26. Shortest Paths

Motivation, Universal Algorithm, Dijkstra’s algorithm on distance graphs,
Bellman-Ford Algorithm, Floyd-Warshall Algorithm, Johnson Algorithm

[Ottman/Widmayer, Kap. 9.5 Cormen et al, Kap. 24.1-24.3, 25.2-25.3]

759

Route Finding

Provided cities A - Z and distances between cities

What is the shortest path from A to Z?

760

Notation

A weighted graph G = (V, E, ¢) is a graph G = (V, E) with an edge weight
function c: £ — R. c(e) is called weight of the edge e.

761

Weighted Paths

Given: G = (V,E,¢),c: E = R,s,te€V.
Path: p = (s = vg,v1,..., 00 =), (vi,vi) EE(0<i < k)
Weight: c(p) := 21 c((vi, vig1)).

/\QJ
AN ~
N |

Path with weight 9

762

Shortest Paths

Notation: we write
TR oder piu~>v

and mean a path p from u to v

Wanted: 6(u, v) = minimal weight of a path from « to v:

5(u,v) 00 no path from u to v
u,v) =
’ min{c(p) : u > v} otherwise

In the following we call a path with minimal weight simply a shortest path.

763

Trivial algorithm?
Try out all paths?
Sm
t
(at least 2IVI/2 paths from s to t)

= Inefficient. There can be exponentially many paths.

764

Simplest Case

Constant edge weight (every edge has weight 1)

= Solution: Breadth First Search O(|V| + |E|)

765

Dijkstra’s Algorithm: Observation

important assumption: all weights are positive.

L
Shortest path s ~» u has length [(exactly).

Upper bound:
Shortest path s ~» u has length at most I.

Observation: Shortest outgoing edge (s, u) is the shortest path from s to
this node w.

767

Dijkstra’s Algorithm: Observation

important assumption: all weights are positive.

Upper bound:
Shortest path s ~» u has length at most /.

General Observation: The smallest upper bound of a(n orange) node u
constitutes the exact length of the shortest path from s to w.

768

Dijkstra’s Algorithm: Basic Idea (Greedy)

V is split into:
m K: nodes with known shortest path

m N ={J,.x N"(v)\ K: successors of K
= an upper bound is known

m R =1\ (A UN)remaining nodes
= nothing is known yet
Greedy:

Starting with N = {s}, until N = (): node from N with smallest upper

bound joins K, and its neighbors join N.

Invariants:

m after i steps: shortest paths to i nodes known (| K| =).

m for all nodes in v € N: the upper bound is the (exact) length of shortest
path s ~» e —uv from s to v with nodes only from Ku{v}. o

Quiz

Is the following constellation of upper bounds possible?

770

Example

K ={s,b,a,c¢,d, f,e,t}
N ={}
R={}

Known shortest paths from s:
S~ S
s~ b:
S~ a:
S~ C:

0

Ot o N

s~ d: 6
s~ fi 7
s~ e: 10
s~>t:11

m

Quiz

Which nodes are in K (known shortest paths) after six steps of Dijkstra’s
algorithm with starting node A?

772

Ingredients of an Algorithm

Wanted: shortest paths from a starting node s.
m Weight of the shortest path found so far

d; : V=R

At the beginning: d,[v] = oo forallv € V.
Goal: d,[v] = d(s,v) forallv e V.

B Predecessor of a node
sV —=>V

Initially 7s[v] undefined for each node v € V/

773

Algorithm: Dijkstra(G, s)

Input: Positively weighted Graph G = (V| E, ¢),
starting point s € V,
Output: Length dg of the shortest paths from s and
predecessor 7, for each node

foreach u € V do
| dslu] <= o0; ms[u] < null
ds[s] < 0; N < {s}
while N # () do
u 4— argmingey ds[ul; N <= N\ {u}
foreach v € N (u) do
if ds[u] + c(u,v) < ds[v] then
ds[v] « ds[u] + c(u,v)
Ts[v] <~ u
N« NU{v}

774

Implementation: Data Structure for N?

Required operations:
m Insert((p, k)): O(log|V])
add key (node) k
with value (upper bound) p
m ExtractMin(): O(log |V])
remove element with smallest value
B DecreaseKey((p, k)): O(log|V|)
update the value of key &k to p

= MinHeap with nodes from N as keys and with upper bounds as value

775

DecreaseKey

Two possibilities:
m tracking position:
store at nodes or external

m or avoid DecreaseKey:
with Lazy Deletion

Lazy Deletion:

m Re-insert node with smaller upper bound
m Mark nodes "deleted" once extracted

= Memory consumption of heap can grow to O(|E|) instead of ©(|V)
= Because |E| < V]2 Insert and ExtractMin still in O(log |[V']?) = O(log |V])

776

Algorithm: Dijkstra(G, s) with Lazy Deletion

Input: Positively weighted Graph G = (V, E, ¢), starting point s € V,
Output: Length dg of the shortest paths from s and predecessor 7 for each node
foreach © € V do L.

‘ ds[u] < o0o; ms[u] < null Running time:

o | . Initialization: O(|V])
K - {}; ds[s] < 0; N « {s} (|V| + |E|) times ExtractMin: O((|V] + |E|) -
while N # () do

) log |V]);
d,u + ExtractMin(NV) (|E| + 1) times Insert: O(|E| - log [V);
if u ¢ K then = Overall: O((|V] + |E]) - log [V])
K «+ K U{u}

foreach v € N (u) do
if d+ c(u,v) < ds[v] then
ds[v] < d + c(u,v); ms[v] < u
Insert((d + c(u,v),v))

777

Runtime of Dijkstra (without Lazy Deletion)

m |V|x ExtractMin: O(|V|log |V)
B |E|x Insert or DecreaseKey: O(|E|log |V])
m 1x Init: O(|V])

m Overal® “0:
O((IV] + [E]) log [V])

3IFor connected graphs: O(|E|log |V])
“0Can be improved when a data structure optimized for ExtractMin and DecreaseKey ist

used (Fibonacci Heap), then runtime O(|E| + |V|log |V]).

778

Observations

m |s the shortest path always unique? No!

Dijkstra’s algorithm finds one (any) shortest path.
m s there always at least one shortest path? No! Negative cycles.

779

26.3 General Algorithm

Why Dijkstra is correct and how to generalize.

780

Observations (1)

Triangle Inequality

For all s,u,v € V:
d(s,v) < d(s,u) + o(u,v)

A shortest path from s to v cannot be longer than a shortest path from s to v that
has to include u

781

Observations (2)

Optimal Substructure

Sub-paths of shortest paths are shortest paths. Let p = (vg,...,vx) be a
shortest path from v, to v,. Then each of the sub-paths p;; = (v;, ..., v;)
(0 <i < j <k)isashortest path from v; to v;.

@@ ~-AD-@

If not, then one of the sub-paths could be shortened which immediately leads to
a contradiction.

782

Observations (3)

Shortest paths do not contain cycles

1. Shortest path contains a negative cycle: there is no shortest path,
contradiction

2. Path contains a positive cycle: removing the cycle from the path will reduce
the weight. Contradiction.

3. Path contains a cycle with weight 0: removing the cycle from the path will not
change the weight. Remove the cycle (convention).

783

General Algorithm

1. Initialise ds and 7, dg[v] = oo, ms[v] = null for each v € V
2. Setd,[s] «+ 0
3. Choose an edge (u,v) € E
Relax(u, v):
if ds[u] + c(u,v) < dg[v] then
ds[v] + ds[u] + e(u,v)
ms[v] «— u
return true

return false

4. Repeat 3 until nothing can be relaxed any more.
(until d,[v] < dg[u] + c(u,v) V(u,v) € E)

784

It is Safe to Relax

At any time in the algorithm above it holds
ds[v] > d(s,v) Yo eV

In the relaxation step:

8(s,v) < (s, u) + d(u,v) [Triangle Inequality].

§(s,u) < ds[ul [Induction Hypothesis].

5(u,v) < c(u,v) [Minimality of §]
= ds[u] + c(u,v) > (s, v

785

Central Question

How / in which order should edges be chosen in above algorithm?

786

Special Case: Directed Acyclic Graph (DAG)

DAG = topological sorting returns optimal visiting order

/\
NN\

3
’U Vs
K ?/
0
Ve —1
Y _4 2 Y _6
Vs > U7
_9 r

Top. Sort: = Order s, v1, v9, v3, V4, Vg, U5, Vs, V7.

787

Other Cases

m Special case: c== 1= BFS
m Special Case: Positive Edge Weights = Dijkstra @

m General Weighted Graphs: cycles with negative weights can shorten the
path, a shortest path is not guaranteed to exist.

788

Dynamic Programming Approach (Bellman)

Induction over number of edges d|i, v]: Shortest path from s to v via
maximally i edges.

ds[i,v] = min{d,[i — 1,v], (m)inE(ds[i — 1, u] + c(u,v))
u,v)e

ds[0, s] = 0,d4[0,v] = 00 Vv # s.

789

Dynamic Programming Approach (Bellman)

n—1

- OO

0

2l

v
00 00 00
oo 7T oo —2 s — 3y

Algorithm: Iterate over last row until the relaxation steps do not provide
any further changes, maximally n — 1 iterations. If still changes, then there
Is no shortest path.

790

Algorithm Bellman-Ford(G, s)

Input: Graph G = (V, E, ¢), starting point s € V
Output: If return value true, minimal weights d for all shortest paths from s,
otherwise no shortest path.

foreach v € V do
| dy[u] < 00; ms[u] null
ds[s] < 0;
for i < 1 to |V| do
f + false
foreach (u,v) € E do
. f <+ fVRelax(u,v)

if f = false then return true

return false;

Runtime O(|E| - |V]).

	Shortest Paths
	Special Case: Constant Edge Weights
	Dijkstra's Algorithm
	General Algorithm
	Bellman-Ford Algorithm

