24. Geometric Algorithms

Properties of Line Segments, Intersection of Line Segments, Convex Hull, Closest Point Pair [Ottman/Widmayer, Kap. 8.2,8.3,8.8.2, Cormen et al, Kap. 33]

24.1 Properties of Line Segments

Properties of line segments.

Cross-Product of two vectors $p_{1}=\left(x_{1}, y_{1}\right)$, $p_{2}=\left(x_{2}, y_{2}\right)$ in the plane

$$
p_{1} \times p_{2}=\operatorname{det}\left[\begin{array}{ll}
x_{1} & x_{2} \\
y_{1} & y_{2}
\end{array}\right]=x_{1} y_{2}-x_{2} y_{1}
$$

Signed area of the parallelogram

Turning direction

nach links:
$\left(p_{1}-p_{0}\right) \times\left(p_{2}-p_{0}\right)>0$
nach rechts:
$\left(p_{1}-p_{0}\right) \times\left(p_{2}-p_{0}\right)<0$

Intersection of two line segments

Intersection: $\quad p_{1}$ and p_{2} opposite w.r.t $\overline{p_{3} p_{4}}$ and p_{3}, p_{4} opposite w.r.t. $\overline{p_{1} p_{2}}$

No intersection: p_{1} and p_{2} on the same side of $\overline{p_{3} p_{4}}$

No intersection: p_{3} Intersection: p_{1} on and p_{4} on the same $\overline{p_{3} p_{4}}$ side of $\overline{p_{1} p_{2}}$
24.2 Convex Hull

Convex Hull

Subset S of a real vector space is called convex, if for all $a, b \in S$ and all $\lambda \in[0,1]$:

$$
\lambda a+(1-\lambda) b \in S
$$

Convex Hull

Convex Hull $H(Q)$ of a set Q of points: smallest convex polygon P such that each point of Q is on P or in the interior of P.

Convex Hull

Convex Hull $H(Q)$ of a set Q of points: smallest convex polygon P such that each point of Q is on P or in the interior of P.

Convex Hull

Identify segments of P

Convex Hull

Identify segments of P

Observation: for a a segment s of P it holds that all points of Q not on the line through s are either on the left or on the right of s.

Jarvis Marsch / Gift Wrapping algorithm

1. Start with an extremal point (e.g. lowest point) $p=p_{0}$
2. Search point q, such that $\overline{p q}$ is a line to the right of all other points (or other points are on this line closer to p.
3. Continue with $p \leftarrow q$ at (2) until $p=p_{0}$.

Illustration Jarvis

$$
\begin{aligned}
& \stackrel{p_{1}}{p_{0}}
\end{aligned}
$$

Illustration Jarvis

Analysis Gift-Wrapping

- Let h be the number of corner points of the convex hull.
- Runtime of the algorithm $\mathcal{O}(h \cdot n)$.

Convex Hull

Identify segments of P

Convex Hull

Identify segments of P

Observation: if the points of the polygon are ordered anti-clockwise then subsequent segments of the polygon P only make left turns.

Algorithm Graham-Scan

Input: Set of points Q
Output: Stack S of points of the convex hull of Q
p_{0} : point with minimal y coordinate (if required, additionally minimal x-) coordinate
$\left(p_{1}, \ldots, p_{m}\right)$ remaining points sorted by polar angle counter-clockwise in relation to p_{0}; if points with same polar angle available, discard all except the one with maximal distance from p_{0}
$S \leftarrow \emptyset$
if $m<2$ then return S
Push $\left(S, p_{0}\right) ; \operatorname{Push}\left(S, p_{1}\right) ; \operatorname{Push}\left(S, p_{2}\right)$
for $i \leftarrow 3$ to m do
while Winkel $\left(\operatorname{Next} \operatorname{ToTop}(S), \operatorname{Top}(S), p_{i}\right)$ nicht nach links gerichtet do $\operatorname{Pop}(S)$;
$\operatorname{Push}\left(S, p_{i}\right)$
return S

Illustration Graham-Scan

Stack:
 p_{0}

Illustration Graham-Scan

Stack:
p_{1}
p_{0}

Illustration Graham-Scan

Stack:
p_{2}
p_{1}
p_{0}

Illustration Graham-Scan

Stack:
p_{3}
p_{2}
p_{1}
p_{0}

Illustration Graham-Scan

Stack:
 p_{4}
 p_{2}
 p_{1}
 p_{0}

Illustration Graham-Scan

Stack:
p_{5}
p_{4}
p_{2}
p_{1}
p_{0}

Illustration Graham-Scan

Stack:
 p_{4}
 p_{2}
 p_{1}
 p_{0}

Illustration Graham-Scan

Stack:
 p_{6}
 p_{2}
 p_{1}
 p_{0}

Illustration Graham-Scan

Stack:
p_{7}
p_{6}
p_{2}
p_{1}
p_{0}

Illustration Graham-Scan

Stack:
p_{8}
p_{6}
p_{2}
p_{1}
p_{0}

Illustration Graham-Scan

Stack:
p_{9}
p_{6}
p_{2}
p_{1}
p_{0}

Illustration Graham-Scan

Stack:
p_{10}
p_{9}
p_{6}
p_{2}
p_{1}
p_{0}

Illustration Graham-Scan

Stack:
p_{11}
p_{9}
p_{6}
p_{2}
p_{1}
p_{0}

Illustration Graham-Scan

Stack:
p_{12}
p_{11}
p_{9}
p_{6}
p_{2}
p_{1}
p_{0}

Illustration Graham-Scan

Stack:
p_{13}
p_{11}
p_{9}
p_{6}
p_{2}
p_{1}
p_{0}

Illustration Graham-Scan

Stack:
p_{11}
p_{9}
p_{6}
p_{2}
p_{1}
p_{0}

Illustration Graham-Scan

Stack:
p_{14}
p_{9}
p_{6}
p_{2}
p_{1}
p_{0}

Illustration Graham-Scan

Stack:
p_{15}
p_{14}
p_{9}
p_{6}
p_{2}
p_{1}
p_{0}

Illustration Graham-Scan

Stack:
p_{15}
p_{14}
p_{9}
p_{6}
p_{2}
p_{1}
p_{0}

Analysis

Runtime of the algorithm Graham-Scan

- Sorting $\mathcal{O}(n \log n)$
- n Iterations of the for-loop
- Amortized analysis of the multipop on a stack: amortized constant runtime of mulitpop, same here: amortized constant runtime of the While-loop.
Overal $\mathcal{O}(n \log n)$

24.3 Intersection of Line Segments

Preparation: Overlapping Intervals

Questions:
■ How many intervals overlap maximally?

Preparation: Overlapping Intervals

Questions:
■ How many intervals overlap maximally?

- Which intervals (don't) get wet?

Preparation: Overlapping Intervals

Questions:
■ How many intervals overlap maximally?
■ Which intervals (don't) get wet?

- Which intervals are directly on top of each other?

Preparation: Overlapping Intervals

Idea of a sweep line: vertical line, moving in x-direction, observes the geometric objects.

Preparation: Overlapping Intervals

Event list: list of points where the state observed by the sweepline changes.

Preparation: Overlapping Intervals

Q: How many intervals overlap maximally?

Preparation: Overlapping Intervals

Q: How many intervals overlap maximally?

Sweep line controls a counter that is incremented (decremented) at the left (right) end point of an interval.

Preparation: Overlapping Intervals

Q: How many intervals overlap maximally?

Sweep line controls a counter that is incremented (decremented) at the left (right) end point of an interval.

A: maximum counter value

Preparation: Overlapping Intervals

Q: Which intervals get wet?

Preparation: Overlapping Intervals

Q: Which intervals get wet?

Sweep line controls a binary search tree that comprises the intervals according to their vertical ordering.

Preparation: Overlapping Intervals

Q: Which intervals get wet?

Sweep line controls a binary search tree that comprises the intervals according to their vertical ordering.
A: intervalls on the very left of the tree.

Preparation: Overlapping Intervals

Q: Which intervals are neighbours?

Preparation: Overlapping Intervals

Q: Which intervals are neighbours?

A: intervalls on the very left of the tree.

Cutting many line segments

Sweepline Principle

Simplifying Assumptions

■ No vertical line segments
■ Each intersection is formed by at most two line segments.

(Vertical) Ordering line segments

Preorder (partial order without anti-symmetry)

$$
\begin{aligned}
& s_{2} \prec_{h_{1}} s_{1} \\
& s_{1} \prec_{h_{2}} s_{2} \\
& s_{2} \prec_{h_{2}} s_{1} \\
& s_{3} \prec_{h_{2}} s_{2}
\end{aligned}
$$

W.r.t. h_{3} the line segments are uncomparable.

[^0]
Observation: two cases

(a) Intersecting line segments are neighbours w.r.t. quasi-order from above directly from the start.

(b) Intersecting line segments are neighbours w.r.t. quasi-order from above after the last segment between them ends.

Observation: possible misunderstanding

It does not suffice to compare the y-coordinates of starting points of lines. Positions on the sweep line have to be compared.

Moving the sweepline

■ Sweep-Line Status : Relationship of all objects intersected by sweep-line
■ Event List : Series of event positions, sorted by x-coordinate. Sweep-line travels from left to right and stops at each event position.

Sweep-Line Status

Preorder T of the intersected line segments
Required operations:
■ Insert(T, s) Insert line segment s in T
■ Delete (T, s) Remove s from T
■ Above(T, s) Return line segment immediately above of s in T
■ Below(T, s) Return line segment immediately below of s in T
Possible Implementation:

Sweep-Line Status

Preorder T of the intersected line segments
Required operations:
■ Insert(T, s) Insert line segment s in T
■ Delete(T, s) Remove s from T
■ Above(T, s) Return line segment immediately above of s in T
■ Below(T, s) Return line segment immediately below of s in T
Possible Implementation: Blanced tree (AVL-Tree, Red-Black Tree etc.)

Algorithm Any-Segments-Intersect(S)

Input: List of n line segments S
Output: Returns if S contains intersecting segments
$T \leftarrow \emptyset$
Sort endpoints of line segments in S from left to right (left before right and lower before upper)
for Sorted end points p do
if p left end point of a segment s then
Insert (T, s)
if $\operatorname{Above}(T, s) \cap s \neq \emptyset \vee \operatorname{Below}(T, s) \cap s \neq \emptyset$ then return true
if p right end point of a segment s then
if $\operatorname{Above}(T, s) \cap \operatorname{Below}(T, s) \neq \emptyset$ then return true
Delete (T, s)
return false;

Illustration

Analysis

Runtime of the algorithm Any-Segments-Intersect

- Sorting $\mathcal{O}(n \log n)$

■ $2 n$ iterations of the for loop. Each operation on the balanced tree $\mathcal{O}(\log n)$
Overal $\mathcal{O}(n \log n)$
24.4 Closest Point Pair

Closest Point Pair

Euclidean Distance $d(s, t)$ of two points s and t :

$$
\begin{aligned}
d(s, t) & =\|s-t\|_{2} \\
& =\sqrt{\left(s_{x}-t_{x}\right)^{2}+\left(s_{y}-t_{y}\right)^{2}}
\end{aligned}
$$

Problem: Find points p and q from Q for which

$$
d(p, q) \leq d(s, t) \forall s, t \in Q, s \neq t
$$

Closest Point Pair

Euclidean Distance $d(s, t)$ of two points s and t :

$$
\begin{aligned}
d(s, t) & =\|s-t\|_{2} \\
& =\sqrt{\left(s_{x}-t_{x}\right)^{2}+\left(s_{y}-t_{y}\right)^{2}}
\end{aligned}
$$

Problem: Find points p and q from Q for which

$$
d(p, q) \leq d(s, t) \forall s, t \in Q, s \neq t
$$

Naive: all $\binom{n}{2}=\Theta\left(n^{2}\right)$ point pairs.

Closest Point Pair

Euclidean Distance $d(s, t)$ of two points s and t :

$$
\begin{aligned}
d(s, t) & =\|s-t\|_{2} \\
& =\sqrt{\left(s_{x}-t_{x}\right)^{2}+\left(s_{y}-t_{y}\right)^{2}}
\end{aligned}
$$

Problem: Find points p and q from Q for which

$$
d(p, q) \leq d(s, t) \forall s, t \in Q, s \neq t
$$

Naive: all $\binom{n}{2}=\Theta\left(n^{2}\right)$ point pairs.

Divide And Conquer

■ Set of points P, starting with $P \leftarrow Q$

Divide And Conquer

- Set of points P, starting with $P \leftarrow Q$
- Arrays X and Y, containing the elements of P, sorted by x - and y-coordinate, respectively.

Divide And Conquer

- Set of points P, starting with $P \leftarrow Q$
- Arrays X and Y, containing the elements of P, sorted by x - and y-coordinate, respectively.
- Partition point set into two (approximately) equally sized sets P_{L} and P_{R}, separated by a vertical line through a point of P.

Divide And Conquer

■ Set of points P, starting with $P \leftarrow Q$

- Arrays X and Y, containing the elements of P, sorted by x - and y-coordinate, respectively.
- Partition point set into two (approximately) equally sized sets P_{L} and P_{R}, separated by a vertical line through a point of P.
- Split arrays X and Y accrodingly in X_{L}, $X_{R} . Y_{L}$ and Y_{R}.

Divide And Conquer

■ Recursive call with P_{L}, X_{L}, Y_{L} and P_{R}, X_{R}, Y_{R}. Yields minimal distances δ_{L}, δ_{R}.

Divide And Conquer

■ Recursive call with P_{L}, X_{L}, Y_{L} and P_{R}, X_{R}, Y_{R}. Yields minimal distances δ_{L}, δ_{R}.

Divide And Conquer

■ Recursive call with P_{L}, X_{L}, Y_{L} and P_{R}, X_{R}, Y_{R}. Yields minimal distances δ_{L}, δ_{R}.
■ (If only $k \leq 3$ points: compute the minimal distance directly)

Divide And Conquer

■ Recursive call with P_{L}, X_{L}, Y_{L} and P_{R}, X_{R}, Y_{R}. Yields minimal distances δ_{L}, δ_{R}.
■ (If only $k \leq 3$ points: compute the minimal distance directly)

- After recursive call $\delta=\min \left(\delta_{L}, \delta_{R}\right)$. Combine (next slides) and return best result.

Combine

■ Generate an array Y^{\prime} holding y-sorted points from Y, that are located within a 2δ band around the dividing line

Combine

■ Generate an array Y^{\prime} holding y-sorted points from Y, that are located within a 2δ band around the dividing line

- Consider for each point $p \in Y^{\prime}$ the maximally seven points after p with y-coordinate distance less than δ. Compute minimal distance δ^{\prime}.

Combine

■ Generate an array Y^{\prime} holding y-sorted points from Y, that are located within a 2δ band around the dividing line

- Consider for each point $p \in Y^{\prime}$ the maximally seven points after p with y-coordinate distance less than δ. Compute minimal distance δ^{\prime}.
■ If $\delta^{\prime}<\delta$, then a closer pair in P than in P_{L} and P_{R} found. Return minimal distance.

Maximum number of points in the 2δ-rectangle

Two points in the $\delta / 2 \times \delta / 2$-rectangle have maximum distance $\frac{\sqrt{2}}{2} \delta<\delta$. \Rightarrow Square with side length $\delta / 2$ contains a maximum of one point. Eight non-overlapping $\delta / 2 \times \delta / 2$-Rectangles span the $2 \delta \times \delta$ rectangle.

Implementation

■ Goal: recursion equation (runtime) $T(n)=2 \cdot T\left(\frac{n}{2}\right)+\mathcal{O}(n)$.
■ Consequence: forbidden to sort in each steps of the recursion.
■ Non-trivial: only arrays Y and Y^{\prime}
■ Idea: merge reversed: run through Y that is presorted by y-coordinate. For each element follow the selection criterion of the x-coordinate and append the element either to Y_{L} or Y_{R}. Same procedure for Y^{\prime}. Runtime $\mathcal{O}(|Y|)$.
Overal runtime: $\mathcal{O}(n \log n)$.

[^0]: ${ }^{37}$ No anti-symmetry: $s \prec t \wedge t \prec s \nRightarrow s=t$

