25. Graphs

Notation, Representation, Graph Traversal (DFS, BFS), Topological Sorting ,
Reflexive transitive closure, Connected components [Ottman/Widmayer,
Kap. 91 - 9.4,Cormen et al, Kap. 22]

719

Konigsberg 1736

KONINGSBERGA

720

[Multi]Graph

Cycles

m s there a cycle through the town (the graph)
that uses each bridge (each edge) exactly
once?

m Euler (1736): no.

m Such a cycle is called Eulerian path.

m Eulerian path < each node provides an even
number of edges (each node is of an even
degree).

‘=" Is straightforward, “<" ist a bit more difficult but
still elementary.

722

(1
Q}Qe

undirected directed
V ={1,2,3,4,5} V ={1,2,3,4,5}
E :{{17 2}, {17 3}7 {27 3}7 {27 4}7 E :{(17 3)7 (27 1)7 (27 5)7 (37 2)7

{2,5},{3,4},{3,5}, {4,5}} (3,4),(4,2),(4,5),(5,3)}

723

Notation

A directed graph consists of a set V = {vy,...,v,} of nodes (Vertices) and
aset E CV xV of Edges. The same edges may not be contained more

than once.
M @

e—® %

loop

724

Notation

An undirected graph consists of a set V = {vy,...,v,} of nodes a and a
set £ C {{u,v}|u,v € V} of edges. Edges may not be contained more than

once.3®

undirected graph

¥As opposed to the introductory example - it is then called multi-graph.
725

Notation

An undirected graph G = (V, E) without loops where E comprises all
edges between pairwise different nodes is called complete.

a complete undirected graph

726

Notation

For directed graphs G = (V, E)

m w e Viscalled adjacenttov € V, if (v,w) € £

m Predecessors of v € V: N~ (v) := {u € V|(u,v) € E}.
Successors: Nt (v) := {u € V|(v,u) € E}

2 @
(P2 —{V]

(v} (s0)
N*(v)

N™(v)

727

Notation

For directed graphs G = (V, E)

m In-Degree: deg™ (v) = [N~ (v)],
Out-Degree: deg™ (v) = |[NT(v)|

el

deg™ (v) = 3, deg™ (v) = 2

deg™ (w) =1, degt(w) = 1

728

Notation

For undirected graphs G = (V, E):

m we Viscalled adjacenttov € V, if {v,w} € FE

m Neighbourhood of v € V: N(v) = {w € V|{v,w} € E}

m Degree of v: deg(v) = |N(v)| with a special case for the loops: increase
the degree by 2.

Ny Qo

deg(v) =5 deg(w) = 2

729

Node Degrees <+ Number of Edges

Handshaking Lemma:

For each graph G = (V, E) it holds
1. Ypey deg™ (v) = ¥,cp degt (v) = | B, for G directed
2. Y uey deg(v) = 2|E|, for G undirected.

730

Paths

m Path: a sequence of nodes (vy, ..., vk 1) such that foreachi € {1...k}
there is an edge from v; to v;41 .
m Length of a path: number of contained edges k.

m Simple path: path without repeating vertices

731

Connectedness

m An undirected graph is called connected, if for each pair v,w € V there
IS a connecting path.

m A directed graph is called strongly connected, if for each pair v,w € V
there is a connecting path.

m A directed graph is called weakly connected, if the corresponding
undirected graph is connected.

732

Simple Observations

m generally: 0 < |E| € O(|V]?)

m connected graph: |E| € Q(|V])

m complete graph: |E| = MVI=D (undirected)

m Maximally [E| = |V]? (d|rected)| E| = VYD (yndirected)

733

Cycles

m Cycle: path (v, ..., vk1) With v = vy

m Simple cycle: Cycle with pairwise different vy, ..., v, that does not use
an edge more than once.

m Acyclic: graph without any cycles.

Conclusion: undirected graphs cannot contain cycles with length 2 (loops
have length 1)

734

Representation using a Matrix

Graph G = (V, E) with nodes v ..., v, stored as adjacency matrix
Ag = (aij)1<ij<n With entries from {0,1}. a;; = 1 if and only if edge from v;
to Vj.

O OO OO
OO = O
_ O O O =
OO = O =
—_ o = O O

Memory consumption ©(|V]?). A is symmetric, if G undirected.

735

Representation with a List

Many graphs G = (V, E) with nodes vy, ..., v, 123 45
provide much less than n? edges. Represen- ol [of [o
tation with adjacency list: Array A[1], ..., A[n], l l
A; comprises a linked list of nodes in N*(v;). 2 2 3
P11
3 4 5
I o
4 5

Memory Consumption ©(|V| + |E|).

736

Runtimes of simple Operations

Operation Matrix List
Find neighbours/successors of v € V &

/
find v € V without neighbour/successor 6)”%

©
(v,u) e E7? C
i

Insert edge

Delete edge (v,u)

737

Depth First Search

738

Graph Traversal: Depth First Search

Follow the path into its depth until nothing is left to visit.

\ \
4 4

AN

adjacency list

bilcld g
oy }
> 5 cl|l fle h

\
7
O [U S R

\ \
4 4

Order a,b,c, f,d,e, g, h,i

e o e @

S e O e S

739

Colors

Conceptual coloring of nodes

m white: node has not been discovered yet.

m grey: node has been discovered and is marked for traversal / being
processed.

m black: node was discovered and entirely processed.

740

Algorithm Depth First visit DFS-Visit(G, v)

Input: graph G = (V| E), Knoten v.

v.color < grey
// visit v
foreach w € N*(v) do

if w.color = white then
. DFS-Visit(G, w)

v.color <+ black

Depth First Search starting from node ». Running time (without recursion):
O(deg™ v)

74

Algorithm Depth First visit DFS-Visit(G)

Input: graph G = (V, E)

foreach v € V do
‘7 v.color < white

foreach v € V do

if v.color = white then
. DFS-Visit(G,v)

Depth First Search for all nodes of a graph. Running time:
O(IV] + Lyev(deg™(v) + 1)) = (V] + | E]).

742

Interpretation of the Colors

When traversing the graph, a tree (or Forest) is built. When nodes are
discovered there are three cases

m White node: new tree edge

m Grey node: cycle (“back-edge”)

m Black node: forward- / cross edge

743

[Iterative DFS-Visit(G, v)]

Input: graph G = (V, E), v € V with v.color = white

Stack S < 0
v.color < grey; S.push(v) // invariant: grey nodes always on stack
while S # () do

w <— nextWhiteSuccessor(v) // code: next slide

if w # null then

w.color < grey; S.push(w)
V4= w // work on w. parent remains on the stack
else

v.color < black // no grey successors, v becomes black

if S # () then
v+ S.pop() // visit/revisit next node
if v.color = grey then S.push(v)

L - Memory Consumption Stack ©(|V|)

4t

[nextWhiteSuccessor(v)]

Input: nodev e V
Output: Successor node u of v with u.color = white, null otherwise

foreach u € N*(v) do
if u.color = white then
L return u

return null

There are simpler variants of iterative depth first search. Howeber, they do not admit the
same kind of interpretation of the edges between colored nodes. Moreover, they usually
have a worst-case memory consumption of ©(|E|)

745

Breadth First Search

e} Bergstation

8
('f‘
440/

OHolderlinsteig ee/"i‘ s
/ ’}00
Halderlinstr. %0
0
Englisch-
viertelstr. 208
703
1
' ORI
& NP <
¢ © & &

Graph Traversal: Breadth First Search

Follow the path in breadth and only then descend into depth.

e » Adjacency List
allblc|d|e||f|Ig]|r
| 1
> > bllelfflelbd hi e
T I | |
d f i
I
)) .
o0 0

Order a,b,d,e,c, f, g, h,i

747

(Iterative) BFS-Visit(G, v)

Input: graph G = (V, E)

Queue Q + 0
enqueue(Q,v)
v.visited < true
while Q #) do
w <+ dequeue(Q)
// visit w
foreach c € N (w) do
if c.visited = false then
c.visited < true

~ enqueue(Q, ¢)

Algorithm requires extra space of O(|V]).

Main program BFS-Visit(G)

Input: graph G = (V, E)

foreach v € V do
‘ v.visited < false

foreach v € V do

if v.visited = false then
. BFS-Visit(G,v)

Breadth First Search for all nodes of a graph. Running time: ©(|V| + |E|).

749

Topological Sorting

ko>

i

Function

3 -

A

1

2 TOTAL
3 Arleen
4 Hans

5 Mike

6]Selina
7

8

9 Al

10

11

12

13

14

B 5 &’

Evaluation Order?

%] o] : B ol Now
= Rernee* T Funcons~ | Manager] o | o | G, B8 el shet
B C D E F G
Task 1 Task 2 Task 3 Task 4 Total Note
8 8 16 16
4 5 5]
T 3 2 3 :x\\
7 5 % 18
6 5 8 2 2%
Durchschnitt 18

1.5

750

Topological Sorting

Topological Sorting of an acyclic directed graph G = (V, E):
Bijective mapping
ord: V = {1,...,|V|}
such that
ord(v) < ord(w) V (v,w) € E.

Identify i with Element v; := ord(i). Topological sorting = (v,

‘e ,U|V|>.

751

(Counter-)Examples

Cyclic graph: cannot be sorted topo- A possible toplogical sorting of the graph:
logically. shirt, pullover, panties, watch, trousers, coat, socks,

shoes

752

Observation

Theorem 21

A directed graph G = (V, E) permits a topological sorting if and only if
it is acyclic.

753

Proof “="

If G contains a cycle it cannot permit a topological sorting, because in a
cycle (vi,...,v;,) itwould hold that v, < -+ < v, < wvy.

754

Proof “<”

m Base case (n = 1): Graph with a single node without loop can be sorted
topologically, setord(v;) = 1.

m Hypothesis: Graph with n nodes can be sorted topologically
m Step (n — n+1):

1. G contains a node v, with in-degree deg™ (v,) = 0. Otherwise iteratively
follow edges backwards - after at most n + 1 iterations a node would be
revisited. Contradiction to the cycle-freeness.

2. Graph without node v, and without its edges can be topologically sorted
by the hypothesis. Now use this sorting and set ord(v;) < ord(v;) + 1 for
all i # g and set ord(v,) «+ 1.

755

Algorithm Topological-Sort(G)

Input: graph G = (V, E).
Output: Topological sorting ord

Stack S «+ 0
foreach v € V do A[v] < 0
foreach (v, w) € E do A[w] < A[w] +1 // Compute in-degrees
foreach v € V with A[v] = 0 do push(S,v) // Memorize nodes with in-degree 0
1< 1
while S # () do
v < pop(S); ord[v] «i; i < i+ 1 // Choose node with in-degree 0
foreach (v,w) € E do // Decrease in-degree of successors
Alw] Alw] — 1
L if Ajw] =0 then push(S,w)

if i = |V| + 1 then return ord else return “Cycle Detected”

756

Algorithm Correctness

Theorem 22

Let G = (V, E) be a directed acyclic graph. Algorithm
TopologicalSort(G) computes a topological sorting ord for G with run-
time ©(|V| + |E|).

Proof: follows from previous theorem:
1. Decreasing the in-degree corresponds with node removal.

2. In the algorithm it holds for each node v with AJv] = 0 that either the node
has in-degree 0 or that previously all predecessors have been assigned a
value ord[u] + i and thus ord[v] > ord[u| for all predecessors u of v. Nodes
are put to the stack only once.

3. Runtime: inspection of the algorithm (with some arguments like with graph
traversal)

757

Algorithm Correctness

Theorem 23

Let G = (V, E) be adirected graph containing a cycle. Algorithm TopologicalSort
terminates within ©(|V| + |E|) steps and detects a cycle.
Proof: let (v;,,...,v;,) be a cyclein G. In each step of the algorithm remains
Afv;;] > 1forall j =1,...,k Thus k nodes are never pushed on the stack und
therefore at the end it holds that: <V +1 — k.
The runtime of the second part of the algorithm can become shorter. But the
computation of the in-degree costs already ©(|V| + | E]).

758

	Graphs
	graphs
	Representation of graphs
	Graph Traversal
	Topological Sorting

