
26. Shortest Paths

Motivation, Universal Algorithm, Dijkstra’s algorithm on distance graphs,
Bellman-Ford Algorithm, Floyd-Warshall Algorithm, Johnson Algorithm
[Ottman/Widmayer, Kap. 9.5 Cormen et al, Kap. 24.1-24.3, 25.2-25.3]

759

Route Finding
Provided cities A - Z and distances between cities

A

B

C

D

E

F

G

H

I Z

3

1

6

4

1

3

5

7

1

4 5

1

4

1

7 4

3
8

5

10

5

What is the shortest path from A to Z?
760

Notation
A weighted graph G = (V,E, c) is a graph G = (V,E) with an edge weight
function c : E → R. c(e) is called weight of the edge e.

0

1

2

3

4

5

2

1.5

4

1

4

3

761

Weighted Paths

Given: G = (V,E, c), c : E → R, s, t ∈ V .
Path: p = 〈s = v0, v1, . . . , vk = t〉, (vi, vi+1) ∈ E (0 ≤ i < k)
Weight: c(p) := ∑k−1

i=0 c((vi, vi+1)).

S

t2 1

3

2

1

Path with weight 9

762

Shortest Paths

Notation: we write
u

p
 v oder p : u v

and mean a path p from u to v

Wanted: δ(u, v) = minimal weight of a path from u to v:

δ(u, v) =

∞ no path from u to v
min{c(p) : u p

 v} otherwise

In the following we call a path with minimal weight simply a shortest path.

763

Trivial algorithm?

Try out all paths?

s

t
(at least 2|V |/2 paths from s to t)

⇒ Ine�cient. There can be exponentially many paths.

764

Simplest Case

Constant edge weight (every edge has weight 1)

s

t
. . .

s

t

⇒ Solution: Breadth First Search O(|V |+ |E|)
765

Dijkstra’s Algorithm: Observation

important assumption: all weights are positive.

s

a

b

c

d

e

f

t

41

4

3

9

2

1

11

s

4

5

a

c

4

2

5

0
b

2

u
l

Shortest path s u has length l (exactly).

u
l Upper bound:

Shortest path s u has length at most l.
2

Observation: Shortest outgoing edge (s, u) is the shortest path from s to
this node u.

767

Dijkstra’s Algorithm: Observation

important assumption: all weights are positive.

s b

c

d

f

t

4

4

3

9

2

1

11

4

5

4

2

5

0
e

11

a
3

1

u
l

Shortest path s u has length l (exactly).

u
l Upper bound:

Shortest path s u has length at most l.
2

General Observation: The smallest upper bound of a(n orange) node u
constitutes the exact length of the shortest path from s to u.

768

Dijkstra’s Algorithm: Basic Idea (Greedy)
V is split into:

K: nodes with known shortest path
N = ⋃

v∈K N+(v) \K : successors of K
⇒ an upper bound is known
R = V \ (K ∪N): remaining nodes
⇒ nothing is known yet

Greedy:

s

a

b

c

d

e

f

ts

a

b

41

4

4

2

5

3

9

2

1

11

0 2

3

c

d

e

6

11

5
f

t

?

?

Starting with N = {s}, until N = ∅: node from N with smallest upper
bound joins K, and its neighbors join N.
Invariants:
after i steps: shortest paths to i nodes known (|K| = i).
for all nodes in v ∈ N : the upper bound is the (exact) length of shortest
path s • →v from s to v with nodes only from K∪{v}. 769

Quiz

Is the following constellation of upper bounds possible?

s u

v
4

w

t
330

6

770

Example

s

a

b

c

d

e

f

t
9s b

2

4

4

a

1

d

11

0

4

2

5

2 11

33 6

c
5

5

f
7

d
3 6

f
2

18
e

4
10

7

t
1 11

K = {s, b, a, c, d, f, e, t}
N = {}
R = {}

Known shortest paths from s:
s s : 0 s d : 6
s b : 2 s f : 7
s a : 3 s e : 10
s c : 5 s t : 11

771

Quiz

A

B

C

D

E

F

G

H

I Z

3

1

6

4

1

3

5

7

1

4 5

1

4

1

7 4

3
8

5

10

5

Which nodes are in K (known shortest paths) after six steps of Dijkstra’s
algorithm with starting node A?

772

Ingredients of an Algorithm

Wanted: shortest paths from a starting node s.
Weight of the shortest path found so far

ds : V → R

At the beginning: ds[v] =∞ for all v ∈ V .
Goal: ds[v] = δ(s, v) for all v ∈ V .
Predecessor of a node

πs : V → V

Initially πs[v] unde�ned for each node v ∈ V

773

Algorithm: Dijkstra(G, s)

Input: Positively weighted Graph G = (V,E, c),
starting point s ∈ V ,

Output: Length ds of the shortest paths from s and
predecessor πs for each node

foreach u ∈ V do
ds[u]←∞; πs[u]← null

ds[s]← 0; N ← {s}
while N 6= ∅ do

u← arg minu∈N ds[u]; N ← N \ {u}
foreach v ∈ N+(u) do

if ds[u] + c(u, v) < ds[v] then
ds[v]← ds[u] + c(u, v)
πs[v]← u
N ← N ∪ {v}

774

Implementation: Data Structure for N?

Required operations:
Insert((p, k)): O(log |V |)
add key (node) k
with value (upper bound) p
ExtractMin(): O(log |V |)
remove element with smallest value
DecreaseKey((p, k)): O(log |V |)
update the value of key k to p

3, b

8, d

9, e

17, f 16, i

11, h

13, j 15, l

4, g

6, c

18, t 12, y

17, a

⇒ MinHeap with nodes from N as keys and with upper bounds as value

775

DecreaseKey
Two possibilities:
tracking position:
store at nodes or external
or avoid DecreaseKey:
with Lazy Deletion

Lazy Deletion:

3, b

8, d

9, e

17, f 16, i

11, h

13, j 15, l

4, g

9, b

18, t 12, y

6, c

17, a

Re-insert node with smaller upper bound
Mark nodes "deleted" once extracted

⇒ Memory consumption of heap can grow to Θ(|E|) instead of Θ(|V |)
⇒ Because |E| ≤ |V |2: Insert and ExtractMin still in O(log |V |2) = O(log |V |)

776

Algorithm: Dijkstra(G, s) with Lazy Deletion
Input: Positively weighted Graph G = (V,E, c), starting point s ∈ V ,
Output: Length ds of the shortest paths from s and predecessor πs for each node
foreach u ∈ V do

ds[u]←∞; πs[u]← null

K = {}; ds[s]← 0; N ← {s}
while N 6= ∅ do

d, u← ExtractMin(N)
if u /∈ K then

K ← K ∪ {u}
foreach v ∈ N+(u) do

if d+ c(u, v) < ds[v] then
ds[v]← d+ c(u, v); πs[v]← u
Insert((d+ c(u, v), v))

Running time:
Initialization: O(|V |)
(|V | + |E|) times ExtractMin: O((|V | + |E|) ·
log |V |);
(|E|+ 1) times Insert: O(|E| · log |V |);
⇒ Overall: O((|V |+ |E|) · log |V |)

777

Runtime of Dijkstra (without Lazy Deletion)

|V |× ExtractMin: O(|V | log |V |)
|E|× Insert or DecreaseKey: O(|E| log |V |)
1× Init: O(|V |)
Overal39 40 :

O((|V |+ |E|) log |V |)

39For connected graphs: O(|E| log |V |)
40Can be improved when a data structure optimized for ExtractMin and DecreaseKey ist

used (Fibonacci Heap), then runtime O(|E|+ |V | log |V |).
778

Observations
Is the shortest path always unique? No!

s u

v

w

t
1

3

4

3

2

Dijkstra’s algorithm �nds one (any) shortest path.
Is there always at least one shortest path? No! Negative cycles.

s u

v

w

t
1

1

−1

−1

1

1
779

26.3 General Algorithm

Why Dijkstra is correct and how to generalize.

780

Observations (1)

Triangle Inequality
For all s, u, v ∈ V :

δ(s, v) ≤ δ(s, u) + δ(u, v)

s

u

v

A shortest path from s to v cannot be longer than a shortest path from s to v that
has to include u

781

Observations (2)

Optimal Substructure
Sub-paths of shortest paths are shortest paths. Let p = 〈v0, . . . , vk〉 be a
shortest path from v0 to vk. Then each of the sub-paths pij = 〈vi, . . . , vj〉
(0 ≤ i < j ≤ k) is a shortest path from vi to vj .

u x y v
p p

q

p

If not, then one of the sub-paths could be shortened which immediately leads to
a contradiction.

782

Observations (3)

Shortest paths do not contain cycles

1. Shortest path contains a negative cycle: there is no shortest path,
contradiction

2. Path contains a positive cycle: removing the cycle from the path will reduce
the weight. Contradiction.

3. Path contains a cycle with weight 0: removing the cycle from the path will not
change the weight. Remove the cycle (convention).

783

General Algorithm

1. Initialise ds and πs: ds[v] =∞, πs[v] = null for each v ∈ V
2. Set ds[s]← 0
3. Choose an edge (u, v) ∈ E

Relax(u, v):
if ds[u] + c(u, v) < ds[v] then

ds[v]← ds[u] + c(u, v)
πs[v]← u
return true

return false

s

u

v

ds(u)

ds(v)

4. Repeat 3 until nothing can be relaxed any more.
(until ds[v] ≤ ds[u] + c(u, v) ∀(u, v) ∈ E)

784

It is Safe to Relax

At any time in the algorithm above it holds

ds[v] ≥ δ(s, v) ∀v ∈ V

In the relaxation step:

δ(s, v) ≤ δ(s, u) + δ(u, v) [Triangle Inequality].
δ(s, u) ≤ ds[u] [Induction Hypothesis].
δ(u, v) ≤ c(u, v) [Minimality of δ]

⇒ ds[u] + c(u, v) ≥ δ(s, v)

⇒ min{ds[v], ds[u] + c(u, v)} ≥ δ(s, v)

785

Central Question

How / in which order should edges be chosen in above algorithm?

786

Special Case: Directed Acyclic Graph (DAG)

DAG⇒ topological sorting returns optimal visiting order

s

v1

v2

v3

v4

v5

v6

v7

v8

2

4

−3

1

−1

2

−2

2

−2

2

3

−1
0

2

4

−1

−2

0

−4

3

−6

Top. Sort: ⇒ Order s, v1, v2, v3, v4, v6, v5, v8, v7.
787

Other Cases

Special case: c ≡= 1⇒ BFS
Special Case: Positive Edge Weights⇒ Dijkstra .
General Weighted Graphs: cycles with negative weights can shorten the
path, a shortest path is not guaranteed to exist.

788

Dynamic Programming Approach (Bellman)

Induction over number of edges ds[i, v]: Shortest path from s to v via
maximally i edges.

ds[i, v] = min{ds[i− 1, v], min
(u,v)∈E

(ds[i− 1, u] + c(u, v))

ds[0, s] = 0, ds[0, v] =∞ ∀v 6= s.

789

Dynamic Programming Approach (Bellman)

s · · · v · · · w
0 0 ∞ ∞ ∞ ∞
1 0 ∞ 7 ∞ −2
...

n− 1 0 · · · · · · · · · · · ·

s

u

v

w

4

7

−2

Algorithm: Iterate over last row until the relaxation steps do not provide
any further changes, maximally n− 1 iterations. If still changes, then there
is no shortest path.

790

Algorithm Bellman-Ford(G, s)
Input: Graph G = (V,E, c), starting point s ∈ V
Output: If return value true, minimal weights d for all shortest paths from s,

otherwise no shortest path.

foreach u ∈ V do
ds[u]←∞; πs[u]← null

ds[s]← 0;
for i← 1 to |V | do

f ← false
foreach (u, v) ∈ E do

f ← f ∨ Relax(u, v)
if f = false then return true

return false;

Runtime O(|E| · |V |).
791

	Shortest Paths
	Special Case: Constant Edge Weights
	Dijkstra's Algorithm
	General Algorithm
	Bellman-Ford Algorithm

