22. Dynamic Programming III

Optimal Search Tree [Ottman/Widmayer, Kap. 5.7]

22.1 Optimal Search Trees

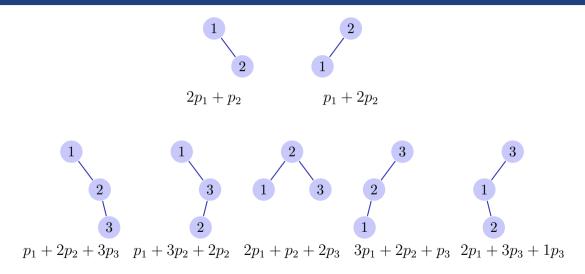
Given: n keys $k_1, k_2 \dots k_n$ (wlog $k_1 < k_2 < \dots < k_n$) with weights (search probabilities³⁴) p_1, p_2, \dots, p_n .

Wanted: optimal search tree T with key depths³⁵ $d(\cdot)$, that minimizes the expected search costs

$$C(T) = \sum_{i=1}^{n} (\mathrm{d}(k_i) + 1) \cdot p_i$$

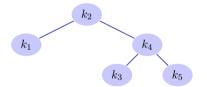
³⁴It is possible to model unsuccesful search additionally, omitted for brevity here ${}^{35}d(k)$: Length of the path from the root to the node k

Examples

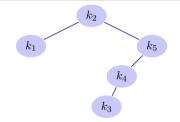


Example

Expected Frequencies

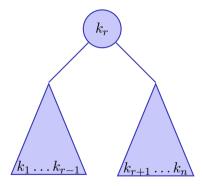


Search tree with expected costs 2.35

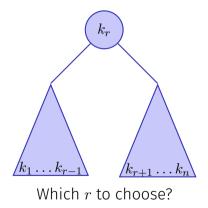


Search tree with expected costs 2.2

Sub-trees for Searching



Sub-trees for Searching

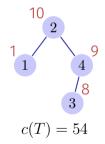


Greedy?

Scenario
$$p_1 = 1, p_2 = 10, p_3 = 8, p_4 = 9$$

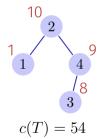
Greedy?

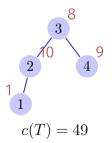
Scenario
$$p_1 = 1, p_2 = 10, p_3 = 8, p_4 = 9$$



Greedy?

Scenario
$$p_1 = 1, p_2 = 10, p_3 = 8, p_4 = 9$$





Structure of a optimal binary search tree

- Consider all subtrees with roots k_r and optimal subtrees for keys k_i, \ldots, k_{r-1} and k_{r+1}, \ldots, k_j
- Subtrees with keys k_i, \ldots, k_{r-1} and k_{r+1}, \ldots, k_j must be optimal for the respective sub-problems.³⁶

E(i, j) =Costs of optimal search tree with nodes $k_i, k_{i+1}, \ldots, k_j$

³⁶The usual argument: if it was not optimal, it could be replaced by a better solution improving the overal solution.

Rekursion

With

$$p(i,j) := p_i + p_{i+1} + \dots + p_j \qquad i \le j$$

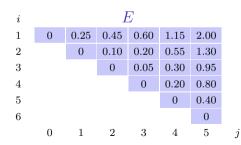
it holds that

$$E(i,j) = \begin{cases} 0 & \text{if } i > j \\ p(i) & \text{if } i = j \\ p(i,j) + \min\{E(i,k-1) + E(k+1,j), i \le k \le j\} & \text{otherwise.} \end{cases}$$

- 0. E(1, n): Costs of optimal search tree with nodes k_1, \ldots, k_n with search frequencies p_1, \ldots, p_n
- 1. $E(i, j), 1 \le i \le j \le n$ # sub-problems $\Theta(n^2)$
- 2. Enumerate roots of subtree of k_i, \ldots, k_j , # possibilities: j i + 1
- 3. Dependencies E(i, j) depend on E(i, k), E(k, j) i < k < j. Computation of the off-diagonals of E, starting with the diagonal of E
- 4. Solution is in E(1, n), Reconstruction: store the arg-mins of the recursion in a separate table V.
- 5. Running time $\Theta(n^3)$. Memory $\Theta(n^2)$.

Example

i	•	-	3	•	5		
p_i	0.25	0.10	0.05	0.20	0.40		



i			p			
1	0.25	0.35	0.40	0.60	1.00	
2		0.10	0.15	0.35	0.75	
3			0.05	0.25	0.65	
4				0.20	0.60	
5					0.40	
	1	2	3	4	5	j
i			V			
1	1	1	1	1	4	
2		2	2	4	5	
3			3	4	5	
4				4	5	
5					5	
	1	2	3	4	5	j

23. Greedy Algorithms

Fractional Knapsack Problem, Huffman Coding [Cormen et al, Kap. 16.1, 16.3]

A problem with a recursive solution can be solved with a **greedy algorithm** if it has the following properties:

- The problem has optimal substructure: the solution of a problem can be constructed with a combination of solutions of sub-problems.
- The problem has the greedy choice property: The solution to a problem can be constructed, by using a local criterion that is not depending on the solution of the sub-problems.

Examples: fractional knapsack, Huffman-Coding (below) Counter-Example: knapsack problem, Optimal Binary Search Tree

Huffman-Codes

Goal: memory-efficient saving of a sequence of characters using a binary code with code words..

Huffman-Codes

Goal: memory-efficient saving of a sequence of characters using a binary code with code words..

Example File consisting of 100.000 characters from the alphabet $\{a, \ldots, f\}$. b d С е а Frequency (Thousands) Code word with fix length Code word variable length

Huffman-Codes

Goal: memory-efficient saving of a sequence of characters using a binary code with code words..

Example File consisting of 100.000 characters from the alphabet $\{a, \ldots, f\}$. b С d а е Frequency (Thousands) 16 9 5 45 13 12 Code word with fix length 001 010 011 100 101 000 Code word variable length 111 0 101 100 1101 1100

File size (code with fix length): 300.000 bits. File size (code with variable length): 224.000 bits.

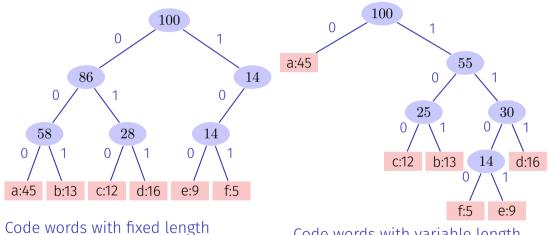
• Consider prefix-codes: no code word can start with a different codeword.

Consider prefix-codes: no code word can start with a different codeword.
 Prefix codes can, compared with other codes, achieve the optimal data compression (without proof here).

- Consider prefix-codes: no code word can start with a different codeword.
- Prefix codes can, compared with other codes, achieve the optimal data compression (without proof here).
- Encoding: concatenation of the code words without stop character (difference to morsing). affe $\rightarrow 0 \cdot 1100 \cdot 1100 \cdot 1101 \rightarrow 0110011001101$

- Consider prefix-codes: no code word can start with a different codeword.
- Prefix codes can, compared with other codes, achieve the optimal data compression (without proof here).
- Encoding: concatenation of the code words without stop character (difference to morsing). affe $\rightarrow 0 \cdot 1100 \cdot 1100 \cdot 1101 \rightarrow 0110011001101$
- Decoding simple because prefixcode $0110011001101 \rightarrow 0 \cdot 1100 \cdot 1100 \cdot 1101 \rightarrow affe$

Code trees



Code words with variable length

Properties of the Code Trees

An optimal coding of a file is alway represented by a complete binary tree: every inner node has two children.

Properties of the Code Trees

- An optimal coding of a file is alway represented by a complete binary tree: every inner node has two children.
- Let C be the set of all code words, f(c) the frequency of a codeword c and $d_T(c)$ the depth of a code word in tree T. Define the cost of a tree as

$$B(T) = \sum_{c \in C} f(c) \cdot d_T(c).$$

(cost = number bits of the encoded file)

Properties of the Code Trees

- An optimal coding of a file is alway represented by a complete binary tree: every inner node has two children.
- Let C be the set of all code words, f(c) the frequency of a codeword c and $d_T(c)$ the depth of a code word in tree T. Define the cost of a tree as

$$B(T) = \sum_{c \in C} f(c) \cdot d_T(c).$$

(cost = number bits of the encoded file)

In the following a code tree is called optimal when it minimizes the costs.

Probabilitiy Distributions

The sum to be minimized $\begin{array}{c} 1\\ \sum_{c \in C} f(c) \cdot d_T(c) & \frac{1}{2} & \frac{1}{2}\\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & \frac{1}{4} & \frac{1}{4} & \frac{1}{4} \\ 1 & \frac{1}{8} & \frac{1}{8} \end{array}$

 $g_T(\cdot)$ can be understood as discrete probability distribution because it holds that $\sum_c g_T(c) = 1$. That is a property of a complete binary tree because each inner node has two child nodes.

Probabilitiy Distributions

For two discrete proability distributions f and g over C the **Gibbs** inequality holds

$$\underbrace{-\sum_{c \in C} f(c) \log f(c)}_{\text{Entropy of } f} \leq -\sum_{c \in C} f(x) \log g(c)$$

with equality if and only if f(c) = g(c) for each $c \in C$.

For two discrete proability distributions f and g over C the **Gibbs** inequality holds

$$\underbrace{-\sum_{c \in C} f(c) \log f(c)}_{\text{Entropy of } f} \leq -\sum_{c \in C} f(x) \log g(c)$$

with equality if and only if f(c) = g(c) for each $c \in C$.

Consequence if $f(c) \in \{2^{-k}, k \in \mathbb{N}\}$ for all $c \in C$, then the optimal code tree can be formed easily with $d_T(c) = -\log_2 f(c)$.

Approximative algorithm of Shannon and Fano

- 1. Sort the keys by frequency, wlog $p_1 \leq p_2 \leq \ldots \leq p_n$
- 2. Partition the keys into two sets of almost equal weight, i.e. into sets $A = \{1, \ldots, k\}$ and $B = \{k + 1, \ldots, n\}$ such that $\sum_{i \in A} p_i \approx \sum_{i \in B} p_i$. Recursion until all sets contain a single element.

Running Time:

Approximative algorithm of Shannon and Fano

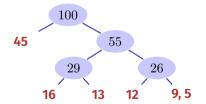
- 1. Sort the keys by frequency, wlog $p_1 \leq p_2 \leq \ldots \leq p_n$
- 2. Partition the keys into two sets of almost equal weight, i.e. into sets $A = \{1, \ldots, k\}$ and $B = \{k + 1, \ldots, n\}$ such that $\sum_{i \in A} p_i \approx \sum_{i \in B} p_i$. Recursion until all sets contain a single element.

Running Time: $\Theta(n \log n)$

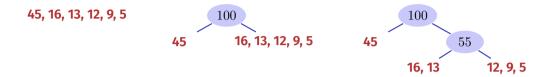
45, 16, 13, 12, 9, 5

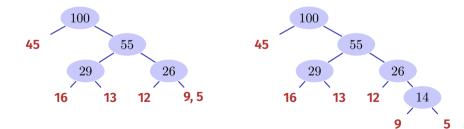
45, 16, 13, 12, 9, 5

100 45 16, 13, 12, 9, 5



Shannon Fano Coding





667

Problem

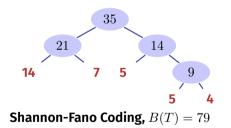
The approximate algorithm of Shannon and Fano does not always provide the optimal result

Example $\{14, 7, 5, 5, 4\}$ with lower bound (entropy) $B(T) \ge 75.35$

Problem

The approximate algorithm of Shannon and Fano does not always provide the optimal result

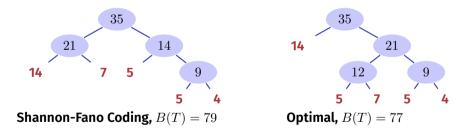
Example $\{14, 7, 5, 5, 4\}$ with lower bound (entropy) $B(T) \ge 75.35$



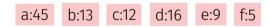
Problem

The approximate algorithm of Shannon and Fano does not always provide the optimal result

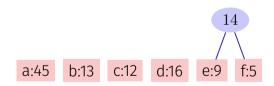
Example $\{14, 7, 5, 5, 4\}$ with lower bound (entropy) $B(T) \ge 75.35$



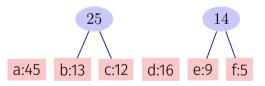
Start with the set *C* of code words



- Start with the set *C* of code words
- Replace iteriatively the two nodes with smallest frequency by a new parent node.



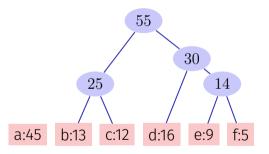
- Start with the set *C* of code words
- Replace iteriatively the two nodes with smallest frequency by a new parent node.



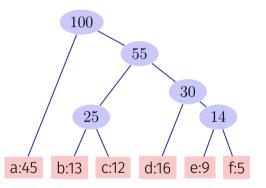
- Start with the set *C* of code words
- Replace iteriatively the two nodes with smallest frequency by a new parent node.



- Start with the set *C* of code words
- Replace iteriatively the two nodes with smallest frequency by a new parent node.



- Start with the set *C* of code words
- Replace iteriatively the two nodes with smallest frequency by a new parent node.



Algorithm Huffman(*C*)

```
Input:
         code words c \in C
Output: Root of an optimal code tree
n \leftarrow |C|
Q \leftarrow C
for i = 1 to n - 1 do
    allocate a new node z
    z.left \leftarrow ExtractMin(Q)
    z.right \leftarrow ExtractMin(Q)
    z.freq \leftarrow z.left.freq + z.right.freq
    lnsert(Q, z)
```

return ExtractMin(Q)

// extract word with minimal frequency.

Use a heap: build Heap in $\mathcal{O}(n)$. Extract-Min in $O(\log n)$ for n Elements. Yields a runtime of $O(n \log n)$.

Theorem 20

Let x, y be two symbols with smallest frequencies in C and let T'(C') be an optimal code tree to the alphabet $C' = C - \{x, y\} + \{z\}$ with a new symbol z with f(z) = f(x) + f(y). Then the tree T(C) that is constructed from T'(C') by replacing the node z by an inner node with children x and y is an optimal code tree for the alphabet C.

Proof

It holds that

 $\begin{aligned} f(x) \cdot d_T(x) + f(y) \cdot d_T(y) &= (f(x) + f(y)) \cdot (d_{T'}(z) + 1) = f(z) \cdot d_{T'}(x) + f(x) + f(y). \\ \text{Thus } B(T') &= B(T) - f(x) - f(y). \end{aligned}$

Assumption: T is not optimal. Then there is an optimal tree T'' with B(T'') < B(T). We assume that x and y are brothers in T''. Let T''' be the tree where the inner node with children x and y is replaced by z. Then it holds that B(T'') = B(T'') - f(x) - f(y) < B(T) - f(x) - f(y) = B(T'). Contradiction to the optimality of T'.

The assumption that x and y are brothers in T'' can be justified because a swap of elements with smallest frequency to the lowest level of the tree can at most decrease the value of B.

Recursive Problem-Solving Strategies

Enumeration Conquer Programming

Recursive Problem-Solving Strategies

Brute Force Enumeration	Backtracking	Divide and Conquer	Dynamic Programming	Greedy
Recursive Enu- merability	Constraint Satis- faction, Partial Validation	Optimal Substructure	Optimal Substructure, Overlapping Subproblems	Optimal Substructure, Greedy Choice Property

Recursive Problem-Solving Strategies

Brute Force Enumeration	Backtracking	Divide and Conquer	Dynamic Programming	Greedy
Recursive Enu- merability	Constraint Satis- faction, Partial Validation	Optimal Substructure	Optimal Substructure, Overlapping Subproblems	Optimal Substructure, Greedy Choice Property
DFS, BFS, all Per- mutations, Tree Traversal	n-Queen, Sudoku, m-Coloring, SAT- Solving, naive TSP	Binary Search, Mergesort, Quicksort, Hanoi Towers, FFT	Bellman Ford, Warshall, Rod- Cutting, LAS, Editing Dis- tance, Knapsack Problem DP	Dijkstra, Kruskal, Huffmann Coding