25. Graphs

Notation, Representation, Graph Traversal (DFS, BFS), Topological Sorting ,
Reflexive transitive closure, Connected components [Ottman/Widmayer,
Kap. 91 - 9.4,Cormen et al, Kap. 22]

719

Konigsberg 1736

720

Konigsberg 1736

KONINGSBERGA

720

—_—

—

[Multi]Graph

[Multi]Graph

m s there a cycle through the town (the graph)

that uses each bridge (each edge) exactly C
once? ()\

722

m s there a cycle through the town (the graph)

that uses each bridge (each edge) exactly C
once?
m Euler (1736): no.

722

m s there a cycle through the town (the graph)

that uses each bridge (each edge) exactly C
once?
m Euler (1736): no.

m Such a cycle is called Eulerian path. A D

722

m s there a cycle through the town (the graph)

that uses each bridge (each edge) exactly C
once?
m Euler (1736): no.

m Such a cycle is called Eulerian path. A D

m Eulerian path < each node provides an even
number of edges (each node is of an even ()
degree).
‘=" Is straightforward, “<" ist a bit more difficult but B
still elementary.

722

aN
<

undirected directed
V ={1,2,3,4,5} V ={1,2,3,4,5}
E :{{17 2}’ {17 3}7 {2a 3}7 {2’ 4}’ E :{(17 3)7 (27 1)7 (27 5): (37 2)7

{2,5},{3,4},{3,5}, {4,5}} (3,4),(4,2),(4,5),(5,3)}

723

Notation

A directed graph consists of a set V = {vy,...,v,} of nodes (Vertices) and
aset E CV xV of Edges. The same edges may not be contained more

than once.
M @

e—® %

loop

724

Notation

An undirected graph consists of a set V = {vy,...,v,} of nodes a and a
set £ C {{u,v}|u,v € V} of edges. Edges may not be contained more than

once.3®

undirected graph

¥As opposed to the introductory example - it is then called multi-graph.
725

An undirected graph G = (V, E) without loops where E comprises all
edges between pairwise different nodes is called complete.

a complete undirected graph

726

For directed graphs G = (V, E)
m w e Viscalled adjacenttov € V, if (v,w) € £

727

Notation

For directed graphs G = (V, E)

m w e Viscalled adjacenttov € V, if (v,w) € £

m Predecessors of v € V: N~ (v) := {u € V|(u,v) € E}.
Successors: Nt (v) := {u € V|(v,u) € E}

727

For directed graphs G = (V, E)

m In-Degree: deg™ (v) = [N~ (v)],
Out-Degree: deg® (v) = [NT(v)]

N, @

deg™ (v) = 3, deg™t (v) = 2 deg™ (w) =1, deg® (w) =1

728

For undirected graphs G = (V, E):
m w e Viscalled adjacenttov € V, if {v,w} € E

729

For undirected graphs G = (V, E):
m w e Viscalled adjacenttov € V, if {v,w} € E
m Neighbourhood of v € V: N(v) = {w € V|{v,w} € E}

729

For undirected graphs G = (V, E):

m w e Viscalled adjacenttov € V, if {v,w} € E

m Neighbourhood of v € V: N(v) = {w € V|{v,w} € E}

m Degree of v: deg(v) = |N(v)| with a special case for the loops: increase
the degree by 2.

Ny Qo

deg(v) =5 deg(w) =2

729

Node Degrees <+ Number of Edges

Handshaking Lemma:

For each graph G = (V, E) it holds
1. Ypey deg™ (v) = ¥,cp degt (v) = | B, for G directed
2. Y uey deg(v) = 2|E|, for G undirected.

730

m Path: a sequence of nodes (vq,...,vxs 1) such that foreach i € {1...k}
there is an edge from v; to v;41 .

731

m Path: a sequence of nodes (vq,...,vxs 1) such that foreach i € {1...k}
there is an edge from v; to v;41 .

m Length of a path: number of contained edges k.

731

m Path: a sequence of nodes (vq,...,vxs 1) such that foreach i € {1...k}
there is an edge from v; to v;41 .
m Length of a path: number of contained edges k.

m Simple path: path without repeating vertices

731

Connectedness

m An undirected graph is called connected, if for each pair v,w € V there
IS a connecting path.

m A directed graph is called strongly connected, if for each pair v,w € V
there is a connecting path.

m A directed graph is called weakly connected, if the corresponding
undirected graph is connected.

732

Simple Observations

m generally: 0 < |E| € O(|V]?)

m connected graph: |E| € Q(|V])

m complete graph: |E| = MVI=D (undirected)

m Maximally [E| = |V]? (d|rected)| E| = VYD (yndirected)

733

m Cycle: path (v, ..., vk1) With v = vy

m Simple cycle: Cycle with pairwise different vy, ..., v, that does not use
an edge more than once.

m Acyclic: graph without any cycles.

Conclusion: undirected graphs cannot contain cycles with length 2 (loops
have length 1)

734

Representation using a Matrix

Graph G = (V, E) with nodes v ..., v, stored as adjacency matrix
Ag = (aij)1<ij<n With entries from {0,1}. a;; = 1 if and only if edge from v;
to Vj.

O OO OO
OO = O
_ O O O =
OO = O =
—_ o = O O

Memory consumption

735

Representation using a Matrix

Graph G = (V, E) with nodes v ..., v, stored as adjacency matrix
Ag = (aij)1<ij<n With entries from {0,1}. a;; = 1 if and only if edge from v;
to Vj.

O OO OO
OO = O
_ O O O =
OO = O =
—_ o = O O

Memory consumption O(|V|?). Ag is symmetric, if G undirected.

735

Representation with a List

Many graphs G = (V, E) with nodes vy, ..., v,
provide much less than n? edges. Represen- ol [o] [o
tation with adjacency list: Array A[1], ..., A[n],
A; comprises a linked list of nodes in N*(v;).

Memory Consumption

736

Representation with a List

Many graphs G = (V, E) with nodes vy, ..., v,
provide much less than n? edges. Represen- ol [o] [o
tation with adjacency list: Array A[1], ..., A[n],
A; comprises a linked list of nodes in N*(v;).

Memory Consumption ©(|V| + |E|).

736

Runtimes of simple Operations

Operation Matrix List

Find neighbours/successors of v € V

&
/
find v € V without neighbour/successor Q”%
®
(v,u) e E7?
Insert edge

Delete edge (v, u)

737

Depth First Search

Graph Traversal: Depth First Search

Follow the path into its depth until nothing is left to visit.

’@ S adjacency list

N

a b ¢ d e f h i
N ol b Lo
Xe) s(f b ¢ f e b h e
T l | |
d f i
l

739

Graph Traversal: Depth First Search

Follow the path into its depth until nothing is left to visit.

’@ S adjacency list

N

a| b ¢ d e f h i
N ool b Lo
Xe) s(f b ¢ f e b h e
T l | |
d f i
l

739

Graph Traversal: Depth First Search

Follow the path into its depth until nothing is left to visit.

S adjacency list
a| b ¢ d e f h i
| A A Lo

NI bl c f e b h e
I | |
d f i
|

G—— :

739

Graph Traversal: Depth First Search

Follow the path into its depth until nothing is left to visit.

° S adjacency list
allb| c d e f h i
. | A A A Lo
d ¥ e S f bl c f e b h e
o/
T I | |
d f i
|

739

Graph Traversal: Depth First Search

Follow the path into its depth until nothing is left to visit.

° S adjacency list
allb| c d e f h i
. | A A S Lo
d ¥ e S f bilc| f e b h e
o/
T I | |
d f i
|

739

Graph Traversal: Depth First Search

Follow the path into its depth until nothing is left to visit.
>° » adjacency list

allb|lc|d e f h i
N N A A Vo
d ¥ e S f bilc| f e b h e
N
T) | |
d f)
!

739

Graph Traversal: Depth First Search

Follow the path into its depth until nothing is left to visit.
>° » adjacency list

allb|lc|d e f h i
N | Vo
d ¥ e S f bilcl| fle b h e
N
T) | |
d f)
!

739

Graph Traversal: Depth First Search

Follow the path into its depth until nothing is left to visit.

>e » adjacency list

allb|lc|d e |f h i
N | Vo
d M e > bilcl| fle b h e
N
T) | |
d f 1
!

739

Graph Traversal: Depth First Search

Follow the path into its depth until nothing is left to visit.

>e » adjacency list

allb|lc|d e |f h i
N | Vo
d M e > bilcl| fle b h e
N
T) | |
d f 1
l

739

Graph Traversal: Depth First Search

Follow the path into its depth until nothing is left to visit.

>e » adjacency list

allb|lcl|dl| e|f h i
N | N A Vol
e > bilc||fle b h e
T) | |
d f 1
l

739

Graph Traversal: Depth First Search

Follow the path into its depth until nothing is left to visit.

>e » adjacency list

allb|lcl|dl| e|f h i
N | Vol
e > bic| file]|b h e
T) | |
d f 1
l

739

Graph Traversal: Depth First Search

Follow the path into its depth until nothing is left to visit.
e » adjacency list

allbilc|d]|elf h i
| Vol
y > bllc| filelod h e
T) | |
d f i
l

739

Graph Traversal: Depth First Search

Follow the path into its depth until nothing is left to visit.
e » adjacency list

allbilc|d]|elf h i
| Vol
y > bilc| filelbd h e
T) ' |
d f i
l

739

Graph Traversal: Depth First Search

Follow the path into its depth until nothing is left to visit.
e » adjacency list

allbilc|d]|elf h i
| Vol
y > bilc| filelbd h e
T) y |
d f i
l

739

Graph Traversal: Depth First Search

Follow the path into its depth until nothing is left to visit.
e » adjacency list

allbilc|d]|elf h i
| Vol
y > bilc| filelbd h e
T) y |
d f i
)

739

Graph Traversal: Depth First Search

Follow the path into its depth until nothing is left to visit.
e » adjacency list

allb|lc|dlfel| fllg]|r
| | [
y > bilc| filelbd h e
T) } |
d f i
0—— [

739

Graph Traversal: Depth First Search

Follow the path into its depth until nothing is left to visit.
e » adjacency list

allb|lc|dlfel| fllg]|r
| | |
y > bilc| filelbd h| e
T) } |
d f i
0—— .

739

Graph Traversal: Depth First Search

Follow the path into its depth until nothing is left to visit.

>e » adjacency list

allbijlc|d|lelflal|hr]|:
| Vo
y > bllelfflelbd h| e
T) | |
d f i
)
o—0 ¢ :

739

Graph Traversal: Depth First Search

Follow the path into its depth until nothing is left to visit.

>e » adjacency list

allbijlc|d|lelflal|hr]|:
| Vo
y > bllelfflelbd hi e
T) | !
d f i
)
o—0—0C :

739

Graph Traversal: Depth First Search

Follow the path into its depth until nothing is left to visit.

>e » adjacency list

allbijlc|d|lelflal|hr]|:
| Vo
y > bllelfflelbd hi e
T) | |
d f i
)
o—0—0C :

739

Graph Traversal: Depth First Search

Follow the path into its depth until nothing is left to visit.

>e » adjacency list

AN

allb|lcl|dlel fllIa]lrl:
| e
> — bilcl| flleld| |h]e
T) y y
d f i
)
o — e
o0 0

Order a,b,c, f,d,e, g, h,i

739

Conceptual coloring of nodes

m white: node has not been discovered yet.

m grey: node has been discovered and is marked for traversal / being
processed.

m black: node was discovered and entirely processed.

740

Algorithm Depth First visit DFS-Visit(G, v)

Input: graph G = (V| E), Knoten v.

v.color < grey
// visit v
foreach w € N*(v) do

if w.color = white then
. DFS-Visit(G, w)

v.color < black

Depth First Search starting from node ». Running time (without recursion):

74

Algorithm Depth First visit DFS-Visit(G, v)

Input: graph G = (V| E), Knoten v.

v.color < grey
// visit v
foreach w € N*(v) do

if w.color = white then
. DFS-Visit(G, w)

v.color < black

Depth First Search starting from node ». Running time (without recursion):
O(deg™ v)

74

Algorithm Depth First visit DFS-Visit(G)

Input: graph G = (V, E)
foreach v € V' do

‘ v.color < white

foreach v € V do

if v.color = white then
. DFS-Visit(G,v)

Depth First Search for all nodes of a graph. Running time:

742

Algorithm Depth First visit DFS-Visit(G)

Input: graph G = (V, E)

foreach v € V do
‘7 v.color < white

foreach v € V do

if v.color = white then
. DFS-Visit(G,v)

Depth First Search for all nodes of a graph. Running time:
O(IV] + Lyev(deg™(v) + 1)) = (V] + | E]).

742

Interpretation of the Colors

When traversing the graph, a tree (or Forest) is built. When nodes are
discovered there are three cases

m White node: new tree edge
m Grey node: cycle (“back-edge”)
m Black node: forward- / cross edge

743

Breadth First Search

R %Zou

oSu senbergstr.

7.
‘ , ! Zirichbergstr.
E
O
aus
M S
7

bBergstatian

000
&
A
OHdlderlinsteig <l §
%510,

“50

746

Graph Traversal: Breadth First Search

Follow the path in breadth and only then descend into depth.

\

Kb)

4

C

Adjacency List

b
|

c

|
f

|

e

—
S — D —

747

Graph Traversal: Breadth First Search

Follow the path in breadth and only then descend into depth.

\

Kb)

4

C

Adjacency List

b
|

c

|
f

|

e

—
S — D —

747

Graph Traversal: Breadth First Search

Follow the path in breadth and only then descend into depth.

Adjacency List

—
S — D —

747

Graph Traversal: Breadth First Search

Follow the path in breadth and only then descend into depth.

Adjacency List

b ¢

Vol
f

C e

S — D — S

747

Graph Traversal: Breadth First Search

Follow the path in breadth and only then descend into depth.

Adjacency List

—
S — D —

747

Graph Traversal: Breadth First Search

Follow the path in breadth and only then descend into depth.

° nE Adjacency List
allb| c d e f h i
. | A A A Lo
d ¥ e S f bl c f e b h e
o/
T I | |
d f i
I

747

Graph Traversal: Breadth First Search

Follow the path in breadth and only then descend into depth.

° nE Adjacency List
allb| c d e f h i
. | A A S Lo
d ¥ e S f bilc| f e b h e
o/
T I | |
d f i
I

747

Graph Traversal: Breadth First Search

Follow the path in breadth and only then descend into depth.

° & Adjacency List
allb| c|d| e f h i
. | A A L
>\e) s f bllcl| f e b h e
T [| |
d f i
[
O—®—O :

747

Graph Traversal: Breadth First Search

Follow the path in breadth and only then descend into depth.

° & Adjacency List
allb| c|d| e f h i
. | L
>\e) s f bllcl| flelobd h e
T [| |
d f i
[
O—®—O :

747

Graph Traversal: Breadth First Search

Follow the path in breadth and only then descend into depth.

e & Adjacency List
allb| c|dle]|f h i
| A Lo

> T f bllc| flelbd h e

T ! | |
d f i
!

O——0 :

747

Graph Traversal: Breadth First Search

Follow the path in breadth and only then descend into depth.

e & Adjacency List
allb| c|dle]|f h i
| A Lo

> T f bllc| flelbd h e

T ! ! |
d f i
!

O——0 :

747

Graph Traversal: Breadth First Search

Follow the path in breadth and only then descend into depth.

» C

Adjacency List

b

C

d

!

l

c

|
f

e

e o e @

—
S — D —

747

Graph Traversal: Breadth First Search

Follow the path in breadth and only then descend into depth.

Adjacency List

b

C

d

!

l

c

l
f

e

e o e @

—
S — D —

747

Graph Traversal: Breadth First Search

Follow the path in breadth and only then descend into depth.

Adjacency List

b

C

d

!

l

c

|
f

e

e o e @

—
S — D —

747

Graph Traversal: Breadth First Search

Follow the path in breadth and only then descend into depth.

e » Adjacency List
allb|lcl|dl el f h i
| Lo
> > bilcl| flel®d h e
T I | |
d f i
I
O—w—@ :

747

Graph Traversal: Breadth First Search

Follow the path in breadth and only then descend into depth.

Adjacency List

a b c| dl| e g | h 7
N U
bllcl fllel s h €

! | |

d f i

!

e

747

Graph Traversal: Breadth First Search

Follow the path in breadth and only then descend into depth.

e » Adjacency List
allbfcl|dlel fllg| hn i
| T
> > bilcl| flel®d hle
T I | |
d f i
I
0o—i—o |

747

Graph Traversal: Breadth First Search

Follow the path in breadth and only then descend into depth.

e » Adjacency List
affblc|dlel|lf|lI]|hn]|
| 1
> > bllelfflelbd h| e
T I | |
d f i
I
o0 0 :

747

Graph Traversal: Breadth First Search

Follow the path in breadth and only then descend into depth.

e » Adjacency List
affblc|dlel|lf|lI]|hn]|
| 1
> > bllelfflelbd hi e
T I | I
d f i
I
o0 ¢ :

747

Graph Traversal: Breadth First Search

Follow the path in breadth and only then descend into depth.

e » Adjacency List
affblc|dlel|lf|lI]|hn]|
| 1
> > bllelfflelbd hi e
T I | |
d f i
I
o0 ¢ :

747

Graph Traversal: Breadth First Search

Follow the path in breadth and only then descend into depth.

e » Adjacency List
allblc|d|e||f|Ig]|r
| 1
> > bllelfflelbd hi e
T I | |
d f i
I
)) .
o0 0

Order a,b,d,e,c, f, g, h,i

747

(Iterative) BFS-Visit(G, v)

Input: graph G = (V, E)

Queue Q + 0
enqueue(Q,v)
v.visited < true
while Q # () do
w <+ dequeue(Q)
// visit w
foreach c € N (w) do
if c.visited = false then
c.visited < true

~ enqueue(Q, ¢)

Algorithm requires extra space of O(|V]).

748

Main program BFS-Visit(G)

Input: graph G = (V, E)

foreach v € V do
‘ v.visited < false

foreach v € V do
if v.visited = false then
. BFS-Visit(G,v)

Breadth First Search for all nodes of a graph. Running time: O(|V| + | E]).

749

Topological Sorting

o . [
AZRERBLE R @ HT =
i s ey Pl gl e Daet Lnap bt o > e
Er Time” R g™ Funcims | Mg 8 > indow o

8 ColelateNow

16 = £
A B C D E F G H |
1 Task 1 Task 2 Task 3 Task 4 Total Note
2 TOTAL 8 8 16 16
3 Arleen 3 5 15} S 4
4 Hans t 3 2 3 X;\\ 1.5
5 Mike 7 5 4 18 3
6 |Selina 6 5 8 2 2% 3.5 |
7
8 Durchschnitt 18 3
9
10
11
12
13
14

Evaluation Order?

750

Topological Sorting

Topological Sorting of an acyclic directed graph G = (V, E):
Bijective mapping
ord: V = {1,...,|V|}
such that
ord(v) < ord(w) V (v,w) € E.

Identify ¢ with Element v; := ord' (). Topological sorting = (vy,...,v).

751

(Counter-)Examples

Cyclic graph: cannot be sorted topo- A possible toplogical sorting of the graph:
logically. shirt, pullover, panties, watch, trousers, coat, socks,

shoes

752

Observation

Theorem 21

A directed graph G = (V, E) permits a topological sorting if and only if
it is acyclic.

753

Algorithm Topological-Sort(G)

Input: graph G = (V, E).
Output: Topological sorting ord

Stack S «+ 0
foreach v € V do A[v] < 0
foreach (v, w) € E do A[w] < A[w] +1 // Compute in-degrees
foreach v € V with A[v] = 0 do push(S,v) // Memorize nodes with in-degree 0
1< 1
while S # () do

v < pop(S); ord[v] «i; i < i+ 1 // Choose node with in-degree 0

foreach (v,w) € E do // Decrease in-degree of successors

Alw] Alw] — 1
L if Ajw] =0 then push(S,w)

if i = |V| + 1 then return ord else return “Cycle Detected”

756

Algorithm Correctness

Theorem 22

Let G = (V, E) be a directed acyclic graph. Algorithm
TopologicalSort(G) computes a topological sorting ord for G with run-
time ©(|V| + |E|).

757

Algorithm Correctness

Theorem 23

Let G = (V, E) be a directed graph containing a cycle. Algorithm TopologicalSort
terminates within ©(|V| + | E|) steps and detects a cycle.

758

	Graphs
	graphs
	Representation of graphs
	Graph Traversal
	Topological Sorting

