21. Dynamic Programming II

Subset sum problem, knapsack problem, greedy algorithm vs dynamic programming [Ottman/Widmayer, Kap. 7.2, 7.3, 5.7, Cormen et al, Kap. 15,35.5]

Partition the set of the "item" above into two set such that both sets have the same value.

Partition the set of the "item" above into two set such that both sets have the same value.

A solution:

Consider $n \in \mathbb{N}$ numbers $a_1, \ldots, a_n \in \mathbb{N}$. Goal: decide if a selection $I \subseteq \{1, \ldots, n\}$ exists such that

$$\sum_{i \in I} a_i = \sum_{i \in \{1, \dots, n\} \setminus I} a_i.$$

Check for each bit vector $b = (b_1, \ldots, b_n) \in \{0, 1\}^n$, if

$$\sum_{i=1}^{n} b_i a_i \stackrel{?}{=} \sum_{i=1}^{n} (1 - b_i) a_i$$

Check for each bit vector $b = (b_1, \ldots, b_n) \in \{0, 1\}^n$, if

$$\sum_{i=1}^{n} b_i a_i \stackrel{?}{=} \sum_{i=1}^{n} (1 - b_i) a_i$$

Worst case: n steps for each of the 2^n bit vectors b. Number of steps: $\mathcal{O}(n \cdot 2^n)$.

Partition the input into two equally sized parts $a_1, \ldots, a_{n/2}$ and $a_{n/2+1}, \ldots, a_n$.

- Partition the input into two equally sized parts $a_1, \ldots, a_{n/2}$ and $a_{n/2+1}, \ldots, a_n$.
- Iterate over all subsets of the two parts and compute partial sum $S_1^k, \ldots, S_{2^{n/2}}^k$ (k = 1, 2).

- Partition the input into two equally sized parts $a_1, \ldots, a_{n/2}$ and $a_{n/2+1}, \ldots, a_n$.
- Iterate over all subsets of the two parts and compute partial sum $S_1^k, \ldots, S_{2^{n/2}}^k$ (k = 1, 2).
- Sort the partial sums: $S_1^k \leq S_2^k \leq \cdots \leq S_{2^{n/2}}^k$.

- Partition the input into two equally sized parts $a_1, \ldots, a_{n/2}$ and $a_{n/2+1}, \ldots, a_n$.
- Iterate over all subsets of the two parts and compute partial sum $S_1^k, \ldots, S_{2^{n/2}}^k$ (k = 1, 2).
- Sort the partial sums: $S_1^k \leq S_2^k \leq \cdots \leq S_{2^{n/2}}^k$.
- Check if there are partial sums such that $S_i^1 + S_j^2 = \frac{1}{2} \sum_{i=1}^n a_i =: h$

- Partition the input into two equally sized parts $a_1, \ldots, a_{n/2}$ and $a_{n/2+1}, \ldots, a_n$.
- Iterate over all subsets of the two parts and compute partial sum $S_1^k, \ldots, S_{2^{n/2}}^k$ (k = 1, 2).
- Sort the partial sums: $S_1^k \leq S_2^k \leq \cdots \leq S_{2^{n/2}}^k$.
- Check if there are partial sums such that $S_i^1 + S_j^2 = \frac{1}{2} \sum_{i=1}^n a_i =: h$

• Start with
$$i = 1, j = 2^{n/2}$$
.

- Partition the input into two equally sized parts $a_1, \ldots, a_{n/2}$ and $a_{n/2+1}, \ldots, a_n$.
- Iterate over all subsets of the two parts and compute partial sum $S_1^k, \ldots, S_{2^{n/2}}^k$ (k = 1, 2).
- Sort the partial sums: $S_1^k \leq S_2^k \leq \cdots \leq S_{2^{n/2}}^k$.
- Check if there are partial sums such that $S_i^1 + S_j^2 = \frac{1}{2} \sum_{i=1}^n a_i =: h$

Start with
$$i = 1, j = 2^{n/2}$$
.
If $S_i^1 + S_j^2 = h$ then finished

- Partition the input into two equally sized parts $a_1, \ldots, a_{n/2}$ and $a_{n/2+1}, \ldots, a_n$.
- Iterate over all subsets of the two parts and compute partial sum $S_1^k, \ldots, S_{2^{n/2}}^k$ (k = 1, 2).
- Sort the partial sums: $S_1^k \leq S_2^k \leq \cdots \leq S_{2^{n/2}}^k$.
- Check if there are partial sums such that $S_i^1 + S_j^2 = \frac{1}{2} \sum_{i=1}^n a_i =: h$

Start with
$$i = 1, j = 2^{n/2}$$
.
If $S_i^1 + S_j^2 = h$ then finished
If $S_i^1 + S_j^2 > h$ then $j \leftarrow j - 1$

- Partition the input into two equally sized parts $a_1, \ldots, a_{n/2}$ and $a_{n/2+1}, \ldots, a_n$.
- Iterate over all subsets of the two parts and compute partial sum $S_1^k, \ldots, S_{2^{n/2}}^k$ (k = 1, 2).
- Sort the partial sums: $S_1^k \leq S_2^k \leq \cdots \leq S_{2^{n/2}}^k$.
- Check if there are partial sums such that $S_i^1 + S_j^2 = \frac{1}{2} \sum_{i=1}^n a_i =: h$

Set $\{1, 6, 2, 3, 4\}$ with value sum 16 has 32 subsets.

 \Leftrightarrow One possible solution: $\{1, 3, 4\}$

- Generate partial sums for each part: $\mathcal{O}(2^{n/2} \cdot n)$.
- Each sorting: $\mathcal{O}(2^{n/2}\log(2^{n/2})) = \mathcal{O}(n2^{n/2}).$
- Merge: $\mathcal{O}(2^{n/2})$

Overal running time

$$\mathcal{O}(n \cdot 2^{n/2}) = \mathcal{O}(n(\sqrt{2})^n).$$

Substantial improvement over the naive method – but still exponential!

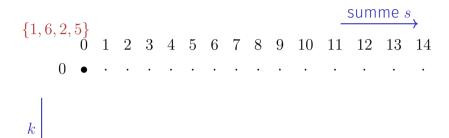
Dynamic programming

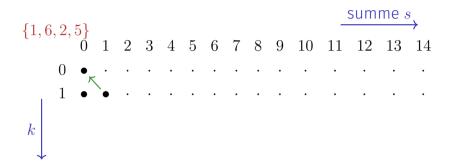
Task: let $z = \frac{1}{2} \sum_{i=1}^{n} a_i$. Find a selection $I \subset \{1, \ldots, n\}$, such that $\sum_{i \in I} a_i = z$.

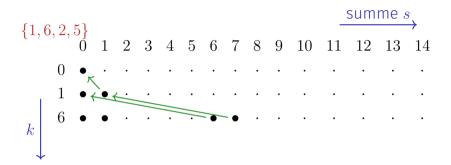
Task: let $z = \frac{1}{2} \sum_{i=1}^{n} a_i$. Find a selection $I \subset \{1, \ldots, n\}$, such that $\sum_{i \in I} a_i = z$. **DP-table**: $[0, \ldots, n] \times [0, \ldots, z]$ -table T with boolean entries. T[k, s] specifies if there is a selection $I_k \subset \{1, \ldots, k\}$ such that $\sum_{i \in I_k} a_i = s$. **Task**: let $z = \frac{1}{2} \sum_{i=1}^{n} a_i$. Find a selection $I \subset \{1, \ldots, n\}$, such that $\sum_{i \in I} a_i = z$. **DP-table**: $[0, \ldots, n] \times [0, \ldots, z]$ -table T with boolean entries. T[k, s]specifies if there is a selection $I_k \subset \{1, \ldots, k\}$ such that $\sum_{i \in I_k} a_i = s$. **Initialization**: T[0, 0] = true. T[0, s] = false for s > 1. **Task**: let $z = \frac{1}{2} \sum_{i=1}^{n} a_i$. Find a selection $I \subset \{1, \ldots, n\}$, such that $\sum_{i \in I} a_i = z$. **DP-table**: $[0, \ldots, n] \times [0, \ldots, z]$ -table T with boolean entries. T[k, s]specifies if there is a selection $I_k \subset \{1, \ldots, k\}$ such that $\sum_{i \in I_k} a_i = s$. **Initialization**: T[0, 0] = true. T[0, s] = false for s > 1. **Computation**:

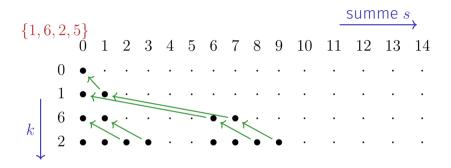
$$T[k,s] \leftarrow \begin{cases} T[k-1,s] & \text{if } s < a_k \\ T[k-1,s] \lor T[k-1,s-a_k] & \text{if } s \ge a_k \end{cases}$$

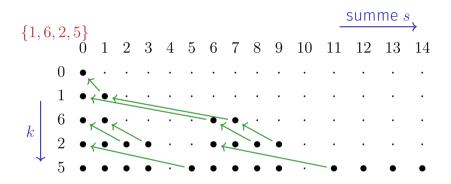
for increasing k and then within k increasing s.

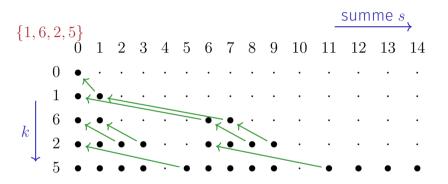












Determination of the solution: if T[k, s] = T[k - 1, s] then a_k unused and continue with T[k - 1, s], otherwise a_k used and continue with $T[k - 1, s - a_k]$.

The algorithm requires a number of $\mathcal{O}(n \cdot z)$ fundamental operations.

The algorithm requires a number of $\mathcal{O}(n \cdot z)$ fundamental operations. What is going on now? Does the algorithm suddenly have polynomial running time?

The algorithm requires a number of $\mathcal{O}(n \cdot z)$ fundamental operations. What is going on now? Does the algorithm suddenly have polynomial running time?

Input length of the algorithm \cong number bits to *reasonably* represent the data. With the number z this would be $\zeta = \log z$.

Input length of the algorithm \cong number bits to *reasonably* represent the data. With the number z this would be $\zeta = \log z$.

Consequently the algorithm requires $\mathcal{O}(n \cdot 2^{\zeta})$ fundamental operations and has a run time exponential in ζ .

Input length of the algorithm \cong number bits to *reasonably* represent the data. With the number z this would be $\zeta = \log z$.

Consequently the algorithm requires $\mathcal{O}(n \cdot 2^{\zeta})$ fundamental operations and has a run time exponential in ζ .

If, however, z is polynomial in n then the algorithm has polynomial run time in n. This is called **pseudo-polynomial**.

It is known that the subset-sum algorithm belongs to the class of **NP**-complete problems (and is thus *NP-hard*).

³²The most important unsolved question of theoretical computer science.

It is known that the subset-sum algorithm belongs to the class of **NP**-complete problems (and is thus *NP-hard*).

P: Set of all problems that can be solved in polynomial time.

NP: Set of all problems that can be solved Nondeterministically in Polynomial time.

³²The most important unsolved question of theoretical computer science.

It is known that the subset-sum algorithm belongs to the class of **NP**-complete problems (and is thus *NP-hard*).

P: Set of all problems that can be solved in polynomial time.

NP: Set of all problems that can be solved Nondeterministically in Polynomial time.

Implications:

- NP contains P.
- Problems can be **verified** in polynomial time.
- Under the not (yet?) proven assumption³² that NP ≠ P, there is no algorithm with polynomial run time for the problem considered above.

³²The most important unsolved question of theoretical computer science.

We pack our suitcase with ...

- toothbrush
- dumbell set
- coffee machine
- uh oh too heavy.

We pack our suitcase with ...

- toothbrush
- dumbell set
- coffee machine
- uh oh too heavy.

- Toothbrush
- Air balloon
- Pocket knife
- identity card
- dumbell set
- Uh oh too heavy.

We pack our suitcase with ...

- toothbrush
- dumbell set
- coffee machine
- uh oh too heavy.

- Toothbrush
- Air balloon
- Pocket knife
- identity card
- dumbell set
- Uh oh too heavy.

- toothbrush
- coffe machine
- pocket knife
- identity card
- Uh oh too heavy.

We pack our suitcase with ...

- toothbrush
- dumbell set
- coffee machine
- uh oh too heavy.

- Toothbrush
- Air balloon
- Pocket knife
- identity card
- dumbell set

- toothbrush
- coffe machine
- pocket knife
- identity card
- Uh oh too heavy.

■ Uh oh – too heavy.

Aim to take as much as possible with us. But some things are more valuable than others!

Given:

- set of $n \in \mathbb{N}$ items $\{1, \ldots, n\}$.
- Each item *i* has value $v_i \in \mathbb{N}$ and weight $w_i \in \mathbb{N}$.
- Maximum weight $W \in \mathbb{N}$.
- Input is denoted as $E = (v_i, w_i)_{i=1,\dots,n}$.

Given:

- set of $n \in \mathbb{N}$ items $\{1, \ldots, n\}$.
- Each item *i* has value $v_i \in \mathbb{N}$ and weight $w_i \in \mathbb{N}$.
- Maximum weight $W \in \mathbb{N}$.
- Input is denoted as $E = (v_i, w_i)_{i=1,\dots,n}$.

Wanted:

a selection $I \subseteq \{1, \ldots, n\}$ that maximises $\sum_{i \in I} v_i$ under $\sum_{i \in I} w_i \leq W$.

Sort the items decreasingly by value per weight v_i/w_i : Permutation p with $v_{p_i}/w_{p_i} \geq v_{p_{i+1}}/w_{p_{i+1}}$

Sort the items decreasingly by value per weight v_i/w_i : Permutation p with $v_{p_i}/w_{p_i} \ge v_{p_{i+1}}/w_{p_{i+1}}$ Add items in this order ($I \leftarrow I \cup \{p_i\}$), if the maximum weight is not exceeded. Sort the items decreasingly by value per weight v_i/w_i : Permutation p with $v_{p_i}/w_{p_i} \ge v_{p_{i+1}}/w_{p_{i+1}}$ Add items in this order $(I \leftarrow I \cup \{p_i\})$, if the maximum weight is not exceeded.

That is fast: $\Theta(n \log n)$ for sorting and $\Theta(n)$ for the selection. But is it good?

Counterexample

$$v_1 = 1$$
 $w_1 = 1$ $v_1/w_1 = 1$
 $v_2 = W - 1$ $w_2 = W$ $v_2/w_2 = \frac{W - 1}{W}$

Counterexample

$$v_1 = 1$$
 $w_1 = 1$ $v_1/w_1 = 1$
 $v_2 = W - 1$ $w_2 = W$ $v_2/w_2 = \frac{W - 1}{W}$

Greed algorithm chooses $\{v_1\}$ with value 1. Best selection: $\{v_2\}$ with value W - 1 and weight W. Greedy heuristics can be arbitrarily bad. Partition the maximum weight.

Partition the maximum weight.

Three dimensional table m[i, w, v] ("doable") of boolean values.

Partition the maximum weight.

Three dimensional table m[i, w, v] ("doable") of boolean values. m[i, w, v] = true if and only if

- A selection of the first i parts exists $(0 \le i \le n)$
- with overal weight $w (0 \le w \le W)$ and
- a value of at least v ($0 \le v \le \sum_{i=1}^{n} v_i$).

Computation of the DP table

Initially

- $\blacksquare m[i,w,0] \leftarrow \mathsf{true} \text{ für alle } i \geq 0 \text{ und alle } w \geq 0.$
- $\blacksquare m[0, w, v] \leftarrow \text{false für alle } w \ge 0 \text{ und alle } v > 0.$

Computation of the DP table

Initially

■ $m[i, w, 0] \leftarrow$ true für alle $i \ge 0$ und alle $w \ge 0$. ■ $m[0, w, v] \leftarrow$ false für alle $w \ge 0$ und alle v > 0. Computation

$$m[i, w, v] \leftarrow \begin{cases} m[i-1, w, v] \lor m[i-1, w-w_i, v-v_i] & \text{if } w \ge w_i \text{ und } v \ge v_i \\ m[i-1, w, v] & \text{otherwise.} \end{cases}$$

increasing in i and for each i increasing in w and for fixed i and w increasing by v.

Solution: largest v, such that m[i, w, v] = true for some i and w.

The definition of the problem obviously implies that

• for
$$m[i, w, v] =$$
 true it holds:
 $m[i', w, v] =$ true $\forall i' \geq i$,
 $m[i, w', v] =$ true $\forall w' \geq w$,
 $m[i, w, v'] =$ true $\forall v' \leq v$.
• fpr $m[i, w, v] =$ false it holds:
 $m[i', w, v] =$ false $\forall i' \leq i$,
 $m[i, w', v] =$ false $\forall w' \leq w$,
 $m[i, w, v'] =$ false $\forall v' \geq v$.

This strongly suggests that we do not need a 3d table!

Table entry t[i, w] contains, instead of boolean values, the largest v, that can be achieved³³ with

- items $1, \ldots, i \ (0 \le i \le n)$
- at maximum weight w ($0 \le w \le W$).

³³We could have followed a similar idea in order to reduce the size of the sparse table for subset sum.

Initially

• $t[0,w] \leftarrow 0$ for all $w \ge 0$. We compute

$$t[i, w] \leftarrow \begin{cases} t[i-1, w] & \text{if } w < w_i \\ \max\{t[i-1, w], t[i-1, w - w_i] + v_i\} & \text{otherwise.} \end{cases}$$

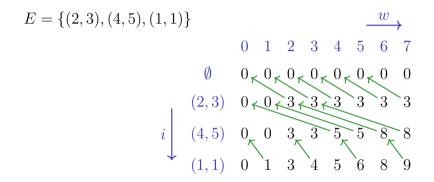
increasing by i and for fixed i increasing by w. Solution is located in t[n, w]

$$E = \{(2,3), (4,5), (1,1)\} \qquad \xrightarrow{w} \\ 0 \quad 1 \quad 2 \quad 3 \quad 4 \quad 5 \quad 6 \quad 7$$

 $E = \{(2,3), (4,5), (1,1)\} \xrightarrow{w} 0 \quad 1 \quad 2 \quad 3 \quad 4 \quad 5 \quad 6 \quad 7$ $\emptyset \quad 0 \quad 0$

 $E = \{(2,3), (4,5), (1,1)\} \xrightarrow{w} 0 \quad 1 \quad 2 \quad 3 \quad 4 \quad 5 \quad 6 \quad 7$ $\emptyset \quad 0_{\begin{subarray}{c} 0 \\ \end{subarray}} 0_{\bed{subarray}} 0_{\bedin{subarray}{c}$

 $E = \{(2,3), (4,5), (1,1)\}$ 4 $2 \ 3$ 0 5 7 Ø $\begin{array}{c} 0_{\kappa} 0_{\kappa}$ 0 0 < 0 < 3 < 3 < 3 `3` (2,3)3 i $(1,1) \quad 0$



Reading out the solution: if t[i, w] = t[i - 1, w] then item *i* unused and continue with t[i - 1, w] otherwise used and continue with $t[i - 1, s - w_i]$.

The two algorithms for the knapsack problem provide a run time in $\Theta(n \cdot W \cdot \sum_{i=1}^{n} v_i)$ (3d-table) and $\Theta(n \cdot W)$ (2d-table) and are thus both pseudo-polynomial, but they deliver the best possible result. The greedy algorithm is very fast but can yield an arbitrarily bad result.