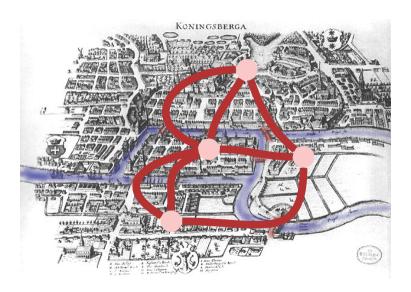
25. Graphen

Notation, Repräsentation, Traversieren (DFS, BFS), Topologisches Sortieren , Reflexive transitive Hülle, Zusammenhangskomponenten [Ottman/Widmayer, Kap. 9.1 - 9.4,Cormen et al, Kap. 22]

Königsberg 1736



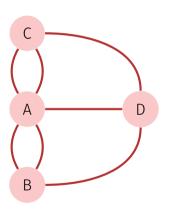
[Multi]Graph

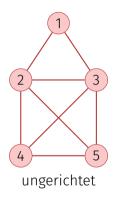


Zyklen

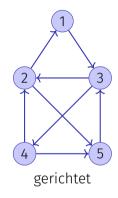
- Gibt es einen Rundweg durch die Stadt (den Graphen), welcher jede Brücke (jede Kante) genau einmal benutzt?
- Euler (1736): nein.
- Solcher Rundweg (Zyklus) heisst Eulerscher Kreis.
- Eulerzyklus ⇔ jeder Knoten hat gerade Anzahl Kanten (jeder Knoten hat einen *geraden Grad*).

"⇒" ist sofort klar, "←" ist etwas schwieriger, aber auch elementar.



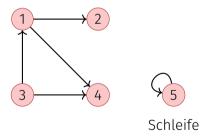


$$\begin{split} V = & \{1,2,3,4,5\} \\ E = & \{\{1,2\},\{1,3\},\{2,3\},\{2,4\},\\ & \{2,5\},\{3,4\},\{3,5\},\{4,5\}\} \end{split}$$

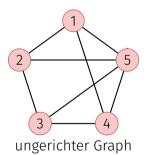


$$\begin{split} V = & \{1, 2, 3, 4, 5\} \\ E = & \{(1, 3), (2, 1), (2, 5), (3, 2), \\ & (3, 4), (4, 2), (4, 5), (5, 3)\} \end{split}$$

Ein **gerichteter Graph** besteht aus einer Menge $V = \{v_1, \ldots, v_n\}$ von Knoten (*Vertices*) und einer Menge $E \subseteq V \times V$ von Kanten (*Edges*). Gleiche Kanten dürfen nicht mehrfach enthalten sein.

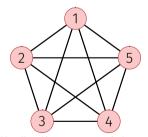


Ein **ungerichteter Graph** besteht aus einer Menge $V = \{v_1, \ldots, v_n\}$ von Knoten und einer Menge $E \subseteq \{\{u, v\} | u, v \in V\}$ von Kanten. Kanten dürfen nicht mehrfach enthalten sein.⁴⁰



⁴⁰Im Gegensatz zum Eingangsbeispiel – dann Multigraph genannt.

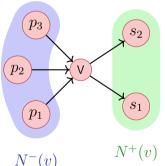
Ein ungerichteter Graph G=(V,E) ohne Schleifen in dem jeder Knoten mit jedem anderen Knoten durch eine Kante verbunden ist, heisst **vollständig**.



ein vollständiger ungerichter Graph

Für gerichtete Graphen G = (V, E)

- lacksquare $w \in V$ heisst **adjazent** zu $v \in V$, falls $(v,w) \in E$
- Vorgängermenge von $v \in V$: $N^-(v) := \{u \in V | (u, v) \in E\}$. Nachfolgermenge: $N^+(v) := \{u \in V | (v, u) \in E\}$



Für gerichtete Graphen G = (V, E)

Eingangsgrad: $\deg^-(v) = |N^-(v)|$, Ausgangsgrad: $\deg^+(v) = |N^+(v)|$

$$\deg^-(v) = 3, \deg^+(v) = 2$$

$$\deg^-(v) = 3$$
, $\deg^+(v) = 2$ $\deg^-(w) = 1$, $\deg^+(w) = 1$

Für ungerichtete Graphen G = (V, E):

- $w \in V$ heisst **adjazent** zu $v \in V$, falls $\{v, w\} \in E$
- Nachbarschaft von $v \in V$: $N(v) = \{w \in V | \{v, w\} \in E\}$
- **Grad** von v: deg(v) = |N(v)| mit Spezialfall Schleifen: erhöhen Grad um 2.

Beziehung zwischen Knotengraden und Kantenzahl

Handschlag-Lemma:

In jedem Graphen G = (V, E) gilt

- 1. $\sum_{v \in V} \deg^-(v) = \sum_{v \in V} \deg^+(v) = |E|$, falls G gerichtet
- 2. $\sum_{v \in V} \deg(v) = 2|E|$, falls G ungerichtet.

Wege

- **Weg**: Sequenz von Knoten $\langle v_1, \ldots, v_{k+1} \rangle$ so dass für jedes $i \in \{1 \ldots k\}$ eine Kante von v_i nach v_{i+1} existiert.
- **Länge** des Weges: Anzahl enthaltene Kanten *k*.
- **Pfad** (auch: einfacher Pfad): Weg der keinen Knoten mehrfach verwendet.

Zusammenhang

- Ungerichteter Graph heisst **zusammenhängend**, wenn für jedes Paar $v, w \in V$ ein verbindender Weg existiert.
- Gerichteter Graph heisst **stark zusammenhängend**, wenn für jedes Paar $v, w \in V$ ein verbindender Weg existiert.
- Gerichteter Graph heisst schwach zusammenhängend, wenn der entsprechende ungerichtete Graph zusammenhängend ist.

Einfache Beobachtungen

- Allgemein: $0 \le |E| \in \mathcal{O}(|V|^2)$
- Zusammenhängender Graph: $|E| \in \Omega(|V|)$
- Vollständiger Graph: $|E| = \frac{|V| \cdot (|V|-1)}{2}$ (ungerichtet)
- Maximal $|E| = |V|^2$ (gerichtet), $|E| = \frac{|V| \cdot (|V| + 1)}{2}$ (ungerichtet)

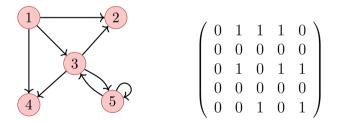
Zyklen

- **Zyklus**: Weg $\langle v_1, \ldots, v_{k+1} \rangle$ mit $v_1 = v_{k+1}$
- **Kreis**: Zyklus mit paarweise verschiedenen v_1, \ldots, v_k , welcher keine Kante mehrfach verwendet.
- Kreisfrei (azyklisch): Graph ohne jegliche Kreise.

Eine Folgerung: Ungerichtete Graphen können keinen Kreis der Länge 2 enthalten (Schleifen haben Länge 1).

Repräsentation mit Matrix

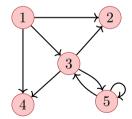
Graph G=(V,E) mit Knotenmenge v_1,\ldots,v_n gespeichert als **Adjazenzmatrix** $A_G=(a_{ij})_{1\leq i,j\leq n}$ mit Einträgen aus $\{0,1\}$. $a_{ij}=1$ genau dann wenn Kante von v_i nach v_j .

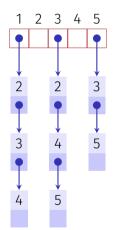


Speicherbedarf $\Theta(|V|^2)$. A_G ist symmetrisch, wenn G ungerichtet.

Repräsentation mit Liste

Viele Graphen G=(V,E) mit Knotenmenge v_1,\ldots,v_n haben deutlich weniger als n^2 Kanten. Repräsentation mit **Adjazenzliste**: Array $A[1],\ldots,A[n]$, A_i enthält verkettete Liste aller Knoten in $N^+(v_i)$.



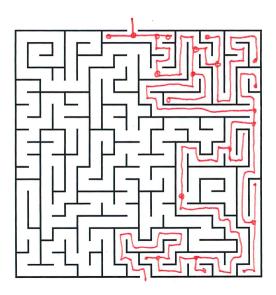


Speicherbedarf $\Theta(|V| + |E|)$.

Laufzeiten einfacher Operationen

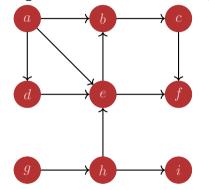
Operation	Matrix	Liste
Nachbarn/Nachfolger von $v \in V$ finden	Ü,	
$v \in V$ ohne Nachbar/Nachfolger finden	OUPOS	
$(v,u) \in E$?	Couns Sty.	201
Kante einfügen		8
Kante (v,u) löschen		

Tiefensuche

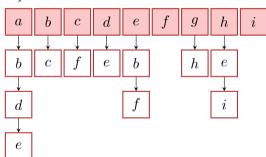


Graphen Traversieren: Tiefensuche

Verfolge zuerst Pfad in die Tiefe, bis nichts mehr besucht werden kann.



Reihenfolge a,b,c,f,d,e,g,h,i



Farben

Konzeptuelle Färbung der Knoten

- Weiss: Knoten wurde noch nicht entdeckt.
- **Grau:** Knoten wurde entdeckt und zur Traversierung vorgemerkt / in Bearbeitung.
- Schwarz: Knoten wurde entdeckt und vollständig bearbeitet

Algorithmus Tiefensuche DFS-Visit(G, v)

Tiefensuche ab Knoten v. Laufzeit (ohne Rekursion): $\Theta(\deg^+ v)$

Algorithmus Tiefensuche DFS-Visit(G)

Tiefensuche für alle Knoten eines Graphen. Laufzeit $\Theta(|V| + \sum_{v \in V} (\deg^+(v) + 1)) = \Theta(|V| + |E|).$

Interpretation der Farben

Beim Traversieren des Graphen wird ein Baum (oder Wald) aufgebaut. Beim Entdecken von Knoten gibt es drei Fälle

- Weisser Knoten: neue Baumkante
- Grauer Knoten: Zyklus ("Rückwärtskante")
- Schwarzer Knoten: Vorwärts-/Seitwärtskante

[Iteratives DFS-Visit(G, v)]

```
Input: Graph G = (V, E), v \in V mit v.color = white
Stack S \leftarrow \emptyset
v.color \leftarrow \mathsf{grey}; S.\mathsf{push}(v)
                                                       // invariant: grey nodes always on stack
while S \neq \emptyset do
     w \leftarrow \mathsf{nextWhiteSuccessor}(v)
                                                                                    // code: next slide
     if w \neq \text{null then}
          w.color \leftarrow \mathsf{grey}; S.\mathsf{push}(w)
                                                   // work on w. parent remains on the stack
          v \leftarrow w
     else
          v.color \leftarrow black
                                                        // no grey successors, v becomes black
          if S \neq \emptyset then
              v \leftarrow S.\mathsf{pop}()
                                                                          // visit/revisit next node
              if v.color = grey then S.push(v)
                                                                      Speicherbedarf Stack \Theta(|V|)
```

[nextWhiteSuccessor(v)]

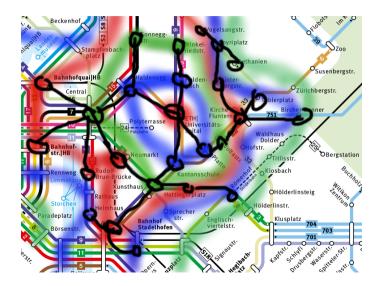
```
Input: Knoten v \in V
Output: Nachfolgeknoten u von v mit u.color = white, null sonst foreach u \in N^+(v) do

| if u.color = white then
| return u
```

return null

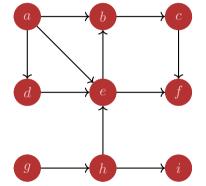
Es gibt einfachere Varianten der iterativen Tiefensuche. Diese lassen jedoch obige Interpretation der Kanten zwischen gefärbten Knoten nicht zu. Ausserdem haben Sie üblicherweise einen Speicherplatzbedarf von $\Theta(|E|)$ im schlechtesten Fall.

Breitensuche

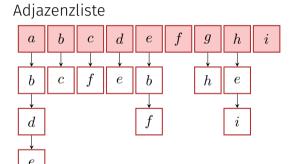


Graphen Traversieren: Breitensuche

Verfolge zuerst Pfad in die Breite, gehe dann in die Tiefe.



Reihenfolge a, b, d, e, c, f, g, h, i



(Iteratives) BFS-Visit(G, v)

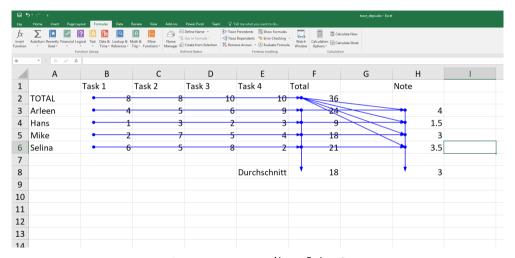
```
Input: Graph G = (V, E)
Queue Q \leftarrow \emptyset
enqueue(Q, v)
v.\mathsf{visited} \leftarrow \mathsf{true}
while Q \neq \emptyset do
     w \leftarrow \mathsf{dequeue}(Q)
     // besuche w
     foreach c \in N^+(w) do
           if c.visited = false then
                c.\mathsf{visited} \leftarrow \mathsf{true}
              enqueue(Q, c)
```

Algorithmus kommt mit $\mathcal{O}(|V|)$ Extraplatz aus.

Rahmenprogramm BFS-Visit(G)

Breitensuche für alle Knoten eines Graphen. Laufzeit $\Theta(|V| + |E|)$.

Topologisches Sortieren



Auswertungsreihenfolge?

Topologische Sortierung

Topologische Sortierung eines azyklischen gerichteten Graphen G = (V, E):

Bijektive Abbildung

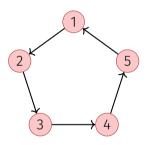
ord:
$$V \to \{1, \dots, |V|\}$$

so dass

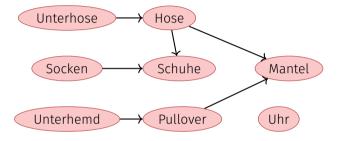
$$\operatorname{ord}(v) < \operatorname{ord}(w) \ \forall \ (v, w) \in E.$$

Identifizieren Wert i mit dem Element $v_i := \operatorname{ord}^{-1}(i)$. Topologische Sortierung $\hat{=} \langle v_1, \dots, v_{|V|} \rangle$.

(Gegen-)Beispiele



Zyklischer Graph: kann nicht topologisch sortiert werden.



Eine mögliche topologische Sortierung des Graphen: Unterhemd, Pullover, Unterhose, Uhr, Hose, Mantel, Socken, Schuhe

Beobachtung

Theorem 21

Ein gerichteter Graph G=(V,E) besitzt genau dann eine topologische Sortierung, wenn er kreisfrei ist

Beweis "⇒"

Wenn G einen Kreis besitzt, so besitzt er keine topologische Sortierung. Denn in einem Kreis $\langle v_{i_1}, \dots, v_{i_m} \rangle$ gälte $v_{i_1} < \dots < v_{i_m} < v_{i_1}$.

Beweis "⇐"

- Anfang (n = 1): Graph mit einem Knoten ohne Schleife ist topologisch sortierbar. Setze $\operatorname{ord}(v_1) = 1$.
- Hypothese: Graph mit *n* Knoten kann topologisch sortiert werden.
- \blacksquare Schritt $(n \to n+1)$:
 - 1. G enthält einen Knoten v_q mit Eingangsgrad $\deg^-(v_q)=0$. Andernfalls verfolge iterativ Kanten rückwärts nach spätestens n+1 Iterationen würde man einen Knoten besuchen, welcher bereits besucht wurde. Widerspruch zur Zyklenfreiheit.
 - 2. Graph ohne Knoten v_q und ohne dessen Eingangskanten kann nach Hypothese topologisch sortiert werden. Verwende diese Sortierung, setze $\operatorname{ord}(v_i) \leftarrow \operatorname{ord}(v_i) + 1$ für alle $i \neq q$ und setze $\operatorname{ord}(v_q) \leftarrow 1$.

Algorithmus Topological-Sort(G)

```
Input: Graph G = (V, E).
Output: Topologische Sortierung ord
Stack S \leftarrow \emptyset
foreach v \in V do A[v] \leftarrow 0
foreach (v, w) \in E do A[w] \leftarrow A[w] + 1 // Eingangsgrade berechnen
foreach v \in V with A[v] = 0 do push(S, v) // Merke Nodes mit Eingangsgrad 0
i \leftarrow 1
while S \neq \emptyset do
    v \leftarrow \mathsf{pop}(S); ord[v] \leftarrow i; i \leftarrow i+1 // Wähle Knoten mit Eingangsgrad 0
    foreach (v, w) \in E do // Verringere Eingangsgrad der Nachfolger
        A[w] \leftarrow A[w] - 1
        if A[w] = 0 then push(S, w)
```

if i = |V| + 1 then return ord else return "Cycle Detected"

Algorithmus Korrektheit

Theorem 22

Sei G = (V, E) ein gerichteter, kreisfreier Graph. Der Algorithmus **TopologicalSort**(G) berechnet in Zeit $\Theta(|V| + |E|)$ eine topologische Sortierung ord für G.

Beweis: folgt im wesentlichen aus vorigem Theorem:

- 1. Eingangsgrad verringern entspricht Knotenentfernen.
- 2. Im Algorithmus gilt für jeden Knoten v mit A[v] = 0 dass entweder der Knoten Eingangsgrad 0 hat oder dass zuvor alle Vorgänger einen Wert $\operatorname{ord}[u] \leftarrow i$ zugewiesen bekamen und somit $\operatorname{ord}[v] > \operatorname{ord}[u]$ für alle Vorgänger u von v. Knoten werden nur einmal auf den Stack gelegt.
- 3. Laufzeit: Inspektion des Algorithmus (mit Argumenten wie beim Traversieren).

Algorithmus Korrektheit

Theorem 23

Sei G = (V, E) ein gerichteter, nicht kreisfreier Graph. Der Algorithmus **TopologicalSort**(G) terminiert in Zeit $\Theta(|V|+|E|)$ und detektiert Zyklus.

Beweis: Sei $\langle v_{i_1},\ldots,v_{i_k}\rangle$ ein Kreis in G. In jedem Schritt des Algorithmus bleibt $A[v_{i_j}]\geq 1$ für alle $j=1,\ldots,k$. Also werden k Knoten nie auf den Stack gelegt und somit ist zum Schluss $i\leq V+1-k$.

Die Laufzeit des zweiten Teils des Algorithmus kann kürzer werden, jedoch kostet die Berechnung der Eingangsgrade bereits $\Theta(|V| + |E|)$.