26. Shortest Paths

Motivation, Universal Algorithm, Dijkstra's algorithm on distance graphs, Bellman-Ford Algorithm, Floyd-Warshall Algorithm, Johnson Algorithm [Ottman/Widmayer, Kap. 9.5 Cormen et al, Kap. 24.1-24.3, 25.2-25.3]

Route Finding

Provided cities A - Z and distances between cities

What is the shortest path from A to Z ?

Notation

A weighted graph $G=(V, E, c)$ is a graph $G=(V, E)$ with an edge weight function $c: E \rightarrow \mathbb{R} . c(e)$ is called weight of the edge e.

Weighted Paths

Given: $G=(V, E, c), c: E \rightarrow \mathbb{R}, s, t \in V$.
Path: $p=\left\langle s=v_{0}, v_{1}, \ldots, v_{k}=t\right\rangle,\left(v_{i}, v_{i+1}\right) \in E(0 \leq i<k)$
Weight: $c(p):=\sum_{i=0}^{k-1} c\left(\left(v_{i}, v_{i+1}\right)\right)$.

Shortest Paths

Notation: we write

$$
u \stackrel{p}{\rightsquigarrow} v \quad \text { oder } \quad p: u \rightsquigarrow v
$$

and mean a path p from u to v
Wanted: $\delta(u, v)=$ minimal weight of a path from u to v :

$$
\delta(u, v)= \begin{cases}\infty & \text { no path from } u \text { to } v \\ \min \{c(p): u \stackrel{p}{\rightsquigarrow} v\} & \text { otherwise }\end{cases}
$$

In the following we call a path with minimal weight simply a shortest path.

Trivial algorithm?

Try out all paths?

(at least $2^{|V| / 2}$ paths from s to t)
\Rightarrow Inefficient. There can be exponentially many paths.

Simplest Case

Constant edge weight (every edge has weight 1)

\Rightarrow Solution: Breadth First Search $\mathcal{O}(|V|+|E|)$

Dijkstra’s Algorithm: Observation

important assumption: all weights are positive.

Shortest path $s \rightsquigarrow u$ has length l (exactly).

Upper bound:
Shortest path $s \rightsquigarrow u$ has length at most l.

Observation: Shortest outgoing edge (s, u) is the shortest path from s to this node u.

Dijkstra’s Algorithm: Observation

important assumption: all weights are positive.

Shortest path $s \rightsquigarrow u$ has length l (exactly).

Upper bound:
Shortest path $s \rightsquigarrow u$ has length at most l.

General Observation: The smallest upper bound of a(n orange) node u constitutes the exact length of the shortest path from s to u.

Dijkstra’s Algorithm: Basic Idea (Greedy)

V is split into:
■ K: nodes with known shortest path
■ $\mathbf{N}=\cup_{v \in K} N^{+}(v) \backslash K$: successors of K \Rightarrow an upper bound is known
■ $\mathbb{R}=V \backslash(K \cup N)$: remaining nodes \Rightarrow nothing is known yet

Greedy:

Starting with $\mathbf{N}=\{s\}$, until $\mathbf{N}=\emptyset$: node from \mathbf{N} with smallest upper bound joins \mathbf{K}, and its neighbors join \mathbf{N}.

Invariants:

■ after i steps: shortest paths to i nodes known $(|K|=i)$.

- for all nodes in $\mathrm{v} \in N$: the upper bound is the (exact) length of shortest path $\mathrm{s} \rightsquigarrow \bullet \rightarrow v$ from s to v with nodes only from $\mathrm{K} \cup\{\mathrm{v}\}$.

Quiz

Is the following constellation of upper bounds possible?

Example

Known shortest paths from s :

$$
\begin{array}{ll}
s \rightsquigarrow s: 0 & s \rightsquigarrow d: 6 \\
s \rightsquigarrow b: 2 & s \rightsquigarrow f: 7 \\
s \rightsquigarrow a: 3 & s \rightsquigarrow e: 10 \\
s \rightsquigarrow c: 5 & s \rightsquigarrow t: 11
\end{array}
$$

$\mathbf{K}=\{s, b, a, c, d, f, e, t\}$
$\mathbf{N}=\{ \}$
$\mathrm{R}=\{ \}$

Quiz

Which nodes are in K (known shortest paths) after six steps of Dijkstra's algorithm with starting node A?

Ingredients of an Algorithm

Wanted: shortest paths from a starting node s.

- Weight of the shortest path found so far

$$
d_{s}: V \rightarrow \mathbb{R}
$$

At the beginning: $d_{s}[v]=\infty$ for all $v \in V$. Goal: $d_{s}[v]=\delta(s, v)$ for all $v \in V$.
■ Predecessor of a node

$$
\pi_{s}: V \rightarrow V
$$

Initially $\pi_{s}[v]$ undefined for each node $v \in V$

Algorithm: Dijkstra (G, s)

Input: Positively weighted Graph $G=(V, E, c)$, starting point $s \in V$,
Output: Length d_{s} of the shortest paths from s and predecessor π_{s} for each node

```
foreach \(u \in V\) do
    \(d_{s}[u] \leftarrow \infty ; \pi_{s}[u] \leftarrow\) null
\(d_{s}[s] \leftarrow 0 ; N \leftarrow\{s\}\)
while \(N \neq \emptyset\) do
    \(u \leftarrow \arg \min _{u \in N} d_{s}[u] ; N \leftarrow N \backslash\{u\}\)
    foreach \(v \in N^{+}(u)\) do
        if \(d_{s}[u]+c(u, v)<d_{s}[v]\) then
            \(d_{s}[v] \leftarrow d_{s}[u]+c(u, v)\)
            \(\pi_{s}[v] \leftarrow u\)
        \(N \leftarrow N \cup\{v\}\)
```


Implementation: Data Structure for N ?

Required operations:
■ Insert ($\mathrm{p}, \mathrm{k})$): $\mathcal{O}(\log |V|)$ add key (node) k with value (upper bound) p
■ ExtractMin(): $\mathcal{O}(\log |V|)$ remove element with smallest value
■ DecreaseKey ($\mathrm{p}, \mathrm{k})$): $\mathcal{O}(\log |V|)$
 update the value of key k to p
\Rightarrow MinHeap with nodes from N as keys and with upper bounds as value

DecreaseKey

Two possibilities:

- tracking position:
store at nodes or external
- or avoid DecreaseKey: with Lazy Deletion

Lazy Deletion:

■ Re-insert node with smaller upper bound
■ Mark nodes "deleted" once extracted
\Rightarrow Memory consumption of heap can grow to $\Theta(|E|)$ instead of $\Theta(|V|)$
\Rightarrow Because $|E| \leq|V|^{2}$: Insert and ExtractMin still in $\mathcal{O}\left(\log |V|^{2}\right)=\mathcal{O}(\log |V|)$

Algorithm: Dijkstra(G, s) with Lazy Deletion

Input: Positively weighted Graph $G=(V, E, c)$, starting point $s \in V$,
Output: Length d_{s} of the shortest paths from s and predecessor π_{s} for each node foreach $u \in V$ do
$\left\lfloor d_{s}[u] \leftarrow \infty ; \pi_{s}[u] \leftarrow\right.$ null
$K=\{ \} ; d_{s}[s] \leftarrow 0 ; N \leftarrow\{s\}$
while $N \neq \emptyset$ do
$d, u \leftarrow \operatorname{ExtractMin}(N)$
if $u \notin K$ then
$K \leftarrow K \cup\{u\}$
Running time:
Initialization: $\mathcal{O}(|V|)$
$(|V|+|E|)$ times ExtractMin: $\mathcal{O}((|V|+|E|)$.
$\log |V|)$;
$(|E|+1)$ times Insert: $\mathcal{O}(|E| \cdot \log |V|)$;
\Rightarrow Overall: $\mathcal{O}((|V|+|E|) \cdot \log |V|)$
foreach $v \in N^{+}(u)$ do

$$
\text { if } d+c(u, v)<d_{s}[v] \text { then }
$$

$d_{s}[v] \leftarrow d+c(u, v) ; \pi_{s}[v] \leftarrow u$
Insert $((d+c(u, v), v))$

Runtime of Dijkstra (without Lazy Deletion)

■ $|V| \times$ ExtractMin: $\mathcal{O}(|V| \log |V|)$
■ $|E| \times$ Insert or DecreaseKey: $\mathcal{O}(|E| \log |V|)$
■ $1 \times$ Init: $\mathcal{O}(|V|)$
■ Overal ${ }^{39} 40$:

$$
\mathcal{O}((|V|+|E|) \log |V|)
$$

[^0]
Observations

■ Is the shortest path always unique? No!

Dijkstra's algorithm finds one (any) shortest path.

- Is there always at least one shortest path? No! Negative cycles.

26.3 General Algorithm

Why Dijkstra is correct and how to generalize.

Observations (1)

Triangle Inequality
For all $s, u, v \in V$:

$$
\delta(s, v) \leq \delta(s, u)+\delta(u, v)
$$

A shortest path from s to v cannot be longer than a shortest path from s to v that has to include u

Observations (2)

Optimal Substructure

Sub-paths of shortest paths are shortest paths. Let $p=\left\langle v_{0}, \ldots, v_{k}\right\rangle$ be a shortest path from v_{0} to v_{k}. Then each of the sub-paths $p_{i j}=\left\langle v_{i}, \ldots, v_{j}\right\rangle$ ($0 \leq i<j \leq k$) is a shortest path from v_{i} to v_{j}.

If not, then one of the sub-paths could be shortened which immediately leads to a contradiction.

Observations (3)

Shortest paths do not contain cycles

1. Shortest path contains a negative cycle: there is no shortest path, contradiction
2. Path contains a positive cycle: removing the cycle from the path will reduce the weight. Contradiction.
3. Path contains a cycle with weight 0: removing the cycle from the path will not change the weight. Remove the cycle (convention).

General Algorithm

1. Initialise d_{s} and $\pi_{s}: d_{s}[v]=\infty, \pi_{s}[v]=$ null for each $v \in V$
2. Set $d_{s}[s] \leftarrow 0$
3. Choose an edge $(u, v) \in E$
```
Relax(u,v):
if }\mp@subsup{d}{s}{}[u]+c(u,v)<\mp@subsup{d}{s}{}[v] the
    \mp@subsup{d}{s}{}[v]\leftarrow\mp@subsup{d}{s}{}[u]+c(u,v)
    \mp@subsup{\pi}{s}{}[v]}\leftarrow
    return true
return false
```


4. Repeat 3 until nothing can be relaxed any more.
(until $d_{s}[v] \leq d_{s}[u]+c(u, v) \quad \forall(u, v) \in E$)

It is Safe to Relax

At any time in the algorithm above it holds

$$
d_{s}[v] \geq \delta(s, v) \quad \forall v \in V
$$

In the relaxation step:

$$
\begin{array}{rlrl}
\delta(s, v) & \leq \delta(s, u)+\delta(u, v) & \text { [Triangle Inequality]. } \\
\delta(s, u) & \leq d_{s}[u] & \text { [Induction Hypothesis]. } \\
\delta(u, v) & \leq c(u, v) & \text { [Minimality of } \delta \text {] } \\
\Rightarrow \quad d_{s}[u]+c(u, v) & \geq \delta(s, v) & \\
\Rightarrow & & \\
& & \\
& & \\
& & \\
& & \\
&
\end{array}
$$

Central Question

How / in which order should edges be chosen in above algorithm?

Special Case: Directed Acyclic Graph (DAG)

DAG \Rightarrow topological sorting returns optimal visiting order

Top. Sort: \Rightarrow Order $s, v_{1}, v_{2}, v_{3}, v_{4}, v_{6}, v_{5}, v_{8}, v_{7}$.

Other Cases

■ Special case: $c \equiv=1 \Rightarrow$ BFS
■ Special Case: Positive Edge Weights \Rightarrow Dijkstra -).
■ General Weighted Graphs: cycles with negative weights can shorten the path, a shortest path is not guaranteed to exist.

Dynamic Programming Approach (Bellman)

Induction over number of edges $d_{s}[i, v]$: Shortest path from s to v via maximally i edges.

$$
\begin{aligned}
& d_{s}[i, v]=\min \left\{d_{s}[i-1, v], \min _{(u, v) \in E}\left(d_{s}[i-1, u]+c(u, v)\right)\right. \\
& d_{s}[0, s]=0, d_{s}[0, v]=\infty \forall v \neq s .
\end{aligned}
$$

Dynamic Programming Approach (Bellman)

	s	\cdots	v	\cdots	w
0	0	∞	∞	∞	∞
1	0	∞	7	∞	-2
\vdots	\vdots	\vdots	\vdots	\vdots	\vdots
$n-1$	0	\cdots	\cdots	\cdots	\cdots

Algorithm: Iterate over last row until the relaxation steps do not provide any further changes, maximally $n-1$ iterations. If still changes, then there is no shortest path.

Algorithm Bellman-Ford (G, s)

Input: Graph $G=(V, E, c)$, starting point $s \in V$
Output: If return value true, minimal weights d for all shortest paths from s, otherwise no shortest path.
foreach $u \in V$ do

$$
\begin{aligned}
& \left\lfloor d_{s}[u] \leftarrow \infty ; \pi_{s}[u] \leftarrow\right. \text { null } \\
& d_{s}[s] \leftarrow 0 ; \\
& \text { for } i \leftarrow 1 \text { to }|V| \text { do } \\
& \qquad \begin{array}{l}
f \leftarrow \text { false } \\
\text { foreach }(u, v) \in E \text { do } \\
\quad f \leftarrow f \vee \operatorname{Relax}(u, v) \\
\text { if } f=\text { false then return true }
\end{array} \\
& \text { return false; }
\end{aligned}
$$

Runtime $\mathcal{O}(|E| \cdot|V|)$.

[^0]: ${ }^{39}$ For connected graphs: $\mathcal{O}(|E| \log |V|)$
 ${ }^{40}$ Can be improved when a data structure optimized for ExtractMin and DecreaseKey ist used (Fibonacci Heap), then runtime $\mathcal{O}(|E|+|V| \log |V|)$.

