24, Geometric Algorithms

Properties of Line Segments, Intersection of Line Segments, Convex Hull,
Closest Point Pair [Ottman/Widmayer, Kap. 8.2,8.3,8.8.2, Cormen et al, Kap.
33]
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241 Properties of Line Segments
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Properties of line segments.

yd\
P1+p2
Cross-Product of two vectors p; = (x1, 1), .
p2 = (22,92) in the plane
_|_
D1
X i
p1 X p2 = det b = 21Ys — Tol .
Yr Y2 3
Signed area of the parallelogram
D1+ Db
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Turning direction

nach links: nach rechts:
(p1 —po) X (p2 —po) >0 (p1 —po) X (p2 —po) <0
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Intersection of two line segments

P4 P4 Y2 y2 D2
p2 P2
/ D1
b1 p1 p2
Ps Ps py Ps
P

Intersection: p1 No intersection: p;  No intersection: p3 Intersection: p; on
and po opposite andp,;onthesame andpsonthesame p3pz
W.rt pspy and P3, P4 side Ofp3p4 side Ofplpg

opposite w.rt. pips
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24.2 Convex Hull
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Convex Hull

Subset S of a real vector space is called convex, if for all a,b € S and all
Ae0,1]:
Aa+(1-=XNbesS
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Convex Hull

Convex Hull H(Q) of a set @ of points: smallest convex polygon P such
that each point of Q is on P or in the interior of P.

P11
. e P10
ng ° p;Z P9
ps
° [ ]
. ps P4 D3

[ ] p7 L]
Dis e P14 D6 b2
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Convex Hull

Convex Hull H(Q) of a set @ of points: smallest convex polygon P such
that each point of Q is on P or in the interior of P.

P11

P1o
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Convex Hull

ldentify segments of P
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Convex Hull

ldentify segments of P

Observation: for a a segment s of P i"tv.holds that all points of @ not on
the line through s are either on the left or on the right of s.
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Jarvis Marsch / Gift Wrapping algorithm

1. Start with an extremal point (e.g. lowest point) p = py

2. Search point ¢, such that pg is a line to the right of all other points (or
other points are on this line closer to p.

3. Continue with p < ¢ at (2) until p = p,.
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[Llustration Jarvis

b11
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Dps
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[Llustration Jarvis
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[Llustration Jarvis
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[Llustration Jarvis
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[Llustration Jarvis

b11
e P10
P13 *
° ° P12 p
Dps
p'5 D4
° 3
. b7 p
P15 e b1 DPe
— D1

Po



[Llustration Jarvis
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[Llustration Jarvis
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[Llustration Jarvis
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[Llustration Jarvis

P13

P15 e
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Analysis Gift-Wrapping

m Let h be the number of corner points of the convex hull.
m Runtime of the algorithm O(h - n).
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Convex Hull

ldentify segments of P
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Convex Hull

ldentify segments of P

— cP

Observation: if the points of the polygon are ordered anti-clockwise then
subsequent segments of the polygon P only make left turns.
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Algorithm Graham-Scan

Input: Set of points )
Output: Stack S of points of the convex hull of Q
po: point with minimal y coordinate (if required, additionally minimal z-)
coordinate
(p1,--.,pm) remaining points sorted by polar angle counter-clockwise in relation to
po; if points with same polar angle available, discard all except the one with
maximal distance from pg
S0
if m < 2 then return S
Push(S, po); Push(S,p1); Push(S,p2)
for i + 3 to m do
while Winkel (NextToTop(S), Top(.S), pi) nicht nach links gerichtet do
. Pop(9);
Push(S, p;)

return S 689



ILlustration Graham-Scan

P15

P14

P9
Y6 Ps
7 P4
p3
b1

Pe

D2

Stack:
Do
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ILlustration Graham-Scan

Stack:

D1
Do

P15
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ILlustration Graham-Scan

Stack:
P9 s
Pe D1
pia D0 P Po
)11
p7 P4
P12 D2
bls b3
P15 ' /
b1
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ILlustration Graham-Scan

Stack:
P9 D3
Pe D2
P14 D8 Iy
11 Do
7 P4
1 2
P15 3
b1

Do
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ILlustration Graham-Scan

Stack:
yZ
D2
b1
Po

P15
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ILlustration Graham-Scan

Stack:
Ds
P4
b2
P1
Po

P15
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ILlustration Graham-Scan

Stack:
yZ
D2
b1
Po

P15
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ILlustration Graham-Scan

Stack:
DPe
D2
b1
Po

P15
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ILlustration Graham-Scan

Stack:
pr
DPe
b2
h
Po

P15
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ILlustration Graham-Scan

Stack:
DPs
DPe
b2
h
Po

P15
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ILlustration Graham-Scan

Stack:
Do
DPe
b2
h
Po

P15
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ILlustration Graham-Scan

Stack:

P1o
Do
DPs
P2
h
Po

P15
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ILlustration Graham-Scan

Stack:

P11
Do
DPs
P2
h
Po

P15
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ILlustration Graham-Scan

Stack:

P12
P11
Do
Ps
P2
b1

P15 Po
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ILlustration Graham-Scan

Stack:

P13
P11
Do
Ps
P2
b1

P15 Po
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ILlustration Graham-Scan

Stack:

P11
Do
DPs
P2
h
Po

P15
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ILlustration Graham-Scan

Stack:

P14
Do
DPs
P2
h
Po

P15
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ILlustration Graham-Scan

Stack:

P15
P14
Do
Ps
P2
b1

P15 Po
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ILlustration Graham-Scan

Stack:

P15
P14
Do
Ps
P2
b1

P15 Po
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Runtime of the algorithm Graham-Scan

m Sorting O(nlogn)
m n lterations of the for-loop

m Amortized analysis of the multipop on a stack: amortized constant
runtime of mulitpop, same here: amortized constant runtime of the

While-loop.
Overal O(nlogn)
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24.3 Intersection of Line Segments
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Preparation: Overlapping Intervals

,1:6_

i

iy

i) —e ir

02

i3
Questions:
m How many intervals overlap maximally?
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Preparation: Overlapping Intervals

I S i7

Questions:

m How many intervals overlap maximally?
m Which intervals (don't) get wet?
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Preparation: Overlapping Intervals

iG_

is

iy
 E — i7

02

13

Questions:

m How many intervals overlap maximally?

m Which intervals (don't) get wet?

m Which intervals are directly on top of each other?
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Preparation: Overlapping Intervals

1

g—
i5 =
. 1

Iy o—e N
i9 1
. 1
13 T
1
e —

Idea of a sweep line: vertical line, moving in z-direction, observes the
geometric objects.
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Preparation: Overlapping Intervals

Qo o Q o o g o @
g ———— Q: Which intervals get
L —— — wet?
B o o Sweep line controls a
T e P binary search tree that
R o comprises the inter-
23 BRI vals according to their
ih i io is is vertical ordering.
/ \ / \ \ A: intervalls on the
3 by 13 b7 very left of the tree.
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Cutting many line segments
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Sweepline Principle
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Simplifying Assumptions

m No vertical line segments
m Each intersection is formed by at most two line segments.
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(Vertical) Ordering line segments

S1

52

/

>
=

>
V)

>
w

¥No anti-symmetry: s Xt At s A s=t

Preorder (partial order without
anti-symmetry)

=

S2 Xp, S1
)

51 <hy 52 37
_,

S2 Xpy S1

)
83 Xpy S2

W.rt. hs the line segments are un-
comparable.
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Observation: two cases

(@) Intersecting line segments are (b) Intersecting line segments are
neighbours w.rt. quasi-order from neighbours w.rt. quasi-order from
above directly from the start. above after the last segment be-

tween them ends.
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Observation: possible misunderstanding

It does not suffice to compare the y-coordinates of starting points of lines.
Positions on the sweep line have to be compared.
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Moving the sweepline

m Sweep-Line Status : Relationship of all objects intersected by
sweep-line

m Event List : Series of event positions, sorted by xz-coordinate.
Sweep-line travels from left to right and stops at each event position.
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Sweep-Line Status

Preorder T of the intersected line segments

Required operations:

m Insert(7), s) Insert line segment s in T

m Delete(7, s) Remove s from T

m Above(7, s) Return line segment immediately above of s in T
m Below(T', s) Return line segment immediately below of s in T

Possible Implementation:
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Sweep-Line Status

Preorder T of the intersected line segments

Required operations:

m Insert(7), s) Insert line segment s in T

m Delete(7, s) Remove s from T

m Above(7, s) Return line segment immediately above of s in T
m Below(T', s) Return line segment immediately below of s in T

Possible Implementation: Blanced tree (AVL-Tree, Red-Black Tree etc.)
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Algorithm Any-Segments-Intersect(S)

Input: List of n line segments S
Output: Returns if S contains intersecting segments
T+ 0
Sort endpoints of line segments in S from left to right (left before right and lower
before upper)
for Sorted end points p do
if p left end point of a segment s then
Insert(7, s)
if Above(T,s)Ns# (0 V Below(T,s)Ns # () then return true

if p right end point of a segment s then
if Above(T,s) N Below(T),s) # () then return true
. Delete(T), 5)

return false;
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Runtime of the algorithm Any-Segments-Intersect

m Sorting O(nlogn)
m 2n iterations of the for loop. Each operation on the balanced tree

O(logn)
Overal O(nlogn)
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24.4 Closest Point Pair

m



Closest Point Pair

Euclidean Distance d(s, t) of two points s and o

Problem: Find points p and ¢ from @ for which d

d(p,q) < d(s,t)V s, t € Q,s #t. . o
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Closest Point Pair

Euclidean Distance d(s, t) of two points s and o

Problem: Find points p and ¢ from @ for which d
d(p,q) < d(s,t)V s, t € Q,s #t. . o

Naive: all (g) = ©(n?) point pairs. .
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Closest Point Pair

Euclidean Distance d(s, t) of two points s and o

Problem: Find points p and ¢ from @ for which d
d(p,q) < d(s,t)V s, t € Q,s #t. . o

Naive: all (g) = ©(n?) point pairs. .
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Divide And Conquer

m Set of points P, starting with P + Q .
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Divide And Conquer

m Set of points P, starting with P « @

m Arrays X and Y, containing the elements = * .
of P, sorted by - and y-coordinate,
respectively. = . .
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Divide And Conquer

m Set of points P, starting with P « @

m Arrays X and Y, containing the elements
of P, sorted by - and y-coordinate,
respectively. = o

m Partition point set into two _ o
(approximately) equally sized sets P, and = ®
Pg, separated by a vertical line through a
point of P. = ° o
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Divide And Conquer

m Set of points P, starting with P « @

m Arrays X and Y, containing the elements
of P, sorted by - and y-coordinate,
respectively. - e

m Partition point set into two _ o
(approximately) equally sized sets P, and — ®
Pg, separated by a vertical line through a
point of P. - ° .

m Split arrays X and Y accrodingly in X7,
Xgr. Y, and Yg.
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Divide And Conquer

m Recursive call with P, X, Yz and
Pgr, Xg, Yg. Yields minimal distances ¢y,
6R- = °
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Divide And Conquer

m Recursive call with P, X;,Y; and - ‘ * .
Pr, Xg, Yg. Yields minimal distances 6;,
On. = 4 e
m (If only & < 3 points: compute the _ ,
minimal distance directly) - l !

- | | .

{1 A Y R B I | |
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Divide And Conquer

m Recursive call with P, X, Yz and 1
Pr, Xg, Yg. Yields minimal distances 6;,
6R- = ®

m (If only & < 3 points: compute the
minimal distance directly) - '

m After recursive call § = min(dy, 0g). |
Combine (next slides) and return best =
result. |

|
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m Generate an array Y’ holding y-sorted ° ¢ o
points from Y, that are located within a 2§ T
band around the dividing line o !l @
5
’ 5i o
1 | 1
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m Generate an array Y’ holding y-sorted
points from Y, that are located within a 2§

band around the dividing line R

m Consider for each point p € Y’ the 2

maximally seven points after p with . (;i% —

y-coordinate distance less than . .
Compute minimal distance ¢'. L

Lo

1 | 1
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m Generate an array Y’ holding y-sorted
points from Y, that are located within a 2§

band around the dividing line .

m Consider for each point p € Y’ the 25
maximally seven points after p with . (;i% o
y-coordinate distance less than 6. SRR
Compute minimal distance ¢'. C e .

m If & <4, then a closer pairin P thanin Py, 5(
and Py found. Return minimal distance. b ¢

——&—
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Maximum number of points in the 2-rectangle

J

([ ]
~-
AN
~-

J

EEE s E s e .

Two points in the /2 x §/2-rectangle have maximum distance ?6 < 0.
= Square with side length ¢/2 contains a maximum of one point.
Eight non-overlapping 6/2 x §/2-Rectangles span the 26 x § rectangle.
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Implementation

m Goal: recursion equation (runtime) T'(n) = 2- T'(2) + O(n).
m Consequence: forbidden to sort in each steps of the recursion.
m Non-trivial: only arrays Y and Y’

m |dea: merge reversed: run through Y that is presorted by y-coordinate.
For each element follow the selection criterion of the z-coordinate and
append the element either to Yz or Y. Same procedure for Y’. Runtime
O(Y]).

Overal runtime: O(nlogn).
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