
22. Dynamic Programming III

Optimal Search Tree [Ottman/Widmayer, Kap. 5.7]
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22.1 Optimal Search Trees
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Optimal binary Search Trees

Given: n keys k1, k2 . . . kn (wlog k1 < k2 < ... < kn) with weights (search
probabilities34) p1, p2, . . . , pn.
Wanted: optimal search tree T with key depths35 d(·), that minimizes the
expected search costs

C(T ) =
n∑

i=1
(d(ki) + 1) · pi

34It is possible to model unsuccesful search additionally, omitted for brevity here
35d(k): Length of the path from the root to the node k
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Example

Expected Frequencies

i 1 2 3 4 5
pi 0.25 0.10 0.05 0.20 0.40

k2

k1 k4

k3 k5

Search tree with expected costs
2.35

k2

k1 k5

k4

k3

Search tree with expected costs
2.2
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Sub-trees for Searching

kr

k1 . . . kr−1 kr+1 . . . kn

Which r to choose?
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Greedy?

Scenario p1 = 1, p2 = 10, p3 = 8, p4 = 9
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Structure of a optimal binary search tree

Consider all subtrees with roots kr and optimal subtrees for keys
ki, . . . , kr−1 and kr+1, . . . , kj

Subtrees with keys ki, . . . , kr−1 and kr+1, . . . , kj must be optimal for the
respective sub-problems.36

E(i, j) = Costs of optimal search tree with nodes ki, ki+1, . . . , kj

36The usual argument: if it was not optimal, it could be replaced by a better solution
improving the overal solution.
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Rekursion

With

p(i, j) := pi + pi+1 + · · ·+ pj i ≤ j

it holds that

E(i, j) =


0 if i > j

p(i) if i = j

p(i, j) + min{E(i, k − 1) + E(k + 1, j), i ≤ k ≤ j} otherwise.
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DP

0. E(1, n): Costs of optimal search tree with nodes k1, . . . , kn with search
frequencies p1, . . . , pn

1. E(i, j), 1 ≤ i ≤ j ≤ n # sub-problems Θ(n2)
2. Enumerate roots of subtree of ki, . . . , kj , # possibilities: j − i + 1
3. Dependencies E(i, j) depend on E(i, k), E(k, j) i < k < j. Computation
of the o�-diagonals of E, starting with the diagonal of E

4. Solution is in E(1, n), Reconstruction: store the arg-mins of the
recursion in a separate table V .

5. Running time Θ(n3). Memory Θ(n2).
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Example

i 1 2 3 4 5
pi 0.25 0.10 0.05 0.20 0.40

i

1 0.25 0.35 0.40 0.60 1.00
2 0.10 0.15 0.35 0.75
3 0.05 0.25 0.65
4 0.20 0.60
5 0.40

1 2 3 4 5 j

p

i

1 0 0.25 0.45 0.60 1.15 2.00
2 0 0.10 0.20 0.55 1.30
3 0 0.05 0.30 0.95
4 0 0.20 0.80
5 0 0.40
6 0

0 1 2 3 4 5 j

E
i

1 1 1 1 1 4
2 2 2 4 5
3 3 4 5
4 4 5
5 5

1 2 3 4 5 j

V
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23. Greedy Algorithms

Fractional Knapsack Problem, Hu�man Coding [Cormen et al, Kap. 16.1, 16.3]
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Greedy Choice

A problem with a recursive solution can be solved with a greedy algorithm
if it has the following properties:
The problem has optimal substructure: the solution of a problem can
be constructed with a combination of solutions of sub-problems.
The problem has the greedy choice property: The solution to a problem
can be constructed, by using a local criterion that is not depending on
the solution of the sub-problems.

Examples: fractional knapsack, Hu�man-Coding (below)
Counter-Example: knapsack problem, Optimal Binary Search Tree
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Hu�man-Codes

Goal: memory-e�cient saving of a sequence of characters using a binary
code with code words..

Example

File consisting of 100.000 characters from the alphabet {a, . . . , f}.

a b c d e f
Frequency (Thousands) 45 13 12 16 9 5
Code word with �x length 000 001 010 011 100 101
Code word variable length 0 101 100 111 1101 1100

File size (code with �x length): 300.000 bits.
File size (code with variable length): 224.000 bits.
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Hu�man-Codes

Consider pre�x-codes: no code word can start with a di�erent codeword.

Pre�x codes can, compared with other codes, achieve the optimal data
compression (without proof here).
Encoding: concatenation of the code words without stop character
(di�erence to morsing).
a�e→ 0 · 1100 · 1100 · 1101→ 0110011001101
Decoding simple because pre�xcode
0110011001101→ 0 · 1100 · 1100 · 1101→ a�e
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Code trees
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Properties of the Code Trees

An optimal coding of a �le is alway represented by a complete binary
tree: every inner node has two children.

Let C be the set of all code words, f(c) the frequency of a codeword c
and dT (c) the depth of a code word in tree T . De�ne the cost of a tree as

B(T ) =
∑
c∈C

f(c) · dT (c).

(cost = number bits of the encoded �le)
In the following a code tree is called optimal when it minimizes the costs.
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Probabilitiy Distributions

The sum to be minimized ∑
c∈C

f(c) · dT (c)

can be written as

−
∑
c∈C

f(c) · log2 gT (c), where gT (·) := 2−dT (·).

gT (·) can be understood as discrete probability distribution because it
holds that ∑

c gT (c) = 1. That is a property of a complete binary tree
because each inner node has two child nodes.
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Probabilitiy Distributions

For two discrete proability distributions f and g over C the Gibbs
inequality holds

−
∑
c∈C

f(c) log f(c)︸ ︷︷ ︸
Entropy of f

≤ −
∑
c∈C

f(x) log g(c)

with equality if and only if f(c) = g(c) for each c ∈ C .

Consequence if f(c) ∈ {2−k, k ∈ N} for all c ∈ C , then the optimal code
tree can be formed easily with dT (c) = − log2 f(c).
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Shannon Fano Coding

Approximative algorithm of Shannon and Fano
1. Sort the keys by frequency, wlog p1 ≤ p2 ≤ ... ≤ pn

2. Partition the keys into two sets of almost equal weight, i.e. into sets
A = {1, . . . , k} and B = {k + 1, . . . , n} such that ∑

i∈A pi ≈
∑

i∈B pi.
Recursion until all sets contain a single element.

Running Time:

Θ(n log n)
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Shannon Fano Coding
45, 16, 13, 12, 9, 5
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Problem

The approximate algorithm of Shannon and Fano does not always provide
the optimal result
Example {14, 7, 5, 5, 4} with lower bound (entropy) B(T ) ≥ 75.35
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14 7
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5 9

5 4
Shannon-Fano Coding, B(T ) = 79

35

14 21
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5 7

9

5 4
Optimal, B(T ) = 77
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Hu�man’s Idea

Tree construction bottom up
Start with the set C of code
words

Replace iteriatively the two
nodes with smallest
frequency by a new parent
node.

a:45 b:13 c:12 d:16 e:9 f:5

1425
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100

669



Hu�man’s Idea

Tree construction bottom up
Start with the set C of code
words
Replace iteriatively the two
nodes with smallest
frequency by a new parent
node. a:45 b:13 c:12 d:16 e:9 f:5

14

25
30

55

100

669



Hu�man’s Idea

Tree construction bottom up
Start with the set C of code
words
Replace iteriatively the two
nodes with smallest
frequency by a new parent
node. a:45 b:13 c:12 d:16 e:9 f:5

1425

30

55

100

669



Hu�man’s Idea

Tree construction bottom up
Start with the set C of code
words
Replace iteriatively the two
nodes with smallest
frequency by a new parent
node. a:45 b:13 c:12 d:16 e:9 f:5

1425
30

55

100

669



Hu�man’s Idea

Tree construction bottom up
Start with the set C of code
words
Replace iteriatively the two
nodes with smallest
frequency by a new parent
node. a:45 b:13 c:12 d:16 e:9 f:5

1425
30

55

100

669



Hu�man’s Idea

Tree construction bottom up
Start with the set C of code
words
Replace iteriatively the two
nodes with smallest
frequency by a new parent
node. a:45 b:13 c:12 d:16 e:9 f:5

1425
30

55

100

669



Algorithm Hu�man(C)

Input: code words c ∈ C
Output: Root of an optimal code tree

n← |C|
Q← C
for i = 1 to n− 1 do

allocate a new node z
z.left← ExtractMin(Q) // extract word with minimal frequency.
z.right← ExtractMin(Q)
z.freq← z.left.freq + z.right.freq
Insert(Q, z)

return ExtractMin(Q)

670



Analyse

Use a heap: build Heap in O(n). Extract-Min in O(log n) for n Elements.
Yields a runtime of O(n log n).
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The greedy approach is correct

Theorem 20
Let x, y be two symbols with smallest frequencies in C and let T ′(C ′)
be an optimal code tree to the alphabet C ′ = C − {x, y} + {z} with a
new symbol z with f(z) = f(x) + f(y). Then the tree T (C) that is
constructed from T ′(C ′) by replacing the node z by an inner node with
children x and y is an optimal code tree for the alphabet C .
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Proof

It holds that
f(x)·dT (x)+f(y)·dT (y) = (f(x)+f(y))·(dT ′(z)+1) = f(z)·dT ′(x)+f(x)+f(y).
Thus B(T ′) = B(T )− f(x)− f(y).
Assumption: T is not optimal. Then there is an optimal tree T ′′ with
B(T ′′) < B(T ). We assume that x and y are brothers in T ′′. Let T ′′′ be the
tree where the inner node with children x and y is replaced by z. Then it
holds that B(T ′′′) = B(T ′′)− f(x)− f(y) < B(T )− f(x)− f(y) = B(T ′).
Contradiction to the optimality of T ′.
The assumption that x and y are brothers in T ′′ can be justi�ed because a
swap of elements with smallest frequency to the lowest level of the tree
can at most decrease the value of B.
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Recursive Problem-Solving Strategies

Brute Force
Enumeration

Backtracking Divide and
Conquer

Dynamic
Programming

Greedy

Recursive Enu-
merability

Constraint Satis-
faction, Partial
Validation

Optimal
Substructure

Optimal
Substructure,
Overlapping
Subproblems

Optimal
Substructure,
Greedy Choice
Property

DFS, BFS, all Per-
mutations, Tree
Traversal

n-Queen,
Sudoku,
m-Coloring, SAT-
Solving, naive
TSP

Binary Search,
Mergesort,
Quicksort,
Hanoi Towers,
FFT

Bellman Ford,
Warshall, Rod-
Cutting, LAS,
Editing Dis-
tance, Knapsack
Problem DP

Dijkstra,
Kruskal,
Hu�mann
Coding
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