21. Dynamic Programming II

Subset sum problem, knapsack problem, greedy algorithm vs dynamic programming [Ottman/Widmayer, Kap. 7.2, 7.3, 5.7, Cormen et al, Kap. 15,35.5]

Task

Partition the set of the "item" above into two set such that both sets have the same value.
A solution:

Subset Sum Problem

Consider $n \in \mathbb{N}$ numbers $a_{1}, \ldots, a_{n} \in \mathbb{N}$.
Goal: decide if a selection $I \subseteq\{1, \ldots, n\}$ exists such that

$$
\sum_{i \in I} a_{i}=\sum_{i \in\{1, \ldots, n\} \backslash I} a_{i} .
$$

Naive Algorithm

Check for each bit vector $b=\left(b_{1}, \ldots, b_{n}\right) \in\{0,1\}^{n}$, if

$$
\sum_{i=1}^{n} b_{i} a_{i} \stackrel{?}{=} \sum_{i=1}^{n}\left(1-b_{i}\right) a_{i}
$$

Worst case: n steps for each of the 2^{n} bit vectors b. Number of steps: $\mathcal{O}\left(n \cdot 2^{n}\right)$.

Algorithm with Partition

- Partition the input into two equally sized parts $a_{1}, \ldots, a_{n / 2}$ and $a_{n / 2+1}, \ldots, a_{n}$.
■ Iterate over all subsets of the two parts and compute partial sum $S_{1}^{k}, \ldots, S_{2^{n / 2}}^{k}(k=1,2)$.
■ Sort the partial sums: $S_{1}^{k} \leq S_{2}^{k} \leq \cdots \leq S_{2^{n / 2}}^{k}$.
■ Check if there are partial sums such that $S_{i}^{1}+S_{j}^{2}=\frac{1}{2} \sum_{i=1}^{n} a_{i}=: h$
- Start with $i=1, j=2^{n / 2}$.
- If $S_{i}^{1}+S_{j}^{2}=h$ then finished

■ If $S_{i}^{1}+S_{j}^{2}>h$ then $j \leftarrow j-1$

- If $S_{i}^{1}+S_{j}^{2}<h$ then $i \leftarrow i+1$

Example

Set $\{1,6,2,3,4\}$ with value sum 16 has 32 subsets.
Partitioning into $\{1,6\},\{2,3,4\}$ yields the following 12 subsets with value sums:

\Leftrightarrow One possible solution: $\{1,3,4\}$

Analysis

■ Generate partial sums for each part: $\mathcal{O}\left(2^{n / 2} \cdot n\right)$.
■ Each sorting: $\mathcal{O}\left(2^{n / 2} \log \left(2^{n / 2}\right)\right)=\mathcal{O}\left(n 2^{n / 2}\right)$.

- Merge: $\mathcal{O}\left(2^{n / 2}\right)$

Overal running time

$$
\mathcal{O}\left(n \cdot 2^{n / 2}\right)=\mathcal{O}\left(n(\sqrt{2})^{n}\right)
$$

Substantial improvement over the naive method but still exponential!

Dynamic programming

Task: let $z=\frac{1}{2} \sum_{i=1}^{n} a_{i}$. Find a selection $I \subset\{1, \ldots, n\}$, such that $\sum_{i \in I} a_{i}=z$. DP-table: $[0, \ldots, n] \times[0, \ldots, z]$-table T with boolean entries. $T[k, s]$ specifies if there is a selection $I_{k} \subset\{1, \ldots, k\}$ such that $\sum_{i \in I_{k}} a_{i}=s$. Initialization: $T[0,0]=$ true. $T[0, s]=$ false for $s>1$.
Computation:

$$
T[k, s] \leftarrow \begin{cases}T[k-1, s] & \text { if } s<a_{k} \\ T[k-1, s] \vee T\left[k-1, s-a_{k}\right] & \text { if } s \geq a_{k}\end{cases}
$$

for increasing k and then within k increasing s.

Example

Determination of the solution: if $T[k, s]=T[k-1, s]$ then a_{k} unused and continue with $T[k-1, s]$, otherwise a_{k} used and continue with $T\left[k-1, s-a_{k}\right]$.

That is mysterious

The algorithm requires a number of $\mathcal{O}(n \cdot z)$ fundamental operations. What is going on now? Does the algorithm suddenly have polynomial running time?

Explained

The algorithm does not necessarily provide a polynomial run time. z is an number and not a quantity!
Input length of the algorithm \cong number bits to reasonably represent the data. With the number z this would be $\zeta=\log z$.
Consequently the algorithm requires $\mathcal{O}\left(n \cdot 2^{\zeta}\right)$ fundamental operations and has a run time exponential in ζ.
If, however, z is polynomial in n then the algorithm has polynomial run time in n. This is called pseudo-polynomial.

NP

It is known that the subset-sum algorithm belongs to the class of
NP-complete problems (and is thus NP-hard).
P: Set of all problems that can be solved in polynomial time.
NP: Set of all problems that can be solved Nondeterministically in Polynomial time.
Implications:
■ NP contains P.

- Problems can be verified in polynomial time.

■ Under the not (yet?) proven assumption ${ }^{32}$ that $N P \neq P$, there is no algorithm with polynomial run time for the problem considered above.
${ }^{32}$ The most important unsolved question of theoretical computer science.

The knapsack problem

We pack our suitcase with ...

■ toothbrush
■ dumbell set

- coffee machine

■ uh oh - too heavy.

■ Toothbrush

- Air balloon

■ Pocket knife
■ identity card
■ dumbell set

- toothbrush

■ coffe machine
■ pocket knife
■ identity card
■ Uh oh - too heavy.

■ Uh oh - too heavy.
Aim to take as much as possible with us. But some things are more valuable than others!

Knapsack problem

Given:

■ set of $n \in \mathbb{N}$ items $\{1, \ldots, n\}$.
■ Each item i has value $v_{i} \in \mathbb{N}$ and weight $w_{i} \in \mathbb{N}$.
■ Maximum weight $W \in \mathbb{N}$.
■ Input is denoted as $E=\left(v_{i}, w_{i}\right)_{i=1, \ldots, n}$.

Wanted:

a selection $I \subseteq\{1, \ldots, n\}$ that maximises $\sum_{i \in I} v_{i}$ under $\sum_{i \in I} w_{i} \leq W$.

Greedy heuristics

Sort the items decreasingly by value per weight v_{i} / w_{i} : Permutation p with
$v_{p_{i}} / w_{p_{i}} \geq v_{p_{i+1}} / w_{p_{i+1}}$
Add items in this order ($I \leftarrow I \cup\left\{p_{i}\right\}$), if the maximum weight is not exceeded.
That is fast: $\Theta(n \log n)$ for sorting and $\Theta(n)$ for the selection. But is it good?

Counterexample

$$
\begin{array}{lll}
v_{1}=1 & w_{1}=1 & v_{1} / w_{1}=1 \\
v_{2}=W-1 & w_{2}=W & v_{2} / w_{2}=\frac{W-1}{W}
\end{array}
$$

Greed algorithm chooses $\left\{v_{1}\right\}$ with value 1. Best selection: $\left\{v_{2}\right\}$ with value $W-1$ and weight W. Greedy heuristics can be arbitrarily bad.

Dynamic Programming

Partition the maximum weight.
Three dimensional table $m[i, w, v]$ ("doable") of boolean values.
$m[i, w, v]=$ true if and only if
■ A selection of the first i parts exists ($0 \leq i \leq n$)

- with overal weight $w(0 \leq w \leq W)$ and

■ a value of at least $v\left(0 \leq v \leq \sum_{i=1}^{n} v_{i}\right)$.

Computation of the DP table

Initially

■ $m[i, w, 0] \leftarrow$ true für alle $i \geq 0$ und alle $w \geq 0$.
■ $m[0, w, v] \leftarrow$ false für alle $w \geq 0$ und alle $v>0$.
Computation

$$
m[i, w, v] \leftarrow \begin{cases}m[i-1, w, v] \vee m\left[i-1, w-w_{i}, v-v_{i}\right] & \text { if } w \geq w_{i} \text { und } v \geq v_{i} \\ m[i-1, w, v] & \text { otherwise. }\end{cases}
$$

increasing in i and for each i increasing in w and for fixed i and w increasing by v.
Solution: largest v, such that $m[i, w, v]=$ true for some i and w.

Observation

The definition of the problem obviously implies that
■ for $m[i, w, v]=$ true it holds:

$$
\begin{aligned}
m\left[i^{\prime}, w, v\right] & =\operatorname{true} \forall i^{\prime} \geq i, \\
m\left[i, w^{\prime}, v\right] & =\operatorname{true} \forall w^{\prime} \geq w, \\
m\left[i, w, v^{\prime}\right] & =\operatorname{true} \forall v^{\prime} \leq v .
\end{aligned}
$$

■ fpr $m[i, w, v]=$ false it holds:

$$
\begin{aligned}
& m\left[i^{\prime}, w, v\right]=\text { false } \forall i^{\prime} \leq i, \\
& m\left[i, w^{\prime}, v\right]=\text { false } \forall w^{\prime} \leq w, \\
& m\left[i, w, v^{\prime}\right]=\text { false } \forall v^{\prime} \geq v .
\end{aligned}
$$

This strongly suggests that we do not need a 3d table!

2d DP table

Table entry $t[i, w]$ contains, instead of boolean values, the largest v, that can be achieved ${ }^{33}$ with
■ items $1, \ldots, i(0 \leq i \leq n)$

- at maximum weight $w(0 \leq w \leq W)$.

[^0]
Computation

Initially
■ $t[0, w] \leftarrow 0$ for all $w \geq 0$.
We compute

$$
t[i, w] \leftarrow \begin{cases}t[i-1, w] & \text { if } w<w_{i} \\ \max \left\{t[i-1, w], t\left[i-1, w-w_{i}\right]+v_{i}\right\} & \text { otherwise. }\end{cases}
$$

increasing by i and for fixed i increasing by w.
Solution is located in $t[n, w]$

Example

$$
E=\{(2,3),(4,5),(1,1)\}
$$

Reading out the solution: if $t[i, w]=t[i-1, w]$ then item i unused and continue with $t[i-1, w]$ otherwise used and continue with $t\left[i-1, s-w_{i}\right]$.

Analysis

The two algorithms for the knapsack problem provide a run time in $\Theta\left(n \cdot W \cdot \sum_{i=1}^{n} v_{i}\right)(3 \mathrm{~d}$-table) and $\Theta(n \cdot W)$ (2d-table) and are thus both pseudo-polynomial, but they deliver the best possible result.
The greedy algorithm is very fast but can yield an arbitrarily bad result.

[^0]: ${ }^{33}$ We could have followed a similar idea in order to reduce the size of the sparse table for subset sum.

