24. Geometric Algorithms

Properties of Line Segments, Intersection of Line Segments, Convex Hull, Closest Point Pair [Ottman/Widmayer, Kap. 8.2,8.3,8.8.2, Cormen et al, Kap. 33] 24.1 Properties of Line Segments

Properties of line segments.

Cross-Product of two vectors $p_1 = (x_1, y_1)$, $p_2 = (x_2, y_2)$ in the plane

$$p_1 \times p_2 = \det \begin{bmatrix} x_1 & x_2 \\ y_1 & y_2 \end{bmatrix} = x_1 y_2 - x_2 y_1$$

Signed area of the parallelogram

Turning direction

nach links: $(p_1 - p_0) \times (p_2 - p_0) > 0$ nach rechts: $(p_1-p_0)\times(p_2-p_0)<0$

Intersection of two line segments

Intersection: p_1 and p_2 oppositew.r.t $\overline{p_3p_4}$ and p_3 , p_4 oppositew.r.t. $\overline{p_1p_2}$

No intersection: p_1 and p_2 on the same side of $\overline{p_3p_4}$ No intersection: p_3 and p_4 on the same side of $\overline{p_1p_2}$ Intersection: p_1 on $\overline{p_3p_4}$

24.2 Convex Hull

Subset S of a real vector space is called **convex**, if for all $a, b \in S$ and all $\lambda \in [0, 1]$:

 $\lambda a + (1 - \lambda)b \in S$

Convex Hull H(Q) of a set Q of points: smallest convex polygon P such that each point of Q is on P or in the interior of P.

Convex Hull H(Q) of a set Q of points: smallest convex polygon P such that each point of Q is on P or in the interior of P.

Identify segments of ${\cal P}$

Identify segments of P

Observation: for a a segment s of P it holds that all points of Q not on the line through s are either on the left or on the right of s.

Jarvis Marsch / Gift Wrapping algorithm

- 1. Start with an extremal point (e.g. lowest point) $p = p_0$
- 2. Search point q, such that \overline{pq} is a line to the right of all other points (or other points are on this line closer to p.
- 3. Continue with $p \leftarrow q$ at (2) until $p = p_0$.

Let h be the number of corner points of the convex hull.
Runtime of the algorithm O(h · n).

Identify segments of P

Identify segments of P

Observation: if the points of the polygon are ordered anti-clockwise then subsequent segments of the polygon *P* only make left turns.

Algorithm Graham-Scan

Input: Set of points Q

Output: Stack S of points of the convex hull of Q

```
p_0: point with minimal y coordinate (if required, additionally minimal x-) coordinate
```

 (p_1,\ldots,p_m) remaining points sorted by polar angle counter-clockwise in relation to p_0 ; if points with same polar angle available, discard all except the one with maximal distance from p_0

 $S \gets \emptyset$

return S

Illustration Graham-Scan

Stack: p_0

Illustration Graham-Scan

Stack: p_1 p_0

Illustration Graham-Scan

Stack: p_2 p_1 p_0

Stack: p_5 p_4 p_2 p_1 p_0

Stack: p_4 p_2 p_1 p_0

Stack: p_8 p_6 p_2 p_1 p_0

Stack: p_9 p_6 p_2 p_1 p_0

Stack: *p*₁₀ *p*₉ *p*₆ *p*₂ *p*₁ *p*₀

Stack:

 p_{14}

 p_9

 p_6

 p_2

 p_1

 p_0

Stack:

 p_{15}

 p_{14}

 p_9

 p_6

 p_2

 p_1

 p_0

Stack: p_{15} p_{14} p_{9} p_{6} p_{2} p_{1} p_{0} Runtime of the algorithm Graham-Scan

- Sorting $\mathcal{O}(n \log n)$
- *n* Iterations of the for-loop
- Amortized analysis of the multipop on a stack: amortized constant runtime of mulitpop, same here: amortized constant runtime of the While-loop.

Overal $\mathcal{O}(n \log n)$

24.3 Intersection of Line Segments

Questions:

How many intervals overlap maximally?

Questions:

- How many intervals overlap maximally?
- Which intervals (don't) get wet?

Questions:

- How many intervals overlap maximally?
- Which intervals (don't) get wet?
- Which intervals are directly on top of each other?

Idea of a sweep line: vertical line, moving in *x*-direction, observes the geometric objects.

Event list: list of points where the state observed by the sweepline changes.

Q: How many intervals overlap maximally?

Q: How many intervals overlap maximally?

Sweep line controls a counter that is incremented (decremented) at the left (right) end point of an interval.

Q: How many intervals overlap maximally?

Sweep line controls a counter that is incremented (decremented) at the left (right) end point of an interval.

A: maximum counter value

Q: Which intervals get wet?

Q: Which intervals get wet?

Sweep line controls a binary search tree that comprises the intervals according to their vertical ordering.

Q: Which intervals get wet?

Sweep line controls a binary search tree that comprises the intervals according to their vertical ordering.

A: intervalls on the very left of the tree.

Q: Which intervals are neighbours?

Q: Which intervals are neighbours?

A: intervalls on the very left of the tree.

Cutting many line segments

Sweepline Principle

- No vertical line segments
- Each intersection is formed by at most two line segments.

(Vertical) Ordering line segments

Preorder (partial order without anti-symmetry)

W.r.t. h_3 the line segments are uncomparable.

 ^{37}No anti-symmetry: $s \preccurlyeq t \land t \preccurlyeq s \nRightarrow s = t$

Observation: two cases

(a) Intersecting line segments are neighbours w.r.t. quasi-order from above directly from the start. (b) Intersecting line segments are neighbours w.r.t. quasi-order from above after the last segment between them ends.
Observation: possible misunderstanding

It does not suffice to compare the *y*-coordinates of starting points of lines. Positions on the sweep line have to be compared.

- Sweep-Line Status : Relationship of all objects intersected by sweep-line
- Event List : Series of event positions, sorted by *x*-coordinate.
 Sweep-line travels from left to right and stops at each event position.

Preorder T of the intersected line segments Required operations:

- **Insert(**T, s**)** Insert line segment s in T
- **Delete**(T, s) Remove s from T
- Above(T, s) Return line segment immediately above of s in T
- **Below**(T, s) Return line segment immediately below of s in TPossible Implementation:

Possible Implementation:

Preorder T of the intersected line segments Required operations:

- **Insert(**T, s**)** Insert line segment s in T
- **Delete**(T, s) Remove s from T
- Above(T, s) Return line segment immediately above of s in T
- **Below**(T, s) Return line segment immediately below of s in T

Possible Implementation: Blanced tree (AVL-Tree, Red-Black Tree etc.)

Algorithm Any-Segments-Intersect(S)

Input: List of n line segments S

Output: Returns if S contains intersecting segments

 $T \gets \emptyset$

Sort endpoints of line segments in ${\cal S}$ from left to right (left before right and lower before upper)

for Sorted end points $p\ \mathrm{do}$

return false;

Illustration

Runtime of the algorithm Any-Segments-Intersect

- Sorting $\mathcal{O}(n \log n)$
- 2n iterations of the for loop. Each operation on the balanced tree $\mathcal{O}(\log n)$

Overal $\mathcal{O}(n \log n)$

24.4 Closest Point Pair

Closest Point Pair

Euclidean Distance d(s,t) of two points s and t:

$$d(s,t) = ||s - t||_{2}$$

= $\sqrt{(s_{x} - t_{x})^{2} + (s_{y} - t_{y})^{2}}$

Problem: Find points p and q from Q for which

$$d(p,q) \leq d(s,t) \; \forall \; s,t \in Q, s \neq t.$$

Closest Point Pair

Euclidean Distance d(s,t) of two points s and t:

$$d(s,t) = ||s - t||_{2}$$

= $\sqrt{(s_{x} - t_{x})^{2} + (s_{y} - t_{y})^{2}}$

Problem: Find points p and q from Q for which

$$d(p,q) \le d(s,t) \; \forall \; s,t \in Q, s \neq t.$$

Naive: all $\binom{n}{2} = \Theta(n^2)$ point pairs.

Closest Point Pair

Euclidean Distance d(s,t) of two points s and t:

$$d(s,t) = ||s - t||_{2}$$

= $\sqrt{(s_{x} - t_{x})^{2} + (s_{y} - t_{y})^{2}}$

Problem: Find points p and q from Q for which

$$d(p,q) \le d(s,t) \; \forall \; s,t \in Q, s \neq t.$$

Naive: all $\binom{n}{2} = \Theta(n^2)$ point pairs.

Set of points P, starting with $P \leftarrow Q$

- Set of points P, starting with $P \leftarrow Q$
- Arrays X and Y, containing the elements of P, sorted by x- and y-coordinate, respectively.

- Set of points P, starting with $P \leftarrow Q$
- Arrays X and Y, containing the elements of P, sorted by x- and y-coordinate, respectively.
- Partition point set into two (approximately) equally sized sets P_L and P_R, separated by a vertical line through a point of P.

- \blacksquare Set of points P, starting with $P \leftarrow Q$
- Arrays X and Y, containing the elements of P, sorted by x- and y-coordinate, respectively.
- Partition point set into two (approximately) equally sized sets P_L and P_R, separated by a vertical line through a point of P.
- Split arrays X and Y accrodingly in X_L , X_R . Y_L and Y_R .

Recursive call with P_L, X_L, Y_L and P_R, X_R, Y_R . Yields minimal distances δ_L , δ_R .

Recursive call with P_L, X_L, Y_L and P_R, X_R, Y_R . Yields minimal distances δ_L , δ_R .

- Recursive call with P_L, X_L, Y_L and P_R, X_R, Y_R . Yields minimal distances δ_L , δ_R .
- (If only $k \leq 3$ points: compute the minimal distance directly)

- Recursive call with P_L, X_L, Y_L and P_R, X_R, Y_R . Yields minimal distances δ_L , δ_R .
- (If only $k \leq 3$ points: compute the minimal distance directly)
- After recursive call $\delta = \min(\delta_L, \delta_R)$. Combine (next slides) and return best result.

Combine

 Generate an array Y' holding y-sorted points from Y, that are located within a 2δ band around the dividing line

Combine

- Generate an array Y' holding y-sorted points from Y, that are located within a 2δ band around the dividing line
- Consider for each point $p \in Y'$ the maximally seven points after p with y-coordinate distance less than δ . Compute minimal distance δ' .

Combine

- Generate an array Y' holding y-sorted points from Y, that are located within a 2δ band around the dividing line
- Consider for each point $p \in Y'$ the maximally seven points after p with y-coordinate distance less than δ . Compute minimal distance δ' .
- If $\delta' < \delta$, then a closer pair in *P* than in P_L and P_R found. Return minimal distance.

Maximum number of points in the 2δ -rectangle

Two points in the $\delta/2 \times \delta/2$ -rectangle have maximum distance $\frac{\sqrt{2}}{2}\delta < \delta$. \Rightarrow Square with side length $\delta/2$ contains a maximum of one point. Eight non-overlapping $\delta/2 \times \delta/2$ -Rectangles span the $2\delta \times \delta$ rectangle.

- Goal: recursion equation (runtime) $T(n) = 2 \cdot T(\frac{n}{2}) + O(n)$.
- Consequence: forbidden to sort in each steps of the recursion.
- \blacksquare Non-trivial: only arrays Y and Y'
- Idea: merge reversed: run through *Y* that is presorted by *y*-coordinate. For each element follow the selection criterion of the *x*-coordinate and append the element either to Y_L or Y_R . Same procedure for *Y'*. Runtime $\mathcal{O}(|Y|)$.

Overal runtime: $\mathcal{O}(n \log n)$.