
21. Dynamic Programming II

Subset sum problem, knapsack problem, greedy algorithm vs dynamic
programming [Ottman/Widmayer, Kap. 7.2, 7.3, 5.7, Cormen et al, Kap.
15,35.5]

624



Task

Partition the set of the “item” above into two set such that both sets have
the same value.

A solution:

625



Task

Partition the set of the “item” above into two set such that both sets have
the same value.
A solution:

625



Subset Sum Problem

Consider n ∈ N numbers a1, . . . , an ∈ N.
Goal: decide if a selection I ⊆ {1, . . . , n} exists such that∑

i∈I
ai =

∑
i∈{1,...,n}\I

ai.

626



Naive Algorithm

Check for each bit vector b = (b1, . . . , bn) ∈ {0, 1}n, if
n∑
i=1

biai
?=

n∑
i=1

(1− bi)ai

Worst case: n steps for each of the 2n bit vectors b. Number of steps:
O(n · 2n).

627



Naive Algorithm

Check for each bit vector b = (b1, . . . , bn) ∈ {0, 1}n, if
n∑
i=1

biai
?=

n∑
i=1

(1− bi)ai

Worst case: n steps for each of the 2n bit vectors b. Number of steps:
O(n · 2n).

627



Algorithm with Partition

Partition the input into two equally sized parts a1, . . . , an/2 and
an/2+1, . . . , an.

Iterate over all subsets of the two parts and compute partial sum
Sk1 , . . . , S

k
2n/2 (k = 1, 2).

Sort the partial sums: Sk1 ≤ Sk2 ≤ · · · ≤ Sk2n/2 .
Check if there are partial sums such that S1

i + S2
j = 1

2
∑n
i=1 ai =: h

Start with i = 1, j = 2n/2.
If S1

i + S2
j = h then �nished

If S1
i + S2

j > h then j ← j − 1
If S1

i + S2
j < h then i← i + 1

628



Algorithm with Partition

Partition the input into two equally sized parts a1, . . . , an/2 and
an/2+1, . . . , an.
Iterate over all subsets of the two parts and compute partial sum
Sk1 , . . . , S

k
2n/2 (k = 1, 2).

Sort the partial sums: Sk1 ≤ Sk2 ≤ · · · ≤ Sk2n/2 .
Check if there are partial sums such that S1

i + S2
j = 1

2
∑n
i=1 ai =: h

Start with i = 1, j = 2n/2.
If S1

i + S2
j = h then �nished

If S1
i + S2

j > h then j ← j − 1
If S1

i + S2
j < h then i← i + 1

628



Algorithm with Partition

Partition the input into two equally sized parts a1, . . . , an/2 and
an/2+1, . . . , an.
Iterate over all subsets of the two parts and compute partial sum
Sk1 , . . . , S

k
2n/2 (k = 1, 2).

Sort the partial sums: Sk1 ≤ Sk2 ≤ · · · ≤ Sk2n/2 .

Check if there are partial sums such that S1
i + S2

j = 1
2
∑n
i=1 ai =: h

Start with i = 1, j = 2n/2.
If S1

i + S2
j = h then �nished

If S1
i + S2

j > h then j ← j − 1
If S1

i + S2
j < h then i← i + 1

628



Algorithm with Partition

Partition the input into two equally sized parts a1, . . . , an/2 and
an/2+1, . . . , an.
Iterate over all subsets of the two parts and compute partial sum
Sk1 , . . . , S

k
2n/2 (k = 1, 2).

Sort the partial sums: Sk1 ≤ Sk2 ≤ · · · ≤ Sk2n/2 .
Check if there are partial sums such that S1

i + S2
j = 1

2
∑n
i=1 ai =: h

Start with i = 1, j = 2n/2.
If S1

i + S2
j = h then �nished

If S1
i + S2

j > h then j ← j − 1
If S1

i + S2
j < h then i← i + 1

628



Algorithm with Partition

Partition the input into two equally sized parts a1, . . . , an/2 and
an/2+1, . . . , an.
Iterate over all subsets of the two parts and compute partial sum
Sk1 , . . . , S

k
2n/2 (k = 1, 2).

Sort the partial sums: Sk1 ≤ Sk2 ≤ · · · ≤ Sk2n/2 .
Check if there are partial sums such that S1

i + S2
j = 1

2
∑n
i=1 ai =: h

Start with i = 1, j = 2n/2.

If S1
i + S2

j = h then �nished
If S1

i + S2
j > h then j ← j − 1

If S1
i + S2

j < h then i← i + 1

628



Algorithm with Partition

Partition the input into two equally sized parts a1, . . . , an/2 and
an/2+1, . . . , an.
Iterate over all subsets of the two parts and compute partial sum
Sk1 , . . . , S

k
2n/2 (k = 1, 2).

Sort the partial sums: Sk1 ≤ Sk2 ≤ · · · ≤ Sk2n/2 .
Check if there are partial sums such that S1

i + S2
j = 1

2
∑n
i=1 ai =: h

Start with i = 1, j = 2n/2.
If S1

i + S2
j = h then �nished

If S1
i + S2

j > h then j ← j − 1
If S1

i + S2
j < h then i← i + 1

628



Algorithm with Partition

Partition the input into two equally sized parts a1, . . . , an/2 and
an/2+1, . . . , an.
Iterate over all subsets of the two parts and compute partial sum
Sk1 , . . . , S

k
2n/2 (k = 1, 2).

Sort the partial sums: Sk1 ≤ Sk2 ≤ · · · ≤ Sk2n/2 .
Check if there are partial sums such that S1

i + S2
j = 1

2
∑n
i=1 ai =: h

Start with i = 1, j = 2n/2.
If S1

i + S2
j = h then �nished

If S1
i + S2

j > h then j ← j − 1

If S1
i + S2

j < h then i← i + 1

628



Algorithm with Partition

Partition the input into two equally sized parts a1, . . . , an/2 and
an/2+1, . . . , an.
Iterate over all subsets of the two parts and compute partial sum
Sk1 , . . . , S

k
2n/2 (k = 1, 2).

Sort the partial sums: Sk1 ≤ Sk2 ≤ · · · ≤ Sk2n/2 .
Check if there are partial sums such that S1

i + S2
j = 1

2
∑n
i=1 ai =: h

Start with i = 1, j = 2n/2.
If S1

i + S2
j = h then �nished

If S1
i + S2

j > h then j ← j − 1
If S1

i + S2
j < h then i← i + 1

628



Example

Set {1, 6, 2, 3, 4} with value sum 16 has 32 subsets.

Partitioning into {1, 6} , {2, 3, 4} yields the following 12 subsets with value
sums:

{1, 6} {2, 3, 4}

{} {1} {6} {1, 6} {} {2} {3} {4} {2, 3} {2, 4} {3, 4} {2, 3, 4}

0 1 6 7 0 2 3 4 5 6 7 9

⇔ One possible solution: {1, 3, 4}

629



Example

Set {1, 6, 2, 3, 4} with value sum 16 has 32 subsets.
Partitioning into {1, 6} , {2, 3, 4} yields the following 12 subsets with value
sums:

{1, 6} {2, 3, 4}

{} {1} {6} {1, 6} {} {2} {3} {4} {2, 3} {2, 4} {3, 4} {2, 3, 4}

0 1 6 7 0 2 3 4 5 6 7 9

⇔ One possible solution: {1, 3, 4}

629



Example

Set {1, 6, 2, 3, 4} with value sum 16 has 32 subsets.
Partitioning into {1, 6} , {2, 3, 4} yields the following 12 subsets with value
sums:

{1, 6} {2, 3, 4}

{} {1} {6} {1, 6} {} {2} {3} {4} {2, 3} {2, 4} {3, 4} {2, 3, 4}

0 1 6 7 0 2 3 4 5 6 7 9

⇔ One possible solution: {1, 3, 4}

629



Example

Set {1, 6, 2, 3, 4} with value sum 16 has 32 subsets.
Partitioning into {1, 6} , {2, 3, 4} yields the following 12 subsets with value
sums:

{1, 6} {2, 3, 4}

{} {1} {6} {1, 6} {} {2} {3} {4} {2, 3} {2, 4} {3, 4} {2, 3, 4}

0 1 6 7 0 2 3 4 5 6 7 9

⇔ One possible solution: {1, 3, 4}

629



Example

Set {1, 6, 2, 3, 4} with value sum 16 has 32 subsets.
Partitioning into {1, 6} , {2, 3, 4} yields the following 12 subsets with value
sums:

{1, 6} {2, 3, 4}

{} {1} {6} {1, 6} {} {2} {3} {4} {2, 3} {2, 4} {3, 4} {2, 3, 4}

0 1 6 7 0 2 3 4 5 6 7 9

⇔ One possible solution: {1, 3, 4}

629



Example

Set {1, 6, 2, 3, 4} with value sum 16 has 32 subsets.
Partitioning into {1, 6} , {2, 3, 4} yields the following 12 subsets with value
sums:

{1, 6} {2, 3, 4}

{} {1} {6} {1, 6} {} {2} {3} {4} {2, 3} {2, 4} {3, 4} {2, 3, 4}

0 1 6 7 0 2 3 4 5 6 7 9

⇔ One possible solution: {1, 3, 4}

629



Example

Set {1, 6, 2, 3, 4} with value sum 16 has 32 subsets.
Partitioning into {1, 6} , {2, 3, 4} yields the following 12 subsets with value
sums:

{1, 6} {2, 3, 4}

{} {1} {6} {1, 6} {} {2} {3} {4} {2, 3} {2, 4} {3, 4} {2, 3, 4}

0 1 6 7 0 2 3 4 5 6 7 9

⇔ One possible solution: {1, 3, 4}

629



Analysis

Generate partial sums for each part: O(2n/2 · n).
Each sorting: O(2n/2 log(2n/2)) = O(n2n/2).
Merge: O(2n/2)

Overal running time

O
(
n · 2n/2

)
= O

(
n
(√

2
)n)

.

Substantial improvement over the naive method –
but still exponential!

630



Dynamic programming

Task: let z = 1
2
∑n
i=1 ai. Find a selection I ⊂ {1, . . . , n}, such that

∑
i∈I ai = z.

DP-table: [0, . . . , n]× [0, . . . , z]-table T with boolean entries. T [k, s]
speci�es if there is a selection Ik ⊂ {1, . . . , k} such that

∑
i∈Ik

ai = s.
Initialization: T [0, 0] = true. T [0, s] = false for s > 1.
Computation:

T [k, s]←

T [k − 1, s] if s < ak

T [k − 1, s] ∨ T [k − 1, s− ak] if s ≥ ak

for increasing k and then within k increasing s.

631



Dynamic programming

Task: let z = 1
2
∑n
i=1 ai. Find a selection I ⊂ {1, . . . , n}, such that

∑
i∈I ai = z.

DP-table: [0, . . . , n]× [0, . . . , z]-table T with boolean entries. T [k, s]
speci�es if there is a selection Ik ⊂ {1, . . . , k} such that

∑
i∈Ik

ai = s.

Initialization: T [0, 0] = true. T [0, s] = false for s > 1.
Computation:

T [k, s]←

T [k − 1, s] if s < ak

T [k − 1, s] ∨ T [k − 1, s− ak] if s ≥ ak

for increasing k and then within k increasing s.

631



Dynamic programming

Task: let z = 1
2
∑n
i=1 ai. Find a selection I ⊂ {1, . . . , n}, such that

∑
i∈I ai = z.

DP-table: [0, . . . , n]× [0, . . . , z]-table T with boolean entries. T [k, s]
speci�es if there is a selection Ik ⊂ {1, . . . , k} such that

∑
i∈Ik

ai = s.
Initialization: T [0, 0] = true. T [0, s] = false for s > 1.

Computation:

T [k, s]←

T [k − 1, s] if s < ak

T [k − 1, s] ∨ T [k − 1, s− ak] if s ≥ ak

for increasing k and then within k increasing s.

631



Dynamic programming

Task: let z = 1
2
∑n
i=1 ai. Find a selection I ⊂ {1, . . . , n}, such that

∑
i∈I ai = z.

DP-table: [0, . . . , n]× [0, . . . , z]-table T with boolean entries. T [k, s]
speci�es if there is a selection Ik ⊂ {1, . . . , k} such that

∑
i∈Ik

ai = s.
Initialization: T [0, 0] = true. T [0, s] = false for s > 1.
Computation:

T [k, s]←

T [k − 1, s] if s < ak

T [k − 1, s] ∨ T [k − 1, s− ak] if s ≥ ak

for increasing k and then within k increasing s.

631



Example

{1, 6, 2, 5}
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

0 • · · · · · · · · · · · · · ·
1 • • · · · · · · · · · · · · ·
6 • • · · · · • • · · · · · · ·
2 • • • • · · • • • • · · · · ·
5 • • • • · • • • • • · • • • •

summe s

k

Determination of the solution: if T [k, s] = T [k − 1, s] then ak unused and continue with
T [k − 1, s] , otherwise ak used and continue with T [k − 1, s− ak] .

632



Example

{1, 6, 2, 5}
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

0 • · · · · · · · · · · · · · ·
1 • • · · · · · · · · · · · · ·
6 • • · · · · • • · · · · · · ·
2 • • • • · · • • • • · · · · ·
5 • • • • · • • • • • · • • • •

summe s

k

Determination of the solution: if T [k, s] = T [k − 1, s] then ak unused and continue with
T [k − 1, s] , otherwise ak used and continue with T [k − 1, s− ak] .

632



Example

{1, 6, 2, 5}
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

0 • · · · · · · · · · · · · · ·
1 • • · · · · · · · · · · · · ·
6 • • · · · · • • · · · · · · ·
2 • • • • · · • • • • · · · · ·
5 • • • • · • • • • • · • • • •

summe s

k

Determination of the solution: if T [k, s] = T [k − 1, s] then ak unused and continue with
T [k − 1, s] , otherwise ak used and continue with T [k − 1, s− ak] .

632



Example

{1, 6, 2, 5}
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

0 • · · · · · · · · · · · · · ·
1 • • · · · · · · · · · · · · ·
6 • • · · · · • • · · · · · · ·
2 • • • • · · • • • • · · · · ·
5 • • • • · • • • • • · • • • •

summe s

k

Determination of the solution: if T [k, s] = T [k − 1, s] then ak unused and continue with
T [k − 1, s] , otherwise ak used and continue with T [k − 1, s− ak] .

632



Example

{1, 6, 2, 5}
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

0 • · · · · · · · · · · · · · ·
1 • • · · · · · · · · · · · · ·
6 • • · · · · • • · · · · · · ·
2 • • • • · · • • • • · · · · ·
5 • • • • · • • • • • · • • • •

summe s

k

Determination of the solution: if T [k, s] = T [k − 1, s] then ak unused and continue with
T [k − 1, s] , otherwise ak used and continue with T [k − 1, s− ak] .

632



Example

{1, 6, 2, 5}
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

0 • · · · · · · · · · · · · · ·
1 • • · · · · · · · · · · · · ·
6 • • · · · · • • · · · · · · ·
2 • • • • · · • • • • · · · · ·
5 • • • • · • • • • • · • • • •

summe s

k

Determination of the solution: if T [k, s] = T [k − 1, s] then ak unused and continue with
T [k − 1, s] , otherwise ak used and continue with T [k − 1, s− ak] .

632



Example

{1, 6, 2, 5}
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

0 • · · · · · · · · · · · · · ·
1 • • · · · · · · · · · · · · ·
6 • • · · · · • • · · · · · · ·
2 • • • • · · • • • • · · · · ·
5 • • • • · • • • • • · • • • •

summe s

k

Determination of the solution: if T [k, s] = T [k − 1, s] then ak unused and continue with
T [k − 1, s] , otherwise ak used and continue with T [k − 1, s− ak] .

632



That is mysterious

The algorithm requires a number of O(n · z) fundamental operations.

What is going on now? Does the algorithm suddenly have polynomial
running time?

633



That is mysterious

The algorithm requires a number of O(n · z) fundamental operations.
What is going on now? Does the algorithm suddenly have polynomial
running time?

633



That is mysterious

The algorithm requires a number of O(n · z) fundamental operations.
What is going on now? Does the algorithm suddenly have polynomial
running time?

633



Explained

The algorithm does not necessarily provide a polynomial run time. z is an
number and not a quantity!

Input length of the algorithm ∼= number bits to reasonably represent the
data. With the number z this would be ζ = log z.
Consequently the algorithm requires O(n · 2ζ) fundamental operations and
has a run time exponential in ζ .
If, however, z is polynomial in n then the algorithm has polynomial run
time in n. This is called pseudo-polynomial.

634



Explained

The algorithm does not necessarily provide a polynomial run time. z is an
number and not a quantity!
Input length of the algorithm ∼= number bits to reasonably represent the
data. With the number z this would be ζ = log z.

Consequently the algorithm requires O(n · 2ζ) fundamental operations and
has a run time exponential in ζ .
If, however, z is polynomial in n then the algorithm has polynomial run
time in n. This is called pseudo-polynomial.

634



Explained

The algorithm does not necessarily provide a polynomial run time. z is an
number and not a quantity!
Input length of the algorithm ∼= number bits to reasonably represent the
data. With the number z this would be ζ = log z.
Consequently the algorithm requires O(n · 2ζ) fundamental operations and
has a run time exponential in ζ .

If, however, z is polynomial in n then the algorithm has polynomial run
time in n. This is called pseudo-polynomial.

634



Explained

The algorithm does not necessarily provide a polynomial run time. z is an
number and not a quantity!
Input length of the algorithm ∼= number bits to reasonably represent the
data. With the number z this would be ζ = log z.
Consequently the algorithm requires O(n · 2ζ) fundamental operations and
has a run time exponential in ζ .
If, however, z is polynomial in n then the algorithm has polynomial run
time in n. This is called pseudo-polynomial.

634



NP

It is known that the subset-sum algorithm belongs to the class of
NP-complete problems (and is thus NP-hard).

P: Set of all problems that can be solved in polynomial time.
NP: Set of all problems that can be solved Nondeterministically in
Polynomial time.
Implications:
NP contains P.
Problems can be veri�ed in polynomial time.
Under the not (yet?) proven assumption32 that NP 6= P, there is no
algorithm with polynomial run time for the problem considered above.

32The most important unsolved question of theoretical computer science.
635



NP

It is known that the subset-sum algorithm belongs to the class of
NP-complete problems (and is thus NP-hard).
P: Set of all problems that can be solved in polynomial time.
NP: Set of all problems that can be solved Nondeterministically in
Polynomial time.

Implications:
NP contains P.
Problems can be veri�ed in polynomial time.
Under the not (yet?) proven assumption32 that NP 6= P, there is no
algorithm with polynomial run time for the problem considered above.

32The most important unsolved question of theoretical computer science.
635



NP

It is known that the subset-sum algorithm belongs to the class of
NP-complete problems (and is thus NP-hard).
P: Set of all problems that can be solved in polynomial time.
NP: Set of all problems that can be solved Nondeterministically in
Polynomial time.
Implications:
NP contains P.
Problems can be veri�ed in polynomial time.
Under the not (yet?) proven assumption32 that NP 6= P, there is no
algorithm with polynomial run time for the problem considered above.

32The most important unsolved question of theoretical computer science.
635



The knapsack problem

We pack our suitcase with ...

toothbrush

dumbell set

co�ee machine

uh oh – too heavy.

Toothbrush

Air balloon

Pocket knife

identity card

dumbell set

Uh oh – too heavy.

toothbrush

co�e machine

pocket knife

identity card

Uh oh – too heavy.

Aim to take as much as possible with us. But some things are more
valuable than others!

636



The knapsack problem

We pack our suitcase with ...

toothbrush

dumbell set

co�ee machine

uh oh – too heavy.

Toothbrush

Air balloon

Pocket knife

identity card

dumbell set

Uh oh – too heavy.

toothbrush

co�e machine

pocket knife

identity card

Uh oh – too heavy.

Aim to take as much as possible with us. But some things are more
valuable than others!

636



The knapsack problem

We pack our suitcase with ...

toothbrush

dumbell set

co�ee machine

uh oh – too heavy.

Toothbrush

Air balloon

Pocket knife

identity card

dumbell set

Uh oh – too heavy.

toothbrush

co�e machine

pocket knife

identity card

Uh oh – too heavy.

Aim to take as much as possible with us. But some things are more
valuable than others!

636



The knapsack problem

We pack our suitcase with ...

toothbrush

dumbell set

co�ee machine

uh oh – too heavy.

Toothbrush

Air balloon

Pocket knife

identity card

dumbell set

Uh oh – too heavy.

toothbrush

co�e machine

pocket knife

identity card

Uh oh – too heavy.

Aim to take as much as possible with us. But some things are more
valuable than others!

636



Knapsack problem

Given:
set of n ∈ N items {1, . . . , n}.
Each item i has value vi ∈ N and weight wi ∈ N.
Maximum weight W ∈ N.
Input is denoted as E = (vi, wi)i=1,...,n.

Wanted:
a selection I ⊆ {1, . . . , n} that maximises ∑i∈I vi under

∑
i∈I wi ≤ W .

637



Knapsack problem

Given:
set of n ∈ N items {1, . . . , n}.
Each item i has value vi ∈ N and weight wi ∈ N.
Maximum weight W ∈ N.
Input is denoted as E = (vi, wi)i=1,...,n.

Wanted:
a selection I ⊆ {1, . . . , n} that maximises ∑i∈I vi under

∑
i∈I wi ≤ W .

637



Greedy heuristics

Sort the items decreasingly by value per weight vi/wi: Permutation p with
vpi
/wpi

≥ vpi+1/wpi+1

Add items in this order (I ← I ∪ {pi}), if the maximum weight is not
exceeded.
That is fast: Θ(n log n) for sorting and Θ(n) for the selection. But is it good?

638



Greedy heuristics

Sort the items decreasingly by value per weight vi/wi: Permutation p with
vpi
/wpi

≥ vpi+1/wpi+1

Add items in this order (I ← I ∪ {pi}), if the maximum weight is not
exceeded.

That is fast: Θ(n log n) for sorting and Θ(n) for the selection. But is it good?

638



Greedy heuristics

Sort the items decreasingly by value per weight vi/wi: Permutation p with
vpi
/wpi

≥ vpi+1/wpi+1

Add items in this order (I ← I ∪ {pi}), if the maximum weight is not
exceeded.
That is fast: Θ(n log n) for sorting and Θ(n) for the selection. But is it good?

638



Counterexample

v1 = 1 w1 = 1 v1/w1 = 1

v2 = W − 1 w2 = W v2/w2 = W−1
W

Greed algorithm chooses {v1} with value 1.
Best selection: {v2} with value W − 1 and weight W .
Greedy heuristics can be arbitrarily bad.

639



Counterexample

v1 = 1 w1 = 1 v1/w1 = 1

v2 = W − 1 w2 = W v2/w2 = W−1
W

Greed algorithm chooses {v1} with value 1.
Best selection: {v2} with value W − 1 and weight W .
Greedy heuristics can be arbitrarily bad.

639



Dynamic Programming

Partition the maximum weight.

Three dimensional table m[i, w, v] (“doable”) of boolean values.
m[i, w, v] = true if and only if
A selection of the �rst i parts exists (0 ≤ i ≤ n)
with overal weight w (0 ≤ w ≤ W ) and
a value of at least v (0 ≤ v ≤ ∑n

i=1 vi) .

640



Dynamic Programming

Partition the maximum weight.
Three dimensional table m[i, w, v] (“doable”) of boolean values.

m[i, w, v] = true if and only if
A selection of the �rst i parts exists (0 ≤ i ≤ n)
with overal weight w (0 ≤ w ≤ W ) and
a value of at least v (0 ≤ v ≤ ∑n

i=1 vi) .

640



Dynamic Programming

Partition the maximum weight.
Three dimensional table m[i, w, v] (“doable”) of boolean values.
m[i, w, v] = true if and only if
A selection of the �rst i parts exists (0 ≤ i ≤ n)
with overal weight w (0 ≤ w ≤ W ) and
a value of at least v (0 ≤ v ≤ ∑n

i=1 vi) .

640



Computation of the DP table

Initially
m[i, w, 0]← true für alle i ≥ 0 und alle w ≥ 0.
m[0, w, v]← false für alle w ≥ 0 und alle v > 0.

Computation

m[i, w, v]←
{

m[i− 1, w, v] ∨m[i− 1, w − wi, v − vi] if w ≥ wi und v ≥ vi

m[i− 1, w, v] otherwise.

increasing in i and for each i increasing in w and for �xed i and w
increasing by v.
Solution: largest v, such that m[i, w, v] = true for some i and w.

641



Computation of the DP table

Initially
m[i, w, 0]← true für alle i ≥ 0 und alle w ≥ 0.
m[0, w, v]← false für alle w ≥ 0 und alle v > 0.

Computation

m[i, w, v]←
{

m[i− 1, w, v] ∨m[i− 1, w − wi, v − vi] if w ≥ wi und v ≥ vi

m[i− 1, w, v] otherwise.

increasing in i and for each i increasing in w and for �xed i and w
increasing by v.
Solution: largest v, such that m[i, w, v] = true for some i and w.

641



Observation

The de�nition of the problem obviously implies that
for m[i, w, v] = true it holds:
m[i′, w, v] = true ∀i′ ≥ i ,
m[i, w′, v] = true ∀w′ ≥ w ,
m[i, w, v′] = true ∀v′ ≤ v.
fpr m[i, w, v] = false it holds:
m[i′, w, v] = false ∀i′ ≤ i ,
m[i, w′, v] = false ∀w′ ≤ w ,
m[i, w, v′] = false ∀v′ ≥ v.

This strongly suggests that we do not need a 3d table!

642



2d DP table

Table entry t[i, w] contains, instead of boolean values, the largest v, that
can be achieved33 with
items 1, . . . , i (0 ≤ i ≤ n)
at maximum weight w (0 ≤ w ≤ W ).

33We could have followed a similar idea in order to reduce the size of the sparse table
for subset sum.

643



Computation

Initially
t[0, w]← 0 for all w ≥ 0.

We compute

t[i, w]←
{

t[i− 1, w] if w < wi

max{t[i− 1, w], t[i− 1, w − wi] + vi} otherwise.

increasing by i and for �xed i increasing by w.
Solution is located in t[n,w]

644



Example

E = {(2, 3), (4, 5), (1, 1)}
0 1 2 3 4 5 6 7

∅ 0 0 0 0 0 0 0 0

(2, 3) 0 0 3 3 3 3 3 3

(4, 5) 0 0 3 3 5 5 8 8

(1, 1) 0 1 3 4 5 6 8 9

w

i

Reading out the solution: if t[i, w] = t[i− 1, w] then item i unused and continue with
t[i− 1, w] otherwise used and continue with t[i− 1, s− wi] .

645



Example

E = {(2, 3), (4, 5), (1, 1)}
0 1 2 3 4 5 6 7

∅ 0 0 0 0 0 0 0 0

(2, 3) 0 0 3 3 3 3 3 3

(4, 5) 0 0 3 3 5 5 8 8

(1, 1) 0 1 3 4 5 6 8 9

w

i

Reading out the solution: if t[i, w] = t[i− 1, w] then item i unused and continue with
t[i− 1, w] otherwise used and continue with t[i− 1, s− wi] .

645



Example

E = {(2, 3), (4, 5), (1, 1)}
0 1 2 3 4 5 6 7

∅ 0 0 0 0 0 0 0 0

(2, 3) 0 0 3 3 3 3 3 3

(4, 5) 0 0 3 3 5 5 8 8

(1, 1) 0 1 3 4 5 6 8 9

w

i

Reading out the solution: if t[i, w] = t[i− 1, w] then item i unused and continue with
t[i− 1, w] otherwise used and continue with t[i− 1, s− wi] .

645



Example

E = {(2, 3), (4, 5), (1, 1)}
0 1 2 3 4 5 6 7

∅ 0 0 0 0 0 0 0 0

(2, 3) 0 0 3 3 3 3 3 3

(4, 5) 0 0 3 3 5 5 8 8

(1, 1) 0 1 3 4 5 6 8 9

w

i

Reading out the solution: if t[i, w] = t[i− 1, w] then item i unused and continue with
t[i− 1, w] otherwise used and continue with t[i− 1, s− wi] .

645



Example

E = {(2, 3), (4, 5), (1, 1)}
0 1 2 3 4 5 6 7

∅ 0 0 0 0 0 0 0 0

(2, 3) 0 0 3 3 3 3 3 3

(4, 5) 0 0 3 3 5 5 8 8

(1, 1) 0 1 3 4 5 6 8 9

w

i

Reading out the solution: if t[i, w] = t[i− 1, w] then item i unused and continue with
t[i− 1, w] otherwise used and continue with t[i− 1, s− wi] .

645



Example

E = {(2, 3), (4, 5), (1, 1)}
0 1 2 3 4 5 6 7

∅ 0 0 0 0 0 0 0 0

(2, 3) 0 0 3 3 3 3 3 3

(4, 5) 0 0 3 3 5 5 8 8

(1, 1) 0 1 3 4 5 6 8 9

w

i

Reading out the solution: if t[i, w] = t[i− 1, w] then item i unused and continue with
t[i− 1, w] otherwise used and continue with t[i− 1, s− wi] .

645



Analysis

The two algorithms for the knapsack problem provide a run time in
Θ(n ·W ·∑n

i=1 vi) (3d-table) and Θ(n ·W ) (2d-table) and are thus both
pseudo-polynomial, but they deliver the best possible result.
The greedy algorithm is very fast but can yield an arbitrarily bad result.

646


	Dynamic Programming II
	Subset Sum Problem
	NP
	Knapsack Problem


