
24. Geometric Algorithms

Properties of Line Segments, Intersection of Line Segments, Convex Hull,
Closest Point Pair [Ottman/Widmayer, Kap. 8.2,8.3,8.8.2, Cormen et al, Kap.
33]

675



24.1 Properties of Line Segments

676



Properties of line segments.

Cross-Product of two vectors p1 = (x1, y1),
p2 = (x2, y2) in the plane

p1 × p2 = det
[
x1 x2
y1 y2

]
= x1y2 − x2y1

Signed area of the parallelogram

+

−

p2

p1

p1 + p2

p′
2

p1 + p′
2

y

x

677



Turning direction

p0

p1

p2

p0

p1

p2

nach links:
(p1 − p0)× (p2 − p0) > 0

nach rechts:
(p1 − p0)× (p2 − p0) < 0

678



Intersection of two line segments

p1

p2

p3

p4

p1

p2

p3

p4

p1

p2

p3

p4

p1

p2
p3

p4

Intersection: p1
and p2 opposite
w.r.t p3p4 and p3, p4
opposite w.r.t. p1p2

No intersection: p1
and p2 on the same
side of p3p4

Intersection: p1 on
p3p4

No intersection: p3
and p4 on the same
side of p1p2

679



24.2 Convex Hull

680



Convex Hull
Subset S of a real vector space is called convex, if for all a, b ∈ S and all
λ ∈ [0, 1]:

λa+ (1− λ)b ∈ S

a

b

S

682



Convex Hull
Convex Hull H(Q) of a set Q of points: smallest convex polygon P such
that each point of Q is on P or in the interior of P .

p0
p1

p2

p4p5

p6

p7

p8

p9p12

p14

p3

p10

p11

p13

p15

683



Convex Hull
Convex Hull H(Q) of a set Q of points: smallest convex polygon P such
that each point of Q is on P or in the interior of P .

p0
p1

p2

p4p5

p6

p7

p8

p9p12

p14

p3

p10

p11

p13

p15

683



Convex Hull

Identify segments of P

6∈ P

∈ P

Observation: for a a segment s of P it holds that all points of Q not on
the line through s are either on the left or on the right of s.

684



Convex Hull

Identify segments of P

6∈ P

∈ P

Observation: for a a segment s of P it holds that all points of Q not on
the line through s are either on the left or on the right of s.

684



Jarvis Marsch / Gift Wrapping algorithm

1. Start with an extremal point (e.g. lowest point) p = p0

2. Search point q, such that pq is a line to the right of all other points (or
other points are on this line closer to p.

3. Continue with p← q at (2) until p = p0.

685



Illustration Jarvis

p0
p1

p2

p4p5

p6

p7

p8

p9p12

p14

p3

p10

p11

p13

p15

686



Illustration Jarvis

p0
p1

p2

p4p5

p6

p7

p8

p9p12

p14

p3

p10

p11

p13

p15

686



Illustration Jarvis

p0
p1

p2

p4p5

p6

p7

p8

p9p12

p14

p3

p10

p11

p13

p15

686



Illustration Jarvis

p0
p1

p2

p4p5

p6

p7

p8

p9p12

p14

p3

p10

p11

p13

p15

686



Illustration Jarvis

p0
p1

p2

p4p5

p6

p7

p8

p9p12

p14

p3

p10

p11

p13

p15

686



Illustration Jarvis

p0
p1

p2

p4p5

p6

p7

p8

p9p12

p14

p3

p10

p11

p13

p15

686



Illustration Jarvis

p0
p1

p2

p4p5

p6

p7

p8

p9p12

p14

p3

p10

p11

p13

p15

686



Illustration Jarvis

p0
p1

p2

p4p5

p6

p7

p8

p9p12

p14

p3

p10

p11

p13

p15

686



Illustration Jarvis

p0
p1

p2

p4p5

p6

p7

p8

p9p12

p14

p3

p10

p11

p13

p15

686



Illustration Jarvis

p0
p1

p2

p4p5

p6

p7

p8

p9p12

p14

p3

p10

p11

p13

p15

686



Illustration Jarvis

p0
p1

p2

p4p5

p6

p7

p8

p9p12

p14

p3

p10

p11

p13

p15

686



Illustration Jarvis

p0
p1

p2

p4p5

p6

p7

p8

p9p12

p14

p3

p10

p11

p13

p15

686



Illustration Jarvis

p0
p1

p2

p4p5

p6

p7

p8

p9p12

p14

p3

p10

p11

p13

p15

686



Illustration Jarvis

p0
p1

p2

p4p5

p6

p7

p8

p9p12

p14

p3

p10

p11

p13

p15

686



Illustration Jarvis

p0
p1

p2

p4p5

p6

p7

p8

p9p12

p14

p3

p10

p11

p13

p15

686



Illustration Jarvis

p0
p1

p2

p4p5

p6

p7

p8

p9p12

p14

p3

p10

p11

p13

p15

686



Illustration Jarvis

p0
p1

p2

p4p5

p6

p7

p8

p9p12

p14

p3

p10

p11

p13

p15

686



Analysis Gift-Wrapping

Let h be the number of corner points of the convex hull.
Runtime of the algorithm O(h · n).

687



Convex Hull
Identify segments of P

∈ P

∈ P

6∈ P

Observation: if the points of the polygon are ordered anti-clockwise then
subsequent segments of the polygon P only make left turns.

688



Convex Hull
Identify segments of P

∈ P

∈ P

6∈ P

Observation: if the points of the polygon are ordered anti-clockwise then
subsequent segments of the polygon P only make left turns.

688



Algorithm Graham-Scan
Input: Set of points Q
Output: Stack S of points of the convex hull of Q
p0: point with minimal y coordinate (if required, additionally minimal x-)
coordinate

(p1, . . . , pm) remaining points sorted by polar angle counter-clockwise in relation to
p0; if points with same polar angle available, discard all except the one with
maximal distance from p0
S ← ∅
if m < 2 then return S
Push(S, p0); Push(S, p1); Push(S, p2)
for i← 3 to m do

while Winkel (NextToTop(S), Top(S), pi) nicht nach links gerichtet do
Pop(S);

Push(S, pi)

return S 689



Illustration Graham-Scan

p0
p1

p2

p4

p5

p7

p8p10
p11

p12
p13

p3

p6

p9

p14

p15

Stack:
p0

690



Illustration Graham-Scan

p0
p1

p2

p4

p5

p7

p8p10
p11

p12
p13

p3

p6

p9

p14

p15

Stack:
p1
p0

690



Illustration Graham-Scan

p0
p1

p2

p4

p5

p7

p8p10
p11

p12
p13

p3

p6

p9

p14

p15

Stack:
p2
p1
p0

690



Illustration Graham-Scan

p0
p1

p2

p4

p5

p7

p8p10
p11

p12
p13

p3

p6

p9

p14

p15

Stack:
p3
p2
p1
p0

690



Illustration Graham-Scan

p0
p1

p2

p4

p5

p7

p8p10
p11

p12
p13

p3

p6

p9

p14

p15

Stack:
p4
p2
p1
p0

690



Illustration Graham-Scan

p0
p1

p2

p4

p5

p7

p8p10
p11

p12
p13

p3

p6

p9

p14

p15

Stack:
p5
p4
p2
p1
p0

690



Illustration Graham-Scan

p0
p1

p2

p4

p5

p7

p8p10
p11

p12
p13

p3

p6

p9

p14

p15

Stack:
p4
p2
p1
p0

690



Illustration Graham-Scan

p0
p1

p2

p4

p5

p7

p8p10
p11

p12
p13

p3

p6

p9

p14

p15

Stack:
p6
p2
p1
p0

690



Illustration Graham-Scan

p0
p1

p2

p4

p5

p7

p8p10
p11

p12
p13

p3

p6

p9

p14

p15

Stack:
p7
p6
p2
p1
p0

690



Illustration Graham-Scan

p0
p1

p2

p4

p5

p7

p8p10
p11

p12
p13

p3

p6

p9

p14

p15

Stack:
p8
p6
p2
p1
p0

690



Illustration Graham-Scan

p0
p1

p2

p4

p5

p7

p8p10
p11

p12
p13

p3

p6

p9

p14

p15

Stack:
p9
p6
p2
p1
p0

690



Illustration Graham-Scan

p0
p1

p2

p4

p5

p7

p8p10
p11

p12
p13

p3

p6

p9

p14

p15

Stack:
p10
p9
p6
p2
p1
p0

690



Illustration Graham-Scan

p0
p1

p2

p4

p5

p7

p8p10
p11

p12
p13

p3

p6

p9

p14

p15

Stack:
p11
p9
p6
p2
p1
p0

690



Illustration Graham-Scan

p0
p1

p2

p4

p5

p7

p8p10
p11

p12
p13

p3

p6

p9

p14

p15

Stack:
p12
p11
p9
p6
p2
p1
p0

690



Illustration Graham-Scan

p0
p1

p2

p4

p5

p7

p8p10
p11

p12
p13

p3

p6

p9

p14

p15

Stack:
p13
p11
p9
p6
p2
p1
p0

690



Illustration Graham-Scan

p0
p1

p2

p4

p5

p7

p8p10
p11

p12
p13

p3

p6

p9

p14

p15

Stack:
p11
p9
p6
p2
p1
p0

690



Illustration Graham-Scan

p0
p1

p2

p4

p5

p7

p8p10
p11

p12
p13

p3

p6

p9

p14

p15

Stack:
p14
p9
p6
p2
p1
p0

690



Illustration Graham-Scan

p0
p1

p2

p4

p5

p7

p8p10
p11

p12
p13

p3

p6

p9

p14

p15

Stack:
p15
p14
p9
p6
p2
p1
p0

690



Illustration Graham-Scan

p0
p1

p2

p4

p5

p7

p8p10
p11

p12
p13

p3

p6

p9

p14

p15

Stack:
p15
p14
p9
p6
p2
p1
p0

690



Analysis

Runtime of the algorithm Graham-Scan
Sorting O(n log n)
n Iterations of the for-loop
Amortized analysis of the multipop on a stack: amortized constant
runtime of mulitpop, same here: amortized constant runtime of the
While-loop.

Overal O(n log n)

691



24.3 Intersection of Line Segments

692



Preparation: Overlapping Intervals

i1
i2
i3

i4

i5

i6

i7

Questions:
How many intervals overlap maximally?

Which intervals (don’t) get wet?
Which intervals are directly on top of each other?

694



Preparation: Overlapping Intervals

i1
i2
i3

i4

i5

i6

i7

Questions:
How many intervals overlap maximally?
Which intervals (don’t) get wet?

Which intervals are directly on top of each other?

694



Preparation: Overlapping Intervals

i1
i2
i3

i4

i5

i6

i7

Questions:
How many intervals overlap maximally?
Which intervals (don’t) get wet?
Which intervals are directly on top of each other?

694



Preparation: Overlapping Intervals

i1
i2
i3

i4

i5

i6

i7

Idea of a sweep line: vertical line, moving in x-direction, observes the
geometric objects.

695



Preparation: Overlapping Intervals

i1
i2
i3

i4

i5

i6

i7

Event list: list of points where the state observed by the sweepline
changes.

696



Preparation: Overlapping Intervals

i1
i2
i3

i4

i5

i6

i7

1 2 3 4 3 4 5 434 3 2 1 0

Q: How many intervals
overlap maximally?

Sweep line controls
a counter that is
incremented (decre-
mented) at the left
(right) end point of an
interval.
A: maximum counter
value

697



Preparation: Overlapping Intervals

i1
i2
i3

i4

i5

i6

i7

1 2 3 4 3 4 5 434 3 2 1 0

Q: How many intervals
overlap maximally?
Sweep line controls
a counter that is
incremented (decre-
mented) at the left
(right) end point of an
interval.

A: maximum counter
value

697



Preparation: Overlapping Intervals

i1
i2
i3

i4

i5

i6

i7

1 2 3 4 3 4 5 434 3 2 1 0

Q: How many intervals
overlap maximally?
Sweep line controls
a counter that is
incremented (decre-
mented) at the left
(right) end point of an
interval.
A: maximum counter
value

697



Preparation: Overlapping Intervals

i1
i2
i3

i4

i5

i6

i7

i1 i2

i1 i3

i2

i5

i6 i4

i3

i5

i7

i5

Q: Which intervals get
wet?

Sweep line controls a
binary search tree that
comprises the inter-
vals according to their
vertical ordering.
A: intervalls on the
very left of the tree.

698



Preparation: Overlapping Intervals

i1
i2
i3

i4

i5

i6

i7

i1 i2

i1 i3

i2

i5

i6 i4

i3

i5

i7

i5

Q: Which intervals get
wet?
Sweep line controls a
binary search tree that
comprises the inter-
vals according to their
vertical ordering.

A: intervalls on the
very left of the tree.

698



Preparation: Overlapping Intervals

i1
i2
i3

i4

i5

i6

i7

i1 i2

i1 i3

i2

i5

i6 i4

i3

i5

i7

i5

Q: Which intervals get
wet?
Sweep line controls a
binary search tree that
comprises the inter-
vals according to their
vertical ordering.
A: intervalls on the
very left of the tree.

698



Preparation: Overlapping Intervals

i1
i2
i3

i4

i5

i6

i7

i2

i1

i4

i3

i4

i5 i7

Q: Which intervals are
neighbours?

A: intervalls on the
very left of the tree.

699



Preparation: Overlapping Intervals

i1
i2
i3

i4

i5

i6

i7

i2

i1

i4

i3

i4

i5 i7

Q: Which intervals are
neighbours?
A: intervalls on the
very left of the tree.

699



Cutting many line segments

700



Sweepline Principle

701



Simplifying Assumptions

No vertical line segments
Each intersection is formed by at most two line segments.

702



(Vertical) Ordering line segments

s1

s2 s3

h1 h2 h3

Preorder (partial order without
anti-symmetry)

s2 2h1 s1

s1 2h2 s2

s2 2h2 s1

s3 2h2 s2

W.r.t. h3 the line segments are un-
comparable.

37

37No anti-symmetry: s 2 t ∧ t 2 s 6⇒ s = t
703



Observation: two cases

(a) Intersecting line segments are
neighbours w.r.t. quasi-order from
above directly from the start.

(b) Intersecting line segments are
neighbours w.r.t. quasi-order from
above after the last segment be-
tween them ends.

704



Observation: possible misunderstanding

It does not su�ce to compare the y-coordinates of starting points of lines.
Positions on the sweep line have to be compared.

705



Moving the sweepline

Sweep-Line Status : Relationship of all objects intersected by
sweep-line
Event List : Series of event positions, sorted by x-coordinate.
Sweep-line travels from left to right and stops at each event position.

706



Sweep-Line Status

Preorder T of the intersected line segments
Required operations:
Insert(T, s) Insert line segment s in T
Delete(T, s) Remove s from T

Above(T, s) Return line segment immediately above of s in T
Below(T, s) Return line segment immediately below of s in T

Possible Implementation:

Blanced tree (AVL-Tree, Red-Black Tree etc.)

707



Sweep-Line Status

Preorder T of the intersected line segments
Required operations:
Insert(T, s) Insert line segment s in T
Delete(T, s) Remove s from T

Above(T, s) Return line segment immediately above of s in T
Below(T, s) Return line segment immediately below of s in T

Possible Implementation: Blanced tree (AVL-Tree, Red-Black Tree etc.)

707



Algorithm Any-Segments-Intersect(S)
Input: List of n line segments S
Output: Returns if S contains intersecting segments
T ← ∅
Sort endpoints of line segments in S from left to right (left before right and lower
before upper)

for Sorted end points p do
if p left end point of a segment s then

Insert(T, s)
if Above(T, s) ∩ s 6= ∅ ∨ Below(T, s) ∩ s 6= ∅ then return true

if p right end point of a segment s then
if Above(T, s) ∩ Below(T, s) 6= ∅ then return true
Delete(T, s)

return false;

708



Illustration

a

b

c

d

e

a b
d
e
c

b
a
c

b
d
a
e
c

b
a
e
c

e
d

ee
d
c×!

709



Analysis

Runtime of the algorithm Any-Segments-Intersect
Sorting O(n log n)
2n iterations of the for loop. Each operation on the balanced tree
O(log n)

Overal O(n log n)

710



24.4 Closest Point Pair

711



Closest Point Pair

Euclidean Distance d(s, t) of two points s and
t:

d(s, t) = ‖s− t‖2

=
√

(sx − tx)2 + (sy − ty)2

Problem: Find points p and q fromQ for which

d(p, q) ≤ d(s, t) ∀ s, t ∈ Q, s 6= t.

Naive: all
(

n
2

)
= Θ(n2) point pairs.

713



Closest Point Pair

Euclidean Distance d(s, t) of two points s and
t:

d(s, t) = ‖s− t‖2

=
√

(sx − tx)2 + (sy − ty)2

Problem: Find points p and q fromQ for which

d(p, q) ≤ d(s, t) ∀ s, t ∈ Q, s 6= t.

Naive: all
(

n
2

)
= Θ(n2) point pairs.

713



Closest Point Pair

Euclidean Distance d(s, t) of two points s and
t:

d(s, t) = ‖s− t‖2

=
√

(sx − tx)2 + (sy − ty)2

Problem: Find points p and q fromQ for which

d(p, q) ≤ d(s, t) ∀ s, t ∈ Q, s 6= t.

Naive: all
(

n
2

)
= Θ(n2) point pairs.

713



Divide And Conquer

Set of points P , starting with P ← Q

Arrays X and Y , containing the elements
of P , sorted by x- and y-coordinate,
respectively.
Partition point set into two
(approximately) equally sized sets PL and
PR, separated by a vertical line through a
point of P .
Split arrays X and Y accrodingly in XL,
XR. YL and YR.

714



Divide And Conquer

Set of points P , starting with P ← Q

Arrays X and Y , containing the elements
of P , sorted by x- and y-coordinate,
respectively.

Partition point set into two
(approximately) equally sized sets PL and
PR, separated by a vertical line through a
point of P .
Split arrays X and Y accrodingly in XL,
XR. YL and YR.

714



Divide And Conquer

Set of points P , starting with P ← Q

Arrays X and Y , containing the elements
of P , sorted by x- and y-coordinate,
respectively.
Partition point set into two
(approximately) equally sized sets PL and
PR, separated by a vertical line through a
point of P .

Split arrays X and Y accrodingly in XL,
XR. YL and YR.

714



Divide And Conquer

Set of points P , starting with P ← Q

Arrays X and Y , containing the elements
of P , sorted by x- and y-coordinate,
respectively.
Partition point set into two
(approximately) equally sized sets PL and
PR, separated by a vertical line through a
point of P .
Split arrays X and Y accrodingly in XL,
XR. YL and YR.

714



Divide And Conquer

Recursive call with PL, XL, YL and
PR, XR, YR. Yields minimal distances δL,
δR.

(If only k ≤ 3 points: compute the
minimal distance directly)
After recursive call δ = min(δL, δR).
Combine (next slides) and return best
result.

715



Divide And Conquer

Recursive call with PL, XL, YL and
PR, XR, YR. Yields minimal distances δL,
δR.

(If only k ≤ 3 points: compute the
minimal distance directly)
After recursive call δ = min(δL, δR).
Combine (next slides) and return best
result.

715



Divide And Conquer

Recursive call with PL, XL, YL and
PR, XR, YR. Yields minimal distances δL,
δR.
(If only k ≤ 3 points: compute the
minimal distance directly)

After recursive call δ = min(δL, δR).
Combine (next slides) and return best
result.

715



Divide And Conquer

Recursive call with PL, XL, YL and
PR, XR, YR. Yields minimal distances δL,
δR.
(If only k ≤ 3 points: compute the
minimal distance directly)
After recursive call δ = min(δL, δR).
Combine (next slides) and return best
result.

715



Combine

Generate an array Y ′ holding y-sorted
points from Y , that are located within a 2δ
band around the dividing line

Consider for each point p ∈ Y ′ the
maximally seven points after p with
y-coordinate distance less than δ.
Compute minimal distance δ′.
If δ′ < δ, then a closer pair in P than in PL

and PR found. Return minimal distance.

2δ
δ

δ δ

716



Combine

Generate an array Y ′ holding y-sorted
points from Y , that are located within a 2δ
band around the dividing line
Consider for each point p ∈ Y ′ the
maximally seven points after p with
y-coordinate distance less than δ.
Compute minimal distance δ′.

If δ′ < δ, then a closer pair in P than in PL

and PR found. Return minimal distance.

2δ
δ

δ δ

δ′

716



Combine

Generate an array Y ′ holding y-sorted
points from Y , that are located within a 2δ
band around the dividing line
Consider for each point p ∈ Y ′ the
maximally seven points after p with
y-coordinate distance less than δ.
Compute minimal distance δ′.
If δ′ < δ, then a closer pair in P than in PL

and PR found. Return minimal distance.

2δ
δ

δ δ

δ′

716



Maximum number of points in the 2δ-rectangle

δ δ

δ

Two points in the δ/2× δ/2-rectangle have maximum distance
√

2
2 δ < δ.

⇒ Square with side length δ/2 contains a maximum of one point.
Eight non-overlapping δ/2× δ/2-Rectangles span the 2δ × δ rectangle.

717



Implementation

Goal: recursion equation (runtime) T (n) = 2 · T (n
2 ) +O(n).

Consequence: forbidden to sort in each steps of the recursion.
Non-trivial: only arrays Y and Y ′

Idea: merge reversed: run through Y that is presorted by y-coordinate.
For each element follow the selection criterion of the x-coordinate and
append the element either to YL or YR. Same procedure for Y ′. Runtime
O(|Y |).

Overal runtime: O(n log n).

718


	Geometric Algorithms
	Properties of Line Segments
	Convex Hull
	Intersection of Line Segments
	Closest Point Pair


