21. Dynamic Programming II

Subset sum problem, knapsack problem, greedy algorithm vs dynamic programming [Ottman/Widmayer, Kap. 7.2, 7.3, 5.7, Cormen et al, Kap. 15,35.5]

Task

Partition the set of the "item" above into two set such that both sets have the same value.

A solution:

Subset Sum Problem

Consider $n \in \mathbb{N}$ numbers $a_1, \ldots, a_n \in \mathbb{N}$. Goal: decide if a selection $I \subseteq \{1, \ldots, n\}$ exists such that

$$\sum_{i \in I} a_i = \sum_{i \in \{1, \dots, n\} \setminus I} a_i.$$

Naive Algorithm

Check for each bit vector $b = (b_1, \ldots, b_n) \in \{0, 1\}^n$, if

$$\sum_{i=1}^{n} b_i a_i \stackrel{?}{=} \sum_{i=1}^{n} (1 - b_i) a_i$$

Worst case: *n* steps for each of the 2^n bit vectors *b*. Number of steps: $\mathcal{O}(n \cdot 2^n)$.

Algorithm with Partition

- Partition the input into two equally sized parts $a_1, \ldots, a_{n/2}$ and $a_{n/2+1}, \ldots, a_n$.
- Iterate over all subsets of the two parts and compute partial sum $S_1^k, \ldots, S_{2^{n/2}}^k$ (k = 1, 2).
- Sort the partial sums: $S_1^k \leq S_2^k \leq \cdots \leq S_{2^{n/2}}^k$.
- Check if there are partial sums such that $S_i^1 + S_j^2 = \frac{1}{2} \sum_{i=1}^n a_i =: h$

Example

Set $\{1, 6, 2, 3, 4\}$ with value sum 16 has 32 subsets. Partitioning into $\{1, 6\}$, $\{2, 3, 4\}$ yields the following 12 subsets with value sums:

 \Leftrightarrow One possible solution: $\{1, 3, 4\}$

Analysis

- Generate partial sums for each part: $\mathcal{O}(2^{n/2} \cdot n)$.
- Each sorting: $\mathcal{O}(2^{n/2}\log(2^{n/2})) = \mathcal{O}(n2^{n/2}).$
- Merge: $\mathcal{O}(2^{n/2})$

Overal running time

$$\mathcal{O}(n \cdot 2^{n/2}) = \mathcal{O}(n(\sqrt{2})^n).$$

Substantial improvement over the naive method – but still exponential!

Dynamic programming

Task: let $z = \frac{1}{2} \sum_{i=1}^{n} a_i$. Find a selection $I \subset \{1, \ldots, n\}$, such that $\sum_{i \in I} a_i = z$. **DP-table**: $[0, \ldots, n] \times [0, \ldots, z]$ -table T with boolean entries. T[k, s]specifies if there is a selection $I_k \subset \{1, \ldots, k\}$ such that $\sum_{i \in I_k} a_i = s$. **Initialization**: T[0, 0] = true. T[0, s] = false for s > 1. **Computation**:

$$T[k,s] \leftarrow \begin{cases} T[k-1,s] & \text{if } s < a_k \\ T[k-1,s] \lor T[k-1,s-a_k] & \text{if } s \ge a_k \end{cases}$$

for increasing k and then within k increasing s.

Example

Determination of the solution: if T[k, s] = T[k - 1, s] then a_k unused and continue with T[k - 1, s], otherwise a_k used and continue with $T[k - 1, s - a_k]$.

That is mysterious

The algorithm requires a number of $\mathcal{O}(n \cdot z)$ fundamental operations. What is going on now? Does the algorithm suddenly have polynomial running time?

Explained

The algorithm does not necessarily provide a polynomial run time. *z* is an **number** and not a **quantity**!

Input length of the algorithm \cong number bits to *reasonably* represent the data. With the number z this would be $\zeta = \log z$.

Consequently the algorithm requires $\mathcal{O}(n \cdot 2^{\zeta})$ fundamental operations and has a run time exponential in ζ .

If, however, z is polynomial in n then the algorithm has polynomial run time in n. This is called **pseudo-polynomial**.

It is known that the subset-sum algorithm belongs to the class of **NP**-complete problems (and is thus *NP-hard*).

P: Set of all problems that can be solved in polynomial time.

NP: Set of all problems that can be solved Nondeterministically in Polynomial time.

Implications:

- NP contains P.
- Problems can be **verified** in polynomial time.
- Under the not (yet?) proven assumption³² that NP ≠ P, there is no algorithm with polynomial run time for the problem considered above.

³²The most important unsolved question of theoretical computer science.

The knapsack problem

We pack our suitcase with ...

- toothbrush
- dumbell set
- coffee machine
- uh oh too heavy.

- Toothbrush
- Air balloon
- Pocket knife
- identity card
- dumbell set

- toothbrush
- coffe machine
- pocket knife
- identity card
- Uh oh too heavy.

■ Uh oh – too heavy.

Aim to take as much as possible with us. But some things are more valuable than others!

Knapsack problem

Given:

- set of $n \in \mathbb{N}$ items $\{1, \ldots, n\}$.
- Each item *i* has value $v_i \in \mathbb{N}$ and weight $w_i \in \mathbb{N}$.
- Maximum weight $W \in \mathbb{N}$.
- Input is denoted as $E = (v_i, w_i)_{i=1,\dots,n}$.

Wanted:

a selection $I \subseteq \{1, \ldots, n\}$ that maximises $\sum_{i \in I} v_i$ under $\sum_{i \in I} w_i \leq W$.

Greedy heuristics

Sort the items decreasingly by value per weight v_i/w_i : Permutation p with $v_{p_i}/w_{p_i} \ge v_{p_{i+1}}/w_{p_{i+1}}$ Add items in this order $(I \leftarrow I \cup \{p_i\})$, if the maximum weight is not exceeded.

That is fast: $\Theta(n \log n)$ for sorting and $\Theta(n)$ for the selection. But is it good?

Counterexample

$$v_1 = 1$$
 $w_1 = 1$ $v_1/w_1 = 1$
 $v_2 = W - 1$ $w_2 = W$ $v_2/w_2 = \frac{W - 1}{W}$

Greed algorithm chooses $\{v_1\}$ with value 1. Best selection: $\{v_2\}$ with value W - 1 and weight W. Greedy heuristics can be arbitrarily bad.

Dynamic Programming

Partition the maximum weight.

Three dimensional table m[i, w, v] ("doable") of boolean values. m[i, w, v] = true if and only if

- A selection of the first i parts exists $(0 \le i \le n)$
- with overal weight $w (0 \le w \le W)$ and
- a value of at least v ($0 \le v \le \sum_{i=1}^{n} v_i$).

Computation of the DP table

Initially

■ $m[i, w, 0] \leftarrow$ true für alle $i \ge 0$ und alle $w \ge 0$. ■ $m[0, w, v] \leftarrow$ false für alle $w \ge 0$ und alle v > 0. Computation

$$m[i, w, v] \leftarrow \begin{cases} m[i-1, w, v] \lor m[i-1, w-w_i, v-v_i] & \text{if } w \ge w_i \text{ und } v \ge v_i \\ m[i-1, w, v] & \text{otherwise.} \end{cases}$$

increasing in i and for each i increasing in w and for fixed i and w increasing by v.

Solution: largest v, such that m[i, w, v] = true for some i and w.

Observation

The definition of the problem obviously implies that

• for
$$m[i, w, v] =$$
 true it holds:
 $m[i', w, v] =$ true $\forall i' \geq i$,
 $m[i, w', v] =$ true $\forall w' \geq w$,
 $m[i, w, v'] =$ true $\forall v' \leq v$.
• fpr $m[i, w, v] =$ false it holds:
 $m[i', w, v] =$ false $\forall i' \leq i$,
 $m[i, w', v] =$ false $\forall w' \leq w$,
 $m[i, w, v'] =$ false $\forall v' \geq v$.

This strongly suggests that we do not need a 3d table!

2d DP table

Table entry t[i, w] contains, instead of boolean values, the largest v, that can be achieved³³ with

- items $1, \ldots, i \ (0 \le i \le n)$
- at maximum weight $w \ (0 \le w \le W)$.

³³We could have followed a similar idea in order to reduce the size of the sparse table for subset sum.

Computation

Initially

• $t[0,w] \leftarrow 0$ for all $w \ge 0$. We compute

$$t[i, w] \leftarrow \begin{cases} t[i-1, w] & \text{if } w < w_i \\ \max\{t[i-1, w], t[i-1, w-w_i] + v_i\} & \text{otherwise.} \end{cases}$$

increasing by i and for fixed i increasing by w. Solution is located in t[n, w]

Example

Reading out the solution: if t[i, w] = t[i - 1, w] then item *i* unused and continue with t[i - 1, w] otherwise used and continue with $t[i - 1, s - w_i]$.

Analysis

The two algorithms for the knapsack problem provide a run time in $\Theta(n \cdot W \cdot \sum_{i=1}^{n} v_i)$ (3d-table) and $\Theta(n \cdot W)$ (2d-table) and are thus both pseudo-polynomial, but they deliver the best possible result. The greedy algorithm is very fast but can yield an arbitrarily bad result.