22. Dynamic Programming III

Optimal Search Tree [Ottman/Widmayer, Kap. 5.7]

22.1 Optimal Search Trees

Optimal binary Search Trees

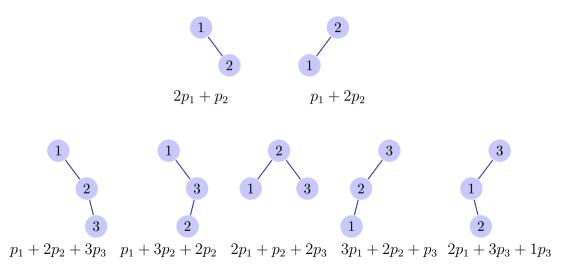
Given: n keys $k_1, k_2 \dots k_n$ (wlog $k_1 < k_2 < \dots < k_n$) with weights (search probabilities³⁴) p_1, p_2, \dots, p_n .

Wanted: optimal search tree T with key depths³⁵ $d(\cdot)$, that minimizes the expected search costs

$$C(T) = \sum_{i=1}^{n} (d(k_i) + 1) \cdot p_i$$

³⁴It is possible to model unsuccesful search additionally, omitted for brevity here $^{35}d(k)$: Length of the path from the root to the node k

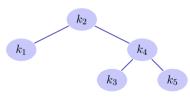
Examples



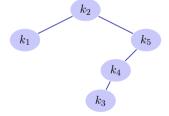
Example

Expected Frequencies

i	1	2	3	4	5
p_i	0.25	0.10	0.05	0.20	0.40

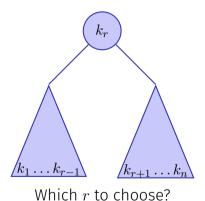


Search tree with expected costs 2.35



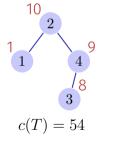
Search tree with expected costs 2.2

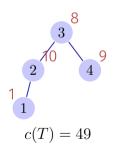
Sub-trees for Searching



Greedy?

Scenario $p_1 = 1, p_2 = 10, p_3 = 8, p_4 = 9$





Structure of a optimal binary search tree

- Consider all subtrees with roots k_r and optimal subtrees for keys k_i, \ldots, k_{r-1} and k_{r+1}, \ldots, k_j
- Subtrees with keys k_i, \ldots, k_{r-1} and k_{r+1}, \ldots, k_j must be optimal for the respective sub-problems.³⁶

 $E(i,j) = \text{Costs of optimal search tree with nodes } k_i, k_{i+1}, \dots, k_j$

³⁶The usual argument: if it was not optimal, it could be replaced by a better solution improving the overal solution.

Rekursion

With

$$p(i,j) := p_i + p_{i+1} + \dots + p_j \qquad i \le j$$

it holds that

$$E(i,j) = \begin{cases} 0 & \text{if } i>j \\ p(i) & \text{if } i=j \\ p(i,j) + \min\{E(i,k-1) + E(k+1,j), i \leq k \leq j\} & \text{otherwise}. \end{cases}$$

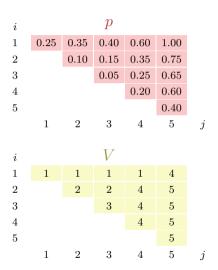
DP

- 0. E(1, n): Costs of optimal search tree with nodes k_1, \ldots, k_n with search frequencies p_1, \ldots, p_n
- 1. $E(i,j), 1 \le i \le j \le n$ # sub-problems $\Theta(n^2)$
- 2. Enumerate roots of subtree of k_i, \ldots, k_j , # possibilities: j i + 1
- 3. Dependencies E(i,j) depend on E(i,k), E(k,j) i < k < j. Computation of the off-diagonals of E, starting with the diagonal of E
- 4. Solution is in E(1, n), Reconstruction: store the arg-mins of the recursion in a separate table V.
- 5. Running time $\Theta(n^3)$. Memory $\Theta(n^2)$.

Example

			3		
p_i	0.25	0.10	0.05	0.20	0.40

i	E						
1	0	0.25	0.45	0.60	1.15	2.00	
2		0	0.10	0.20	0.55	1.30	
3			0	0.05	0.30	0.95	
4				0	0.20	0.80	
5					0	0.40	
6						0	
	0	1	2	3	4	5	Ĵ



23. Greedy Algorithms

Fractional Knapsack Problem, Huffman Coding [Cormen et al, Kap. 16.1, 16.3]

Greedy Choice

A problem with a recursive solution can be solved with a **greedy algorithm** if it has the following properties:

- The problem has **optimal substructure**: the solution of a problem can be constructed with a combination of solutions of sub-problems.
- The problem has the **greedy choice property**: The solution to a problem can be constructed, by using a local criterion that is not depending on the solution of the sub-problems.

Examples: fractional knapsack, Huffman-Coding (below) Counter-Example: knapsack problem, Optimal Binary Search Tree

Huffman-Codes

Goal: memory-efficient saving of a sequence of characters using a binary code with code words..

Example

File consisting of 100.000 characters from the alphabet $\{a, \ldots, f\}$.

	a	b	С	d	е	f
Frequency (Thousands)	45	13	12	16	9	5
Code word with fix length	000	001	010	011	100	101
Code word variable length	0	101	100	111	1101	1100

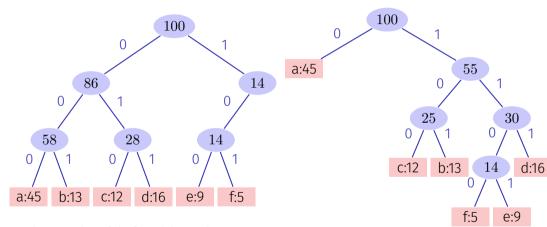
File size (code with fix length): 300.000 bits.

File size (code with variable length): 224.000 bits.

Huffman-Codes

- Consider prefix-codes: no code word can start with a different codeword.
- Prefix codes can, compared with other codes, achieve the optimal **data compression** (without proof here).
- Encoding: concatenation of the code words without stop character (difference to morsing). affe $\rightarrow 0 \cdot 1100 \cdot 1100 \cdot 1101 \rightarrow 0110011001101$
- Decoding simple because prefixcode $0110011001101 \rightarrow 0 \cdot 1100 \cdot 1100 \cdot 1101 \rightarrow affe$

Code trees



Code words with fixed length

Code words with variable length

Properties of the Code Trees

- An optimal coding of a file is alway represented by a complete binary tree: every inner node has two children.
- Let C be the set of all code words, f(c) the frequency of a codeword c and $d_T(c)$ the depth of a code word in tree T. Define the cost of a tree as

$$B(T) = \sum_{c \in C} f(c) \cdot d_T(c).$$

(cost = number bits of the encoded file)

In the following a code tree is called optimal when it minimizes the costs.

Probability Distributions

The sum to be minimized

minimized
$$\sum_{c \in C} f(c) \cdot d_T(c)$$

$$\frac{1}{2} \quad \frac{1}{2}$$
 as
$$\frac{1}{4} \cdot \frac{1}{4} \cdot \frac{1}{4} \cdot \frac{1}{4}$$

$$-\sum_{c \in C} f(c) \cdot \log_2 g_T(c), \text{ where } g_T(\cdot) := 2^{-d_T(\cdot)}.$$

$$\frac{1}{8} \cdot \frac{1}{8}$$

can be written as

 $g_T(\cdot)$ can be understood as discrete probability distribution because it holds that $\sum_c g_T(c) = 1$. That is a property of a complete binary tree because each inner node has two child nodes.

Probability Distributions

For two discrete proability distributions f and g over C the **Gibbs** inequality holds

$$\underbrace{-\sum_{c \in C} f(c) \log f(c)}_{\text{Entropy of } f} \leq -\sum_{c \in C} f(x) \log g(c)$$

with equality if and only if f(c) = g(c) for each $c \in C$.

Consequence if $f(c) \in \{2^{-k}, k \in \mathbb{N}\}$ for all $c \in C$, then the optimal code tree can be formed easily with $d_T(c) = -\log_2 f(c)$.

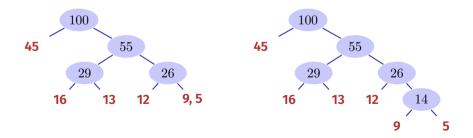
Shannon Fano Coding

Approximative algorithm of Shannon and Fano

- 1. Sort the keys by frequency, wlog $p_1 \leq p_2 \leq ... \leq p_n$
- 2. Partition the keys into two sets of almost equal weight, i.e. into sets $A = \{1, \ldots, k\}$ and $B = \{k+1, \ldots, n\}$ such that $\sum_{i \in A} p_i \approx \sum_{i \in B} p_i$. Recursion until all sets contain a single element.

Running Time: $\Theta(n \log n)$

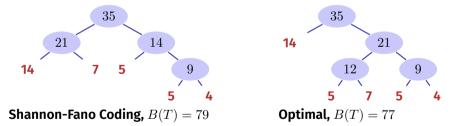
Shannon Fano Coding



Problem

The approximate algorithm of Shannon and Fano does not always provide the optimal result

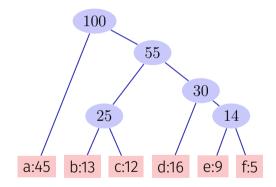
Example $\{14, 7, 5, 5, 4\}$ with lower bound (entropy) $B(T) \ge 75.35$



Huffman's Idea

Tree construction bottom up

- Start with the set *C* of code words
- Replace iteriatively the two nodes with smallest frequency by a new parent node.



Algorithm Huffman(C)

return ExtractMin(Q)

```
Input:
          code words c \in C
Output: Root of an optimal code tree
n \leftarrow |C|
Q \leftarrow C
for i=1 to n-1 do
     allocate a new node z
    z.left \leftarrow ExtractMin(Q)
                                                     // extract word with minimal frequency.
    z.right \leftarrow \mathsf{ExtractMin}(Q)
    z.\mathsf{freq} \leftarrow z.\mathsf{left.freq} + z.\mathsf{right.freq}
     Insert(Q, z)
```

Analyse

Use a heap: build Heap in $\mathcal{O}(n)$. Extract-Min in $O(\log n)$ for n Elements. Yields a runtime of $O(n \log n)$.

The greedy approach is correct

Theorem 20

Let x, y be two symbols with smallest frequencies in C and let T'(C') be an optimal code tree to the alphabet $C' = C - \{x,y\} + \{z\}$ with a new symbol z with f(z) = f(x) + f(y). Then the tree T(C) that is constructed from T'(C') by replacing the node z by an inner node with children x and y is an optimal code tree for the alphabet C.

Proof

It holds that

$$f(x) \cdot d_T(x) + f(y) \cdot d_T(y) = (f(x) + f(y)) \cdot (d_{T'}(z) + 1) = f(z) \cdot d_{T'}(x) + f(x) + f(y).$$

Thus $B(T') = B(T) - f(x) - f(y).$

Assumption: T is not optimal. Then there is an optimal tree T'' with B(T'') < B(T). We assume that x and y are brothers in T''. Let T''' be the tree where the inner node with children x and y is replaced by z. Then it holds that B(T''') = B(T'') - f(x) - f(y) < B(T) - f(x) - f(y) = B(T'). Contradiction to the optimality of T'.

The assumption that x and y are brothers in T'' can be justified because a swap of elements with smallest frequency to the lowest level of the tree can at most decrease the value of B.

Recursive Problem-Solving Strategies

Brute Force Enumeration	Backtracking	Divide and Conquer	Dynamic Programming	Greedy	
Recursive Enu- merability	Constraint Satis- faction, Partial Validation	Optimal Substructure	Optimal Substructure, Overlapping Subproblems	Optimal Substructure, Greedy Choice Property	
DFS, BFS, all Permutations, Tree Traversal	n-Queen, Sudoku, m-Coloring, SAT- Solving, naive TSP	Binary Search, Mergesort, Quicksort, Hanoi Towers, FFT	Bellman Ford, Warshall, Rod- Cutting, LAS, Editing Dis- tance, Knapsack Problem DP	Dijkstra, Kruskal, Huffmann Coding	