
21. Dynamic Programming II

Subset sum problem, knapsack problem, greedy algorithm vs dynamic
programming [Ottman/Widmayer, Kap. 7.2, 7.3, 5.7, Cormen et al, Kap.
15,35.5]
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Task

Partition the set of the “item” above into two set such that both sets have
the same value.

A solution:
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Subset Sum Problem

Consider n ∈ N numbers a1, . . . , an ∈ N.
Goal: decide if a selection I ⊆ {1, . . . , n} exists such that∑

i∈I
ai =

∑
i∈{1,...,n}\I

ai.
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Naive Algorithm

Check for each bit vector b = (b1, . . . , bn) ∈ {0, 1}n, if
n∑
i=1

biai
?=

n∑
i=1

(1− bi)ai

Worst case: n steps for each of the 2n bit vectors b. Number of steps:
O(n · 2n).
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Algorithm with Partition

Partition the input into two equally sized parts a1, . . . , an/2 and
an/2+1, . . . , an.

Iterate over all subsets of the two parts and compute partial sum
Sk1 , . . . , S

k
2n/2 (k = 1, 2).

Sort the partial sums: Sk1 ≤ Sk2 ≤ · · · ≤ Sk2n/2 .
Check if there are partial sums such that S1

i + S2
j = 1

2
∑n
i=1 ai =: h

Start with i = 1, j = 2n/2.
If S1

i + S2
j = h then �nished

If S1
i + S2

j > h then j ← j − 1
If S1

i + S2
j < h then i← i + 1
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Example

Set {1, 6, 2, 3, 4} with value sum 16 has 32 subsets.

Partitioning into {1, 6} , {2, 3, 4} yields the following 12 subsets with value
sums:

{1, 6} {2, 3, 4}

{} {1} {6} {1, 6} {} {2} {3} {4} {2, 3} {2, 4} {3, 4} {2, 3, 4}

0 1 6 7 0 2 3 4 5 6 7 9

⇔ One possible solution: {1, 3, 4}
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Analysis

Generate partial sums for each part: O(2n/2 · n).
Each sorting: O(2n/2 log(2n/2)) = O(n2n/2).
Merge: O(2n/2)

Overal running time

O
(
n · 2n/2

)
= O

(
n
(√

2
)n)

.

Substantial improvement over the naive method –
but still exponential!

630



Dynamic programming

Task: let z = 1
2
∑n
i=1 ai. Find a selection I ⊂ {1, . . . , n}, such that

∑
i∈I ai = z.

DP-table: [0, . . . , n]× [0, . . . , z]-table T with boolean entries. T [k, s]
speci�es if there is a selection Ik ⊂ {1, . . . , k} such that

∑
i∈Ik

ai = s.
Initialization: T [0, 0] = true. T [0, s] = false for s > 1.
Computation:

T [k, s]←

T [k − 1, s] if s < ak

T [k − 1, s] ∨ T [k − 1, s− ak] if s ≥ ak

for increasing k and then within k increasing s.
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Example

{1, 6, 2, 5}
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

0 • · · · · · · · · · · · · · ·
1 • • · · · · · · · · · · · · ·
6 • • · · · · • • · · · · · · ·
2 • • • • · · • • • • · · · · ·
5 • • • • · • • • • • · • • • •

summe s

k

Determination of the solution: if T [k, s] = T [k − 1, s] then ak unused and continue with
T [k − 1, s] , otherwise ak used and continue with T [k − 1, s− ak] .
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That is mysterious

The algorithm requires a number of O(n · z) fundamental operations.

What is going on now? Does the algorithm suddenly have polynomial
running time?
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Explained

The algorithm does not necessarily provide a polynomial run time. z is an
number and not a quantity!

Input length of the algorithm ∼= number bits to reasonably represent the
data. With the number z this would be ζ = log z.
Consequently the algorithm requires O(n · 2ζ) fundamental operations and
has a run time exponential in ζ .
If, however, z is polynomial in n then the algorithm has polynomial run
time in n. This is called pseudo-polynomial.
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NP

It is known that the subset-sum algorithm belongs to the class of
NP-complete problems (and is thus NP-hard).

P: Set of all problems that can be solved in polynomial time.
NP: Set of all problems that can be solved Nondeterministically in
Polynomial time.
Implications:
NP contains P.
Problems can be veri�ed in polynomial time.
Under the not (yet?) proven assumption32 that NP 6= P, there is no
algorithm with polynomial run time for the problem considered above.

32The most important unsolved question of theoretical computer science.
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The knapsack problem

We pack our suitcase with ...

toothbrush

dumbell set

co�ee machine

uh oh – too heavy.

Toothbrush

Air balloon

Pocket knife

identity card

dumbell set

Uh oh – too heavy.

toothbrush

co�e machine

pocket knife

identity card

Uh oh – too heavy.

Aim to take as much as possible with us. But some things are more
valuable than others!
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Knapsack problem

Given:
set of n ∈ N items {1, . . . , n}.
Each item i has value vi ∈ N and weight wi ∈ N.
Maximum weight W ∈ N.
Input is denoted as E = (vi, wi)i=1,...,n.

Wanted:
a selection I ⊆ {1, . . . , n} that maximises ∑i∈I vi under

∑
i∈I wi ≤ W .
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Greedy heuristics

Sort the items decreasingly by value per weight vi/wi: Permutation p with
vpi
/wpi

≥ vpi+1/wpi+1

Add items in this order (I ← I ∪ {pi}), if the maximum weight is not
exceeded.
That is fast: Θ(n log n) for sorting and Θ(n) for the selection. But is it good?
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Counterexample

v1 = 1 w1 = 1 v1/w1 = 1

v2 = W − 1 w2 = W v2/w2 = W−1
W

Greed algorithm chooses {v1} with value 1.
Best selection: {v2} with value W − 1 and weight W .
Greedy heuristics can be arbitrarily bad.
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Dynamic Programming

Partition the maximum weight.

Three dimensional table m[i, w, v] (“doable”) of boolean values.
m[i, w, v] = true if and only if
A selection of the �rst i parts exists (0 ≤ i ≤ n)
with overal weight w (0 ≤ w ≤ W ) and
a value of at least v (0 ≤ v ≤ ∑n

i=1 vi) .
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A selection of the �rst i parts exists (0 ≤ i ≤ n)
with overal weight w (0 ≤ w ≤ W ) and
a value of at least v (0 ≤ v ≤ ∑n

i=1 vi) .
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Computation of the DP table

Initially
m[i, w, 0]← true für alle i ≥ 0 und alle w ≥ 0.
m[0, w, v]← false für alle w ≥ 0 und alle v > 0.

Computation

m[i, w, v]←
{

m[i− 1, w, v] ∨m[i− 1, w − wi, v − vi] if w ≥ wi und v ≥ vi

m[i− 1, w, v] otherwise.

increasing in i and for each i increasing in w and for �xed i and w
increasing by v.
Solution: largest v, such that m[i, w, v] = true for some i and w.
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Observation

The de�nition of the problem obviously implies that
for m[i, w, v] = true it holds:
m[i′, w, v] = true ∀i′ ≥ i ,
m[i, w′, v] = true ∀w′ ≥ w ,
m[i, w, v′] = true ∀v′ ≤ v.
fpr m[i, w, v] = false it holds:
m[i′, w, v] = false ∀i′ ≤ i ,
m[i, w′, v] = false ∀w′ ≤ w ,
m[i, w, v′] = false ∀v′ ≥ v.

This strongly suggests that we do not need a 3d table!
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2d DP table

Table entry t[i, w] contains, instead of boolean values, the largest v, that
can be achieved33 with
items 1, . . . , i (0 ≤ i ≤ n)
at maximum weight w (0 ≤ w ≤ W ).

33We could have followed a similar idea in order to reduce the size of the sparse table
for subset sum.
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Computation

Initially
t[0, w]← 0 for all w ≥ 0.

We compute

t[i, w]←
{

t[i− 1, w] if w < wi

max{t[i− 1, w], t[i− 1, w − wi] + vi} otherwise.

increasing by i and for �xed i increasing by w.
Solution is located in t[n,w]
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Example

E = {(2, 3), (4, 5), (1, 1)}
0 1 2 3 4 5 6 7

∅ 0 0 0 0 0 0 0 0

(2, 3) 0 0 3 3 3 3 3 3

(4, 5) 0 0 3 3 5 5 8 8

(1, 1) 0 1 3 4 5 6 8 9

w

i

Reading out the solution: if t[i, w] = t[i− 1, w] then item i unused and continue with
t[i− 1, w] otherwise used and continue with t[i− 1, s− wi] .
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Analysis

The two algorithms for the knapsack problem provide a run time in
Θ(n ·W ·∑n

i=1 vi) (3d-table) and Θ(n ·W ) (2d-table) and are thus both
pseudo-polynomial, but they deliver the best possible result.
The greedy algorithm is very fast but can yield an arbitrarily bad result.

646


	Dynamic Programming II
	Subset Sum Problem
	NP
	Knapsack Problem


