
24. Geometric Algorithms

Properties of Line Segments, Intersection of Line Segments, Convex Hull,
Closest Point Pair [Ottman/Widmayer, Kap. 8.2,8.3,8.8.2, Cormen et al, Kap.
33]
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24.1 Properties of Line Segments
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Properties of line segments.

Cross-Product of two vectors p1 = (x1, y1),
p2 = (x2, y2) in the plane

p1 × p2 = det
[
x1 x2
y1 y2

]
= x1y2 − x2y1

Signed area of the parallelogram
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Turning direction

p0

p1

p2

p0

p1

p2

nach links:
(p1 − p0)× (p2 − p0) > 0

nach rechts:
(p1 − p0)× (p2 − p0) < 0
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Intersection of two line segments
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p3

p4
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p1

p2
p3

p4

Intersection: p1
and p2 opposite
w.r.t p3p4 and p3, p4
opposite w.r.t. p1p2

No intersection: p1
and p2 on the same
side of p3p4

Intersection: p1 on
p3p4

No intersection: p3
and p4 on the same
side of p1p2
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24.2 Convex Hull
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Convex Hull
Subset S of a real vector space is called convex, if for all a, b ∈ S and all
λ ∈ [0, 1]:

λa+ (1− λ)b ∈ S

a

b

S
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Convex Hull
Convex Hull H(Q) of a set Q of points: smallest convex polygon P such
that each point of Q is on P or in the interior of P .
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Convex Hull

Identify segments of P

6∈ P

∈ P

Observation: for a a segment s of P it holds that all points of Q not on
the line through s are either on the left or on the right of s.
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Jarvis Marsch / Gift Wrapping algorithm

1. Start with an extremal point (e.g. lowest point) p = p0

2. Search point q, such that pq is a line to the right of all other points (or
other points are on this line closer to p.

3. Continue with p← q at (2) until p = p0.
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Illustration Jarvis
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Analysis Gift-Wrapping

Let h be the number of corner points of the convex hull.
Runtime of the algorithm O(h · n).
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Convex Hull
Identify segments of P

∈ P

∈ P

6∈ P

Observation: if the points of the polygon are ordered anti-clockwise then
subsequent segments of the polygon P only make left turns.
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Algorithm Graham-Scan
Input: Set of points Q
Output: Stack S of points of the convex hull of Q
p0: point with minimal y coordinate (if required, additionally minimal x-)
coordinate

(p1, . . . , pm) remaining points sorted by polar angle counter-clockwise in relation to
p0; if points with same polar angle available, discard all except the one with
maximal distance from p0
S ← ∅
if m < 2 then return S
Push(S, p0); Push(S, p1); Push(S, p2)
for i← 3 to m do

while Winkel (NextToTop(S), Top(S), pi) nicht nach links gerichtet do
Pop(S);

Push(S, pi)

return S 689



Illustration Graham-Scan
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Analysis

Runtime of the algorithm Graham-Scan
Sorting O(n log n)
n Iterations of the for-loop
Amortized analysis of the multipop on a stack: amortized constant
runtime of mulitpop, same here: amortized constant runtime of the
While-loop.

Overal O(n log n)
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24.3 Intersection of Line Segments
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Preparation: Overlapping Intervals

i1
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i4

i5

i6

i7

Questions:
How many intervals overlap maximally?

Which intervals (don’t) get wet?
Which intervals are directly on top of each other?
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Preparation: Overlapping Intervals

i1
i2
i3

i4

i5

i6

i7

Idea of a sweep line: vertical line, moving in x-direction, observes the
geometric objects.
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Preparation: Overlapping Intervals

i1
i2
i3

i4

i5

i6

i7

Event list: list of points where the state observed by the sweepline
changes.
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Preparation: Overlapping Intervals
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Q: How many intervals
overlap maximally?

Sweep line controls
a counter that is
incremented (decre-
mented) at the left
(right) end point of an
interval.
A: maximum counter
value
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very left of the tree.
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Preparation: Overlapping Intervals
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Preparation: Overlapping Intervals
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Cutting many line segments
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Sweepline Principle
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Simplifying Assumptions

No vertical line segments
Each intersection is formed by at most two line segments.
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(Vertical) Ordering line segments

s1

s2 s3

h1 h2 h3

Preorder (partial order without
anti-symmetry)

s2 2h1 s1

s1 2h2 s2

s2 2h2 s1

s3 2h2 s2

W.r.t. h3 the line segments are un-
comparable.

37

37No anti-symmetry: s 2 t ∧ t 2 s 6⇒ s = t
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Observation: two cases

(a) Intersecting line segments are
neighbours w.r.t. quasi-order from
above directly from the start.

(b) Intersecting line segments are
neighbours w.r.t. quasi-order from
above after the last segment be-
tween them ends.
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Observation: possible misunderstanding

It does not su�ce to compare the y-coordinates of starting points of lines.
Positions on the sweep line have to be compared.
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Moving the sweepline

Sweep-Line Status : Relationship of all objects intersected by
sweep-line
Event List : Series of event positions, sorted by x-coordinate.
Sweep-line travels from left to right and stops at each event position.
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Sweep-Line Status

Preorder T of the intersected line segments
Required operations:
Insert(T, s) Insert line segment s in T
Delete(T, s) Remove s from T

Above(T, s) Return line segment immediately above of s in T
Below(T, s) Return line segment immediately below of s in T

Possible Implementation:

Blanced tree (AVL-Tree, Red-Black Tree etc.)

707



Sweep-Line Status

Preorder T of the intersected line segments
Required operations:
Insert(T, s) Insert line segment s in T
Delete(T, s) Remove s from T

Above(T, s) Return line segment immediately above of s in T
Below(T, s) Return line segment immediately below of s in T

Possible Implementation: Blanced tree (AVL-Tree, Red-Black Tree etc.)

707



Algorithm Any-Segments-Intersect(S)
Input: List of n line segments S
Output: Returns if S contains intersecting segments
T ← ∅
Sort endpoints of line segments in S from left to right (left before right and lower
before upper)

for Sorted end points p do
if p left end point of a segment s then

Insert(T, s)
if Above(T, s) ∩ s 6= ∅ ∨ Below(T, s) ∩ s 6= ∅ then return true

if p right end point of a segment s then
if Above(T, s) ∩ Below(T, s) 6= ∅ then return true
Delete(T, s)

return false;
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Illustration
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c×!
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Analysis

Runtime of the algorithm Any-Segments-Intersect
Sorting O(n log n)
2n iterations of the for loop. Each operation on the balanced tree
O(log n)

Overal O(n log n)
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24.4 Closest Point Pair
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Closest Point Pair

Euclidean Distance d(s, t) of two points s and
t:

d(s, t) = ‖s− t‖2

=
√

(sx − tx)2 + (sy − ty)2

Problem: Find points p and q fromQ for which

d(p, q) ≤ d(s, t) ∀ s, t ∈ Q, s 6= t.

Naive: all
(

n
2

)
= Θ(n2) point pairs.

713



Closest Point Pair

Euclidean Distance d(s, t) of two points s and
t:

d(s, t) = ‖s− t‖2

=
√

(sx − tx)2 + (sy − ty)2

Problem: Find points p and q fromQ for which

d(p, q) ≤ d(s, t) ∀ s, t ∈ Q, s 6= t.

Naive: all
(

n
2

)
= Θ(n2) point pairs.

713



Closest Point Pair

Euclidean Distance d(s, t) of two points s and
t:

d(s, t) = ‖s− t‖2

=
√

(sx − tx)2 + (sy − ty)2

Problem: Find points p and q fromQ for which

d(p, q) ≤ d(s, t) ∀ s, t ∈ Q, s 6= t.

Naive: all
(

n
2

)
= Θ(n2) point pairs.

713



Divide And Conquer

Set of points P , starting with P ← Q

Arrays X and Y , containing the elements
of P , sorted by x- and y-coordinate,
respectively.
Partition point set into two
(approximately) equally sized sets PL and
PR, separated by a vertical line through a
point of P .
Split arrays X and Y accrodingly in XL,
XR. YL and YR.
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Divide And Conquer

Recursive call with PL, XL, YL and
PR, XR, YR. Yields minimal distances δL,
δR.

(If only k ≤ 3 points: compute the
minimal distance directly)
After recursive call δ = min(δL, δR).
Combine (next slides) and return best
result.
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Combine

Generate an array Y ′ holding y-sorted
points from Y , that are located within a 2δ
band around the dividing line

Consider for each point p ∈ Y ′ the
maximally seven points after p with
y-coordinate distance less than δ.
Compute minimal distance δ′.
If δ′ < δ, then a closer pair in P than in PL

and PR found. Return minimal distance.

2δ
δ

δ δ
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Maximum number of points in the 2δ-rectangle

δ δ

δ

Two points in the δ/2× δ/2-rectangle have maximum distance
√

2
2 δ < δ.

⇒ Square with side length δ/2 contains a maximum of one point.
Eight non-overlapping δ/2× δ/2-Rectangles span the 2δ × δ rectangle.
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Implementation

Goal: recursion equation (runtime) T (n) = 2 · T (n
2 ) +O(n).

Consequence: forbidden to sort in each steps of the recursion.
Non-trivial: only arrays Y and Y ′

Idea: merge reversed: run through Y that is presorted by y-coordinate.
For each element follow the selection criterion of the x-coordinate and
append the element either to YL or YR. Same procedure for Y ′. Runtime
O(|Y |).

Overal runtime: O(n log n).
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