22. Dynamic Programming Il

Optimal Search Tree [Ottman/Widmayer, Kap. 5.7]

647

221 Optimal Search Trees

648

Optimal binary Search Trees

Given: n keys ki, k... k, (wlog k; < ky < ... < k,) with weights (search
probabilities®) pi, pa, ..., pn.

Wanted: optimal search tree T with key depths® d(-), that minimizes the
expected search costs

34|t is possible to model unsuccesful search additionally, omitted for brevity here
3d(k): Length of the path from the root to the node k

649

Examples

1 2
N\ /
2 1
2p1 + p2 p1+ 2p2
1 1 2 3 3
N\ N\ / N\ / /

2 3 1 3 2 1

\ / / \

3 2 1 2

D1+ 2p2 +3p3 p1+3p2+2p2 2p1 +pa+2ps 3p1 + 2p2 +ps 2p1 + 3ps + 1ps

650

Example

Expected Frequencies

il v 2 3 4 5

p@"O.ZS 010 0.05 0.20 040

ko
/ \
k1 ka

/N
ks ks

Search tree with expected costs
2.35

Search tree with expected costs
2.2

651

Sub-trees for Searching

Which r to choose?

652

Greedy?

Scenario p; =1,py = 10,p3 =8, py = 9

10
2
1./ N\ 9
1 4
/g
3

653

Structure of a optimal binary search tree

m Consider all subtrees with roots &, and optimal subtrees for keys
kiy... ke—y and kyiq, ...k

m Subtrees with keys k;, ..., k._y and k.41, ..., k; must be optimal for the
respective sub-problems.3®

E(1,7) = Costs of optimal search tree with nodes k;, ki1, ..., k;

3The usual argument: if it was not optimal, it could be replaced by a better solution
improving the overal solution.

654

Rekursion

With

p(t,7) =pi +pisa+ - +p; 1<

it holds that

0 ifi>j
E(i, j) = 4 p(i) ifi=j
p(i,7) + min{E(i,k — 1)+ E(k+1,5),i <k < j} otherwise.

655

DP

0. E(1,n): Costs of optimal search tree with nodes &, ..., k, with search
frequencies py, ..., pn

1. BE(1,7),1<i<j<n # sub-problems ©(n?)

2. Enumerate roots of subtree of ;,.. ., k;, # possibilities: j —i+1

3. Dependencies E(i,j) depend on E(i, k), E(k,j) i < k < j. Computation
of the off-diagonals of E, starting with the diagonal of E

4. Solution is in E(1,n), Reconstruction: store the arg-mins of the
recursion in a separate table V.

5. Running time ©(n?). Memory ©(n?).

656

Example

il v 2 3 4 5
pi | 025 010 0.05 020 040
i E
1 0 0.25 0.45 0.60 1.15 2.00
2 0 0.10 0.20 0.55 1.30
3 0 0.05 0.30 0.95
4 0 0.20 0.80
5 0 0.40
6 0
0 1 2 3 4 5

T W N =S

T W N =S

P
0.25 0.35 0.40
0.10 0.15
0.05

1 2 3
v

1 1 1

2 2

3

1 2 3

0.60
0.35
0.25
0.20

QUK SO N

1.00
0.75
0.65
0.60
0.40

or ot Ot Ot Ut s

657

23. Greedy Algorithms

Fractional Knapsack Problem, Huffman Coding [Cormen et al, Kap. 161, 16.3]

658

Greedy Choice

A problem with a recursive solution can be solved with a greedy algorithm
if it has the following properties:

m The problem has optimal substructure: the solution of a problem can
be constructed with a combination of solutions of sub-problems.

m The problem has the greedy choice property: The solution to a problem
can be constructed, by using a local criterion that is not depending on
the solution of the sub-problems.

Examples: fractional knapsack, Huffman-Coding (below)
Counter-Example: knapsack problem, Optimal Binary Search Tree

659

Huffman-Codes

Goal: memory-efficient saving of a sequence of characters using a binary
code with code words..

Example

File consisting of 100.000 characters from the alphabet {a, ..., f}.

a b C d e f
Frequency (Thousands) 45 13 12 16 9 5
Code word with fix length 000 001 010 011 100 101
Code word variable length 0 101 100 111 1101 1100

File size (code with fix length): 300.000 bits.
File size (code with variable length): 224.000 bits.

660

Huffman-Codes

m Consider prefix-codes: no code word can start with a different codeword.

m Prefix codes can, compared with other codes, achieve the optimal data
compression (without proof here).

m Encoding: concatenation of the code words without stop character

(difference to morsing).
affe — 0-1100-1100 - 1101 — 0110011001101

m Decoding simple because prefixcode
0110011001101 — 0-1100 - 1100 - 1101 — affe

661

Code trees

/\

/\
TAANY

a4s b3 c¢12 die e9

Code words with fixed length

/
\1

f:5

/\
/\

0 1 O/ 1
C:12/ \b:13 . 14 1\d:16
f:5/ \e:9
Code words with variable length

662

Properties of the Code Trees

m An optimal coding of a file is alway represented by a complete binary
tree: every inner node has two children.

m Let C be the set of all code words, f(c) the frequency of a codeword ¢
and dr(c) the depth of a code word in tree T Define the cost of a tree as

B(T)=_ f(c) - dr(c).

ceC

(cost = number bits of the encoded file)
In the following a code tree is called optimal when it minimizes the costs.

663

Probabilitiy Distributions

The sum to be minimized /\
> fle) - dr(e) 11
ceC 2 2
I\ I\
can be written as 11 11
4 4 4 4
I\
— " f(c) - log, gr(c), where gr(-) := 27970, 11
ceC 8 8

gr(+) can be understood as discrete probability distribution because it
holds that 3°. gr(c) = 1. That is a property of a complete binary tree
because each inner node has two child nodes.

664

Probabilitiy Distributions

For two discrete proability distributions f and g over C the Gibbs
inequality holds

=Y f(e)log f(e) < = f(x)logg(c)

ceC ceC

Entropy of f

with equality if and only if f(¢) = g(c) for each c € C.

Consequence if f(c) € {27% k € N} for all ¢ € C, then the optimal code
tree can be formed easily with dr(c) = —log, f(c).

665

Shannon Fano Coding

Approximative algorithm of Shannon and Fano

1. Sort the keys by frequency, wlog p; < py < ... < p,

2. Partition the keys into two sets of almost equal weight, i.e. into sets
A={1,...,k}and B={k+1,...,n} suchthat >,capi = Xicnpi-
Recursion until all sets contain a single element.

Running Time: ©(nlogn)

666

Shannon Fano Coding

45,16,13,12,9,5

N
45 16,13, 12,9, 5 45
100 100
~ N - ~
45 55 45 55
PN PN
29 26 29
/ AN / AN / AN
16 13 12 9,5 16 13 12

667

Problem

The approximate algorithm of Shannon and Fano does not always provide

the optimal result
Example {14,7,5,5,4} with lower bound (entropy) B(T) > 75.35

35 35

- N - ~

21 14 14 21
7 N 7 N Ve

14 7 5 9 12
/N /N /N
5 4 5 7 5 4

Shannon-Fano Coding, B(T) = 79 Optimal, B(T) = 77

668

Huffman's Idea

Tree construction bottom up

m Start with the set C of code
words

m Replace iteriatively the two
nodes with smallest

frequency by a new parent
node.

a:45

100

N
55
/ K
30
5

ASAYA

b:13

c12 die e9 f5

669

Algorithm Huffman(C)

Input: code words c € C
Output: Root of an optimal code tree

n <« |C|
Q<+ C
fori=1ton—1do
allocate a new node z
z.left <— ExtractMin(Q)
z.right < ExtractMin(Q)
z.freq < z.left.freq + z.right.freq

Insert(Q, z)

return ExtractMin(Q)

// extract word with minimal frequency.

670

Analyse

Use a heap: build Heap in O(n). Extract-Min in O(logn) for n Elements.
Yields a runtime of O(nlogn).

671

The greedy approach is correct

Theorem 20

Let z, y be two symbols with smallest frequencies in C' and let T'(C")
be an optimal code tree to the alphabet C' = C — {z,y} + {z} with a
new symbol z with f(z) = f(x) + f(y). Then the tree T(C) that is
constructed from T'(C") by replacing the node z by an inner node with
children x and y is an optimal code tree for the alphabet C.

672

Proof

It holds that

f(@)-dp(x)+ f(y)-dr(y) = (f(2)+f(y) (dr(2)+1) = f(2)-dr(x)+ f(x)+ [(y).
Thus B(T") = B(T') — f(z) = f(y)-

Assumption: T is not optimal. Then there is an optimal tree 7" with

B(T") < B(T). We assume that z and y are brothers in T”. Let T" be the
tree where the inner node with children z and y is replaced by z. Then it
holds that B(T") = B(T") — f(x) — f(y) < B(T) — f(x) — f(y) = B(T").
Contradiction to the optimality of 7".

The assumption that z and y are brothers in T” can be justified because a
swap of elements with smallest frequency to the lowest level of the tree
can at most decrease the value of B.

673

Recursive Problem-Solving Strategies

Brute Force
Enumeration

Recursive Enu-
merability

DFS, BFS, all Per-
mutations, Tree
Traversal

Backtracking

Constraint Satis-
faction, Partial
Validation

n-Queen,
Sudoku,
m-Coloring, SAT-
Solving, naive
TSP

Divide and
Conquer

Optimal
Substructure

Binary Search,
Mergesort,
Quicksort,
Hanoi Towers,
FFT

Dynamic
Programming
Optimal
Substructure,
Overlapping
Subproblems
Bellman Ford,
Warshall, Rod-
Cutting, LAS,
Editing Dis-

tance, Knapsack
Problem DP

Greedy

Optimal
Substructure,
Greedy Choice
Property

Dijkstra,
Kruskal,
Huffmann
Coding

674

	Dynamic Programming III
	Optimal Search Trees
	Optimal Binary Search Tree

	Greedy Algorithms
	Huffman-CodierungHufmann Coding

