~»e: 10
s~ c: b s~t:11

Outgoing edges:

m

772

Which nodes are in K (known shortest paths) after six steps of Dijkstra’s
algorithm with starting node A?

772

Ingredients of an Algorithm

Wanted: shortest paths from a starting node s.
m Weight of the shortest path found so far

d; : V=R

At the beginning: d,[v] = oo forallv € V.
Goal: d,[v] = d(s,v) forallv e V.

B Predecessor of a node
TV =V

Initially 7s[v] undefined for each node v € V/

773

Algorithm: Dijkstra(G, s)

Algorithm: Dijkstra(G, s)

Input: Positively weighted Graph G = (V| E, ¢),
starting point s € V,

Algorithm: Dijkstra(G, s)

Input: Positively weighted Graph G = (V| E, ¢),
starting point s € V,
Output: Length d of the shortest paths from s and
predecessor 7, for each node

Algorithm: Dijkstra(G, s)

Input: Positively weighted Graph G = (V| E, ¢),
starting point s € V,
Output: Length d of the shortest paths from s and
predecessor 7, for each node

foreach v € V do
| dslu] <= o0; ms[u] < null

Algorithm: Dijkstra(G, s)

Input: Positively weighted Graph G = (V| E, ¢),
starting point s € V,
Output: Length d of the shortest paths from s and
predecessor 7, for each node

foreach u € V do
| dslu] <= o0; ms[u] < null

ds[s] < 0; N < {s}

Algorithm: Dijkstra(G, s)

Input: Positively weighted Graph G = (V| E, ¢),
starting point s € V,
Output: Length d of the shortest paths from s and
predecessor 7, for each node

foreach u € V do

| dslu] <= o0; ms[u] < null
ds[s] < 0; N < {s}
while N # () do

Algorithm: Dijkstra(G, s)

Input: Positively weighted Graph G = (V| E, ¢),
starting point s € V,
Output: Length d of the shortest paths from s and
predecessor 7, for each node

foreach u € V do E

| dslu] <= o0; ms[u] < null 0
ds[s] < 0; N < {s}
while N # () do

u < argmingey dsful; N < N\ {u}

774

Algorithm: Dijkstra(G, s)

Input: Positively weighted Graph G = (V| E, ¢),
starting point s € V,
Output: Length d of the shortest paths from s and
predecessor 7, for each node

foreach u € V do
| dslu] <= o0; ms[u] < null
ds[s] < 0; N < {s}
while N # () do
u 4— argmingey ds[ul; N <= N\ {u}
foreach v € N (u) do

774

Algorithm: Dijkstra(G, s)

Input: Positively weighted Graph G = (V| E, ¢),
starting point s € V,
Output: Length d of the shortest paths from s and
predecessor 7, for each node

foreach u € V do
| dslu] <= o0; ms[u] < null
ds[s] < 0; N < {s}
while N # () do
u 4— argmingey ds[ul; N <= N\ {u}
foreach v € N (u) do
if ds[u] + c(u,v) < ds[v] then

774

Algorithm: Dijkstra(G, s)

Input: Positively weighted Graph G = (V| E, ¢),
starting point s € V,
Output: Length d of the shortest paths from s and
predecessor 7, for each node

foreach u € V do
| dslu] <= o0; ms[u] < null
ds[s] < 0; N < {s}
while N # () do
u 4— argmingey ds[ul; N <= N\ {u}
foreach v € N (u) do
if ds[u] + c(u,v) < ds[v] then
ds[v] < ds[u] + c(u,v)
ms[v] < u

774

Algorithm: Dijkstra(G, s)

Input: Positively weighted Graph G = (V| E, ¢),
starting point s € V,
Output: Length d of the shortest paths from s and
predecessor 7, for each node

foreach u € V do
| dslu] <= o0; ms[u] < null
ds[s] < 0; N < {s}
while N # () do
u 4— argmingey ds[ul; N <= N\ {u}
foreach v € N (u) do
if ds[u] + c(u,v) < ds[v] then
ds[v] < ds[u] + c(u,v)
ms[v] < u
N+« NU{v} i

Algorithm: Dijkstra(G, s)

Input: Positively weighted Graph G = (V| E, ¢),
starting point s € V,
Output: Length d of the shortest paths from s and
predecessor 7, for each node

foreach u € V do
| dslu] <= o0; ms[u] < null
ds[s] < 0; N < {s}
while N # () do
u 4— argmingey ds[ul; N <= N\ {u}
foreach v € N (u) do
if ds[u] + c(u,v) < ds[v] then
ds[v] < ds[u] + c(u,v)
ms[v] < u
N+« NU{v} i

Algorithm: Dijkstra(G, s)

Input: Positively weighted Graph G = (V| E, ¢),
starting point s € V,
Output: Length d of the shortest paths from s and
predecessor 7, for each node

foreach u € V do E
| dslu] <= o0; ms[u] < null 0
ds[s] < 0; N < {s}
while N # () do
u 4— argmingey ds[ul; N <= N\ {u}
foreach v € N (u) do
if ds[u] + c(u,v) < ds[v] then
ds[v] < ds[u] + c(u,v)
ms[v] < u
N« NU{v}

0 JwWw N
efoYalo!

774

Algorithm: Dijkstra(G, s)

Input: Positively weighted Graph G = (V| E, ¢),
starting point s € V,
Output: Length d of the shortest paths from s and
predecessor 7, for each node

foreach u € V do E
| dslu] <= o0; ms[u] < null 0
ds[s] < 0; N < {s}
while N # () do
u 4— argmingey ds[ul; N <= N\ {u}
foreach v € N (u) do
if ds[u] + c(u,v) < ds[v] then
ds[v] < ds[u] + c(u,v)
ms[v] < u
N« NU{v}

o/ w N =

daae

774

Algorithm: Dijkstra(G, s)

Input: Positively weighted Graph G = (V| E, ¢),
starting point s € V,
Output: Length d of the shortest paths from s and
predecessor 7, for each node

foreach u € V do E
| dslu] <= o0; ms[u] < null 0
ds[s] < 0; N < {s}
while N # () do
u 4— argmingey ds[ul; N <= N\ {u}
foreach v € N (u) do
if ds[u] + c(u,v) < ds[v] then
ds[v] < ds[u] + c(u,v)
ms[v] < u
N« NU{v}

0 JTw N
eferoroy

774

Implementation: Data Structure for N?

775

Implementation: Data Structure for N?

Required operations:

775

Implementation: Data Structure for N?

Required operations:

B Insert((p, k)):
add key (node) k
with value (upper bound) p

775

Implementation: Data Structure for N?

Required operations:

B Insert((p, k)):
add key (node) k
with value (upper bound) p

B ExtractMin():
remove element with smallest value

775

Implementation: Data Structure for N?

Required operations:

B Insert((p, k)):
add key (node) k
with value (upper bound) p

B ExtractMin():
remove element with smallest value

= MinHeap

775

Implementation: Data Structure for N?

Required operations:

B Insert((p, k)):
add key (node) k
with value (upper bound) p

B ExtractMin():
remove element with smallest value

= MinHeap

775

Implementation: Data Structure for N?

Required operations:

B Insert((p, k)):
add key (node) k
with value (upper bound) p

B ExtractMin():
remove element with smallest value

= MinHeap with nodes from N as keys and with upper bounds as value

775

Implementation: Data Structure for N?

Required operations:

B Insert((p, k)):
add key (node) k
with value (upper bound) p

B ExtractMin():
remove element with smallest value

= MinHeap with nodes from N as keys and with upper bounds as value

775

Implementation: Data Structure for N?

Required operations:

m Insert((p, k)): O(log|V])
add key (node) k
with value (upper bound) p

B ExtractMin():
remove element with smallest value

= MinHeap with nodes from N as keys and with upper bounds as value

775

Implementation: Data Structure for N?

Required operations:

m Insert((p, k)): O(log|V])
add key (node) k
with value (upper bound) p

m ExtractMin(): O(log |V])
remove element with smallest value

= MinHeap with nodes from N as keys and with upper bounds as value

775

Implementation: Data Structure for N?

Required operations:
m Insert((p, k)): O(log|V])
add key (node) k
with value (upper bound) p
m ExtractMin(): O(log |V])
remove element with smallest value

B DecreaseKey((p, k)):
update the value of key &k to p

= MinHeap with nodes from N as keys and with upper bounds as value

775

Implementation: Data Structure for N?

Required operations:
m Insert((p, k)): O(log|V])
add key (node) k
with value (upper bound) p
m ExtractMin(): O(log |V])
remove element with smallest value

B DecreaseKey((p, k)):
update the value of key &k to p

= MinHeap with nodes from N as keys and with upper bounds as value

775

Implementation: Data Structure for N?

Required operations:
m Insert((p, k)): O(log|V])
add key (node) k
with value (upper bound) p
m ExtractMin(): O(log |V])
remove element with smallest value

B DecreaseKey((p, k)):
update the value of key &k to p

= MinHeap with nodes from N as keys and with upper bounds as value

775

Implementation: Data Structure for N?

Required operations:
m Insert((p, k)): O(log|V])
add key (node) k
with value (upper bound) p
m ExtractMin(): O(log |V])
remove element with smallest value

B DecreaseKey((p, k)):
update the value of key &k to p

= MinHeap with nodes from N as keys and with upper bounds as value

775

Implementation: Data Structure for N?

Required operations:
m Insert((p, k)): O(log|V])
add key (node) k
with value (upper bound) p
m ExtractMin(): O(log |V])
remove element with smallest value
B DecreaseKey((p, k)): O(log|V|)
update the value of key &k to p

= MinHeap with nodes from N as keys and with upper bounds as value

775

776

Two possibilities:

776

Two possibilities:

m tracking position:
store at nodes or external

776

Two possibilities:
m tracking position:
store at nodes or external

m or avoid DecreaseKey:
with Lazy Deletion

776

Two possibilities:
m tracking position:
store at nodes or external

m or avoid DecreaseKey:
with Lazy Deletion

Lazy Deletion:

776

Two possibilities:
m tracking position:
store at nodes or external

m or avoid DecreaseKey:
with Lazy Deletion

Lazy Deletion:

m Re-insert node with smaller upper bound

776

Two possibilities:
m tracking position:
store at nodes or external

m or avoid DecreaseKey:
with Lazy Deletion

Lazy Deletion:

m Re-insert node with smaller upper bound

776

Two possibilities:
m tracking position:
store at nodes or external

m or avoid DecreaseKey:
with Lazy Deletion

Lazy Deletion:

m Re-insert node with smaller upper bound

776

Two possibilities:
m tracking position:
store at nodes or external

m or avoid DecreaseKey:
with Lazy Deletion

Lazy Deletion:

m Re-insert node with smaller upper bound

776

Two possibilities:
m tracking position:
store at nodes or external

m or avoid DecreaseKey:
with Lazy Deletion

Lazy Deletion:

m Re-insert node with smaller upper bound

776

Two possibilities:
m tracking position:
store at nodes or external

m or avoid DecreaseKey:
with Lazy Deletion

Lazy Deletion:

m Re-insert node with smaller upper bound

776

Two possibilities:
m tracking position:
store at nodes or external

m or avoid DecreaseKey:
with Lazy Deletion

Lazy Deletion:

m Re-insert node with smaller upper bound

776

Two possibilities:
m tracking position:
store at nodes or external

m or avoid DecreaseKey:
with Lazy Deletion

Lazy Deletion:

m Re-insert node with smaller upper bound
m Mark nodes "deleted" once extracted

776

Two possibilities:
m tracking position:
store at nodes or external

m or avoid DecreaseKey:
with Lazy Deletion

Lazy Deletion:

m Re-insert node with smaller upper bound
m Mark nodes "deleted" once extracted

= Memory consumption of heap can grow to O(|E|) instead of ©(|V)

776

Two possibilities:
m tracking position:
store at nodes or external

m or avoid DecreaseKey:
with Lazy Deletion

Lazy Deletion:

m Re-insert node with smaller upper bound
m Mark nodes "deleted" once extracted

= Memory consumption of heap can grow to O(|E|) instead of ©(|V)
= Because |E| < V]2 Insert and ExtractMin still in O(log |[V']?) = O(log |V])

776

Algorithm: Dijkstra(G, s) with Lazy Deletion

777

Algorithm: Dijkstra(G, s) with Lazy Deletion

Input: Positively weighted Graph G = (V, E, ¢), starting point s € V,
Output: Length dg of the shortest paths from s and predecessor 7 for each node
foreach v € V do

| dy[u] = 00; T[u] < null

77

Algorithm: Dijkstra(G, s) with Lazy Deletion

Input: Positively weighted Graph G = (V, E, ¢), starting point s € V,
Output: Length dg of the shortest paths from s and predecessor 7 for each node
foreach v € V do

| dy[u] = 00; T[u] < null

K = {}; dyfs] « 0: N {s}

77

Algorithm: Dijkstra(G, s) with Lazy Deletion

Input: Positively weighted Graph G = (V, E, ¢), starting point s € V,
Output: Length dg of the shortest paths from s and predecessor 7 for each node
foreach v € V do

| dy[u] = 00; T[u] < null

K = {}; dyfs] « 0: N {s}
while N # () do

77

Algorithm: Dijkstra(G, s) with Lazy Deletion

Input: Positively weighted Graph G = (V, E, ¢), starting point s € V,
Output: Length dg of the shortest paths from s and predecessor 7 for each node
foreach v € V do
| dy[u] = 00; T[u] < null
K ={}; dq[s] + 0; N < {s}
while N # () do
d,u < ExtractMin(N)

77

Algorithm: Dijkstra(G, s) with Lazy Deletion

Input: Positively weighted Graph G = (V, E, ¢), starting point s € V,
Output: Length dg of the shortest paths from s and predecessor 7 for each node
foreach v € V do

| dy[u] = 00; T[u] < null

K ={}; dq[s] + 0; N < {s}
while N # () do

d,u < ExtractMin(N)

if u ¢ K then

777

Algorithm: Dijkstra(G, s) with Lazy Deletion

Input: Positively weighted Graph G = (V, E, ¢), starting point s € V,
Output: Length dg of the shortest paths from s and predecessor 7 for each node
foreach v € V do

| dy[u] = 00; T[u] < null

K ={}; dq[s] + 0; N < {s}
while N # () do

d,u < ExtractMin(N)

if u ¢ K then

K + KU{u}

777

Algorithm: Dijkstra(G, s) with Lazy Deletion

Input: Positively weighted Graph G = (V, E, ¢), starting point s € V,
Output: Length dg of the shortest paths from s and predecessor 7 for each node
foreach v € V do

| dy[u] = 00; T[u] < null

K ={}; dq[s] + 0; N < {s}
while N # () do

d,u < ExtractMin(N)

if u ¢ K then

K + KU{u}

foreach v € N (u) do

77

Algorithm: Dijkstra(G, s) with Lazy Deletion

Input: Positively weighted Graph G = (V, E, ¢), starting point s € V,
Output: Length dg of the shortest paths from s and predecessor 7 for each node
foreach v € V do

| dy[u] = 00; T[u] < null

K ={}; dq[s] + 0; N < {s}
while N # () do
d,u < ExtractMin(N)
if u ¢ K then
K + KU{u}
foreach v € N (u) do
if d+ c(u,v) < ds[v] then

777

Algorithm: Dijkstra(G, s) with Lazy Deletion

Input: Positively weighted Graph G = (V, E, ¢), starting point s € V,
Output: Length dg of the shortest paths from s and predecessor 7 for each node
foreach v € V do

| dy[u] = 00; T[u] < null

K ={}; dq[s] + 0; N < {s}
while N # () do
d,u < ExtractMin(N)
if u ¢ K then
K + KU{u}
foreach v € N (u) do

if d+ c(u,v) < ds[v] then

ds[v] < d + c(u,v); ms[v] < u

777

Algorithm: Dijkstra(G, s) with Lazy Deletion

Input: Positively weighted Graph G = (V, E, ¢), starting point s € V,
Output: Length dg of the shortest paths from s and predecessor 7 for each node
foreach v € V do

| dy[u] = 00; T[u] < null

K ={}; dq[s] + 0; N < {s}

while N # () do

d,u < ExtractMin(N)

if u ¢ K then

K + KU{u}

foreach v € N (u) do

if d+ c(u,v) < ds[v] then

ds[v] < d + c(u,v); ms[v] < u
Insert((d + c(u,v),v))

777

Algorithm: Dijkstra(G, s) with Lazy Deletion

Input: Positively weighted Graph G = (V, E, ¢), starting point s € V,
Output: Length dg of the shortest paths from s and predecessor 7 for each node
foreach v € V do

| dy[u] = 00; T[u] < null

K ={}; dq[s] + 0; N < {s}

while N # () do

d,u < ExtractMin(N)

if u ¢ K then

K + KU{u}

foreach v € N (u) do

if d+ c(u,v) < ds[v] then

ds[v] < d + c(u,v); ms[v] < u
Insert((d + c(u,v),v))

777

Algorithm: Dijkstra(G, s) with Lazy Deletion

Input: Positively weighted Graph G = (V, E, ¢), starting point s € V,
Output: Length dg of the shortest paths from s and predecessor 7 for each node
foreach v € V do

| dy[u] = 00; T[u] < null o
Initialization: O(|V|)

K ={}i ds[s] < 0; N+ {s} (V| + |E|) times ExtractMin: O((|V| + |E]) -
while N 75 () do log ’V|)
d,u + ExtractMin(NV) (|E| + 1) times Insert: O(|E| - log [V);

if u ¢ K then)
Overall: O((|V| + |E]) - log |V
Ee = Overalt: O((|V| + |) - log V1)

foreach v € N (u) do
if d+ c(u,v) < ds[v] then
ds[v] < d + c(u,v); ms[v] < u
Insert((d + c(u,v),v))

Running time:

777

Runtime of Dijkstra (without Lazy Deletion)

m |V|x ExtractMin: O(|V|log |V)
B |E|x Insert or DecreaseKey: O(|E|log |V])
m 1x Init: O(|V])

m Overal®® 40
O((IV] + [E]) log [V])

¥For connected graphs: O(|E|log|V])
“0Can be improved when a data structure optimized for ExtractMin and DecreaseKey ist

used (Fibonacci Heap), then runtime O(|E| + |V|log |V]).

778

779

m |s the shortest path always unique?

779

m |s the shortest path always unique? No!

779

m |s the shortest path always unique? No!

Dijkstra’s algorithm finds one (any) shortest path.

779

m |s the shortest path always unique? No!

Dijkstra’s algorithm finds one (any) shortest path.
m s there always at least one shortest path?

779

m |s the shortest path always unique? No!

Dijkstra’s algorithm finds one (any) shortest path.
m s there always at least one shortest path? No! Negative cycles.

779

m |s the shortest path always unique? No!

Dijkstra’s algorithm finds one (any) shortest path.
m s there always at least one shortest path? No! Negative cycles.

779

m |s the shortest path always unique? No!

Dijkstra’s algorithm finds one (any) shortest path.
m s there always at least one shortest path? No! Negative cycles.

779

26.3 General Algorithm

Why Dijkstra is correct and how to generalize.

780

Observations (1)

Triangle Inequality

Forall s,u,v € V:
d(s,v) < d(s,u) + d(u,v)

A shortest path from s to v cannot be longer than a shortest path from s to v that
has to include u

781

Observations (2)

Optimal Substructure

Sub-paths of shortest paths are shortest paths. Let p = (vg,...,vx) be a
shortest path from v, to v,. Then each of the sub-paths p;; = (v;, ..., v;)
(0 <i < j < k)is ashortest path from v; to v;.

@@ RD-9@

If not, then one of the sub-paths could be shortened which immediately leads to
a contradiction.

782

Observations (3)

Shortest paths do not contain cycles

1. Shortest path contains a negative cycle: there is no shortest path,
contradiction

2. Path contains a positive cycle: removing the cycle from the path will reduce
the weight. Contradiction.

3. Path contains a cycle with weight 0: removing the cycle from the path will not
change the weight. Remove the cycle (convention).

783

General Algorithm

1. Initialise ds and 7, dg[v] = oo, ms[v] = null for each v € V
2. Setd,[s] «+ 0
3. Choose an edge (u,v) € E
Relax(u, v):
if ds[u] + c(u,v) < dg[v] then
ds[v] + ds[u] + e(u,v)
ms[v] «— u
return true

return false

4. Repeat 3 until nothing can be relaxed any more.
(until d[v] < dg[u] + c(u,v) V(u,v) € E)

784

It is Safe to Relax

At any time in the algorithm above it holds

ds[v] > d(s,v) Yo eV

785

It is Safe to Relax

At any time in the algorithm above it holds
ds[v] > d(s,v) Yo eV

In the relaxation step:

8(s,v) < (s, u) + d(u,v) [Triangle Inequality].

§(s,u) < ds[u] [Induction Hypothesis].

5(u,v) < c(u,v) [Minimality of §]
= ds[u] + c(u,v) > (s, v

785

Central Question

How / in which order should edges be chosen in above algorithm?

786

Special Case: Directed Acyclic Graph (DAG)

DAG = topological sorting returns optimal visiting order

U1 V4 Us
2 —1 2 3
NSNS
S Vs -2 Vg -1
N NS
4 2 ~ 2 ~
Vg Us > U7

—2

Top. Sort: = Order s, v1, v9, v3, V4, Vg, U5, Vs, V7.

787

Special Case: Directed Acyclic Graph (DAG)

DAG = topological sorting returns optimal visiting order

2 —2 3

U1 V4 Ug

/ \ Ve \2\ V

0 -3 ~1 0

S Vs -2 Vg —1
]/ /

4 4 2 Y 4 2 ¥ _§

Vg Us > U7

—2

Top. Sort: = Order s, v1, v9, v3, V4, Vg, U5, Vs, V7.

787

Other Cases

m Special case: c== 1= BFS
m Special Case: Positive Edge Weights = Dijkstra @

m General Weighted Graphs: cycles with negative weights can shorten the
path, a shortest path is not guaranteed to exist.

788

Dynamic Programming Approach (Bellman)

Induction over number of edges d|i, v]: Shortest path from s to v via
maximally i edges.

ds[i, v] = min{d,[i — 1,v], (m)inE(dS[i — 1, u] + c(u,v))
u,v)e
ds[0, s] = 0,d4[0,v] = 00 Vv # s.

789

Dynamic Programming Approach (Bellman)

n—1

- OO

0 ---

8 3
Q=
8 8
o 8|8

Algorithm: Iterate over last row until the relaxation steps do not provide
any further changes, maximally n — 1 iterations. If still changes, then there
Is no shortest path.

790

Algorithm Bellman-Ford(G, s)

Input: Graph G = (V, E, ¢), starting point s € V
Output: If return value true, minimal weights d for all shortest paths from s,
otherwise no shortest path.

foreach v € V do
| dy[u] < 00; ms[u] null
ds[s] < 0;
for i + 1 to |V| do
f + false
foreach (u,v) € E do
. f <+ fVRelax(u,v)

if f = false then return true

return false;

Runtime O(|E| - |V]).

91

	Shortest Paths
	Special Case: Constant Edge Weights
	Dijkstra's Algorithm
	General Algorithm
	Bellman-Ford Algorithm

