
20. Dynamic Programming I

Memoization, Optimal Substructure, Overlapping Sub-Problems,
Dependencies, General Procedure. Examples: Fibonacci, Rod Cutting,
Longest Ascending Subsequence, Longest Common Subsequence, Edit
Distance, Matrix Chain Multiplication (Strassen)
[Ottman/Widmayer, Kap. 1.2.3, 7.1, 7.4, Cormen et al, Kap. 15]

564



Fibonacci Numbers

(again)

Fn :=

n if n < 2
Fn−1 + Fn−2 if n ≥ 2.

Analysis: why ist the recursive algorithm so slow?

565



Algorithm FibonacciRecursive(n)

Input: n ≥ 0
Output: n-th Fibonacci number

if n < 2 then
f ← n

else
f ← FibonacciRecursive(n− 1) + FibonacciRecursive(n− 2)

return f

566



Analysis

T (n): Number executed operations.
n = 0, 1: T (n) = Θ(1)

n ≥ 2: T (n) = T (n− 2) + T (n− 1) + c.

T (n) = T (n− 2) + T (n− 1) + c ≥ 2T (n− 2) + c ≥ 2n/2c′ = (
√

2)nc′

Algorithm is exponential in n.

567



Analysis

T (n): Number executed operations.
n = 0, 1: T (n) = Θ(1)
n ≥ 2: T (n) = T (n− 2) + T (n− 1) + c.

T (n) = T (n− 2) + T (n− 1) + c ≥ 2T (n− 2) + c ≥ 2n/2c′ = (
√

2)nc′

Algorithm is exponential in n.

567



Analysis

T (n): Number executed operations.
n = 0, 1: T (n) = Θ(1)
n ≥ 2: T (n) = T (n− 2) + T (n− 1) + c.

T (n) = T (n− 2) + T (n− 1) + c ≥ 2T (n− 2) + c ≥ 2n/2c′ = (
√

2)nc′

Algorithm is exponential in n.

567



Analysis

T (n): Number executed operations.
n = 0, 1: T (n) = Θ(1)
n ≥ 2: T (n) = T (n− 2) + T (n− 1) + c.

T (n) = T (n− 2) + T (n− 1) + c ≥ 2T (n− 2) + c ≥ 2n/2c′ = (
√

2)nc′

Algorithm is exponential in n.

567



Reason (visual)

F47

F46

F45

F44 F43

F44

F43 F42

F45

F44

F43 F42

F43

F42 F41

Nodes with same values are evaluated (too) often.

568



Memoization

Memoization (sic) saving intermediate results.
Before a subproblem is solved, the existence of the corresponding
intermediate result is checked.
If an intermediate result exists then it is used.
Otherwise the algorithm is executed and the result is saved accordingly.

569



Memoization with Fibonacci

F47

F46

F45

F44 F43

F44

F45

Rectangular nodes have been computed before.

570



Algorithm FibonacciMemoization(n)

Input: n ≥ 0
Output: n-th Fibonacci number

if n ≤ 2 then
f ← 1

else if ∃memo[n] then
f ← memo[n]

else
f ← FibonacciMemoization(n− 1) + FibonacciMemoization(n− 2)
memo[n]← f

return f

571



Analysis

Computational complexity:

T (n) = T (n− 1) + c = ... = O(n).

because after the call to f(n− 1), f(n− 2) has already been computed.
A di�erent argument: f(n) is computed exactly once recursively for each n.
Runtime costs: n calls with Θ(1) costs per call n · c ∈ Θ(n). The recursion
vanishes from the running time computation.
Algorithm requires Θ(n) memory.29

29But the naive recursive algorithm also requires Θ(n) memory implicitly.
572



Looking closer ...

... the algorithm computes the values of F1, F2, F3,. . . in the top-down
approach of the recursion.
Can write the algorithm bottom-up. This is characteristic for dynamic
programming.

573



Algorithm FibonacciBottomUp(n)

Input: n ≥ 0
Output: n-th Fibonacci number

F [1]← 1
F [2]← 1
for i← 3, . . . , n do

F [i]← F [i− 1] + F [i− 2]
return F [n]

574



Dynamic Programming: Idea

Divide a complex problem into a reasonable number of sub-problems
The solution of the sub-problems will be used to solve the more
complex problem
Identical problems will be computed only once

575



Dynamic Programming Consequence

Identical problems will be computed only once
⇒ Results are saved

We
trade

spee
d again

st

mem
ory c

onsu
mpti

on

576



Dynamic Programming = Divide-And-Conquer ?

In both cases the original problem can be solved (more easily) by
utilizing the solutions of sub-problems. The problem provides optimal
substructure.
Classical Divide-And-Conquer algorithms (such as Mergesort):
sub-problems are independent; their solutions are required only once
in the algorithm.
DP: sub-problems are dependent. The problem is said to have
overlapping sub-problems that are required multiple-times in the
algorithm.
In order to avoid redundant computations, results are tabulated. For
sub-problems there must not be any circular dependencies.

577



Dynamic Programming: Description

1. Use a DP-table with information to the subproblems.
Dimension of the table? Semantics of the entries?

2. Computation of the base cases.
Which entries do not depend on others?

3. Determine computation order.
In which order can the entries be computed such that dependencies are
ful�lled?

4. Read-out the solution
How can the solution be read out from the table?

Runtime (typical) = number entries of the table times required operations per
entry.

578



Dynamic Programing: Description (Fibonacci)

1.
Dimension of the table? Semantics of the entries?

n× 1 table. nth entry contains nth Fibonacci number.

2.
Which entries do not depend on other entries?

Values F1 and F2 can be computed easily and independently.

3.
Computation order?

Fi with increasing i.

4.
Reconstruction of a solution?

Fn is the n-th Fibonacci number.

579



Dynamic Programing: Description (Fibonacci)

1.
Dimension of the table? Semantics of the entries?

n× 1 table. nth entry contains nth Fibonacci number.

2.
Which entries do not depend on other entries?

Values F1 and F2 can be computed easily and independently.

3.
Computation order?

Fi with increasing i.

4.
Reconstruction of a solution?

Fn is the n-th Fibonacci number.

579



Dynamic Programing: Description (Fibonacci)

1.
Dimension of the table? Semantics of the entries?

n× 1 table. nth entry contains nth Fibonacci number.

2.
Which entries do not depend on other entries?

Values F1 and F2 can be computed easily and independently.

3.
Computation order?

Fi with increasing i.

4.
Reconstruction of a solution?

Fn is the n-th Fibonacci number.

579



Dynamic Programing: Description (Fibonacci)

1.
Dimension of the table? Semantics of the entries?

n× 1 table. nth entry contains nth Fibonacci number.

2.
Which entries do not depend on other entries?

Values F1 and F2 can be computed easily and independently.

3.
Computation order?

Fi with increasing i.

4.
Reconstruction of a solution?

Fn is the n-th Fibonacci number.

579



Dynamic Programing: Description (Fibonacci)

1.
Dimension of the table? Semantics of the entries?

n× 1 table. nth entry contains nth Fibonacci number.

2.
Which entries do not depend on other entries?

Values F1 and F2 can be computed easily and independently.

3.
Computation order?

Fi with increasing i.

4.
Reconstruction of a solution?

Fn is the n-th Fibonacci number.

579



Rod Cutting

Rods (metal sticks) are cut and sold.
Rods of length n ∈ N are available. A cut does not provide any costs.
For each length l ∈ N, l ≤ n known is the value vl ∈ R+

Goal: cut the rods such (into k ∈ N pieces) that

k∑
i=1

vli is maximized subject to
k∑

i=1
li = n.

580



Rod Cutting: Example

Possibilities to cut a rod of length 4 (without permutations)

Length 0 1 2 3 4
Price 0 2 3 8 9 ⇒ Best cut: 3 + 1 with value 10.

581



How to Find the DP Algorithm.

0. Exact formulation of the wanted solution
1. De�ne sub-problems, reformulate (0.) as sub-problem
2. Recursion: relate subproblems by enumerating of local properties
3. Determine the dependencies of the sub-problems
4. Solve the problem
Running time = #sub-problems × time/sub-problem

582



Structure of the problem

0. Wanted: rn = maximal value of rod (cut or as a whole) with length n.
1. sub-problems: maximal value rk for each 0 ≤ k < n

2. Local property: length of the �rst piece
Recursion

rk = max{vi + rk−i : 0 < i ≤ k}, k > 0
r0 = 0

3. Dependency: rk depends (only) on values vi, 1 ≤ i ≤ k and the
optimal cuts ri, i < k .

4. Solution in rn. DP running time: Θ(n2)

583



Algorithm RodCut(v,n) (without memoization)

Input: n ≥ 0, Prices v
Output: best value

q ← 0
if n > 0 then

for i← 1, . . . , n do
q ← max{q, vi + RodCut(v, n− i)};

return q

Running time T (n) =
∑n−1

i=0 T (i) + c ⇒30 T (n) ∈ Θ(2n)

30T (n) = T (n− 1) +
∑n−2

i=0 T (i) + c = T (n− 1) + (T (n− 1)− c) + c = 2T (n− 1) (n > 0)
584



Recursion Tree

5

4

3

2

1

1

2

1

1

3

2

1

1

2

1

1

585



Algorithm RodCutMemoized(m, v, n)

Input: n ≥ 0, Prices v, Memoization Table m
Output: best value

q ← 0
if n > 0 then

if ∃ m[n] then
q ← m[n]

else
for i← 1, . . . , n do

q ← max{q, vi + RodCutMemoized(m, v, n− i)};
m[n]← q

return q

Running time ∑n
i=1 i = Θ(n2)

586



Subproblem-Graph

Describes the mutual dependencies of the subproblems

4 3 2 1 0

and must not contain cycles

587



Construction of the Optimal Cut

During the (recursive) computation of the optimal solution for each
k ≤ n the recursive algorithm determines the optimal length of the �rst
rod
Store the lenght of the �rst rod in a separate table of length n

588



Bottom-up Description with the example

1.
Dimension of the table? Semantics of the entries?

n× 1 table. nth entry contains the best value of a rod of length n.

2.
Which entries do not depend on other entries?

Value r0 is 0

3.
Computation order?

ri, i = 1, . . . , n

.

4.
Reconstruction of a solution?

rn is the best value for the rod of length n.

589



Bottom-up Description with the example

1.
Dimension of the table? Semantics of the entries?

n× 1 table. nth entry contains the best value of a rod of length n.

2.
Which entries do not depend on other entries?

Value r0 is 0

3.
Computation order?

ri, i = 1, . . . , n

.

4.
Reconstruction of a solution?

rn is the best value for the rod of length n.

589



Bottom-up Description with the example

1.
Dimension of the table? Semantics of the entries?

n× 1 table. nth entry contains the best value of a rod of length n.

2.
Which entries do not depend on other entries?

Value r0 is 0

3.
Computation order?

ri, i = 1, . . . , n

.

4.
Reconstruction of a solution?

rn is the best value for the rod of length n.

589



Bottom-up Description with the example

1.
Dimension of the table? Semantics of the entries?

n× 1 table. nth entry contains the best value of a rod of length n.

2.
Which entries do not depend on other entries?

Value r0 is 0

3.
Computation order?

ri, i = 1, . . . , n.

4.
Reconstruction of a solution?

rn is the best value for the rod of length n.

589



Bottom-up Description with the example

1.
Dimension of the table? Semantics of the entries?

n× 1 table. nth entry contains the best value of a rod of length n.

2.
Which entries do not depend on other entries?

Value r0 is 0

3.
Computation order?

ri, i = 1, . . . , n.

4.
Reconstruction of a solution?

rn is the best value for the rod of length n.

589



Rabbit!

A rabbit sits on cite (1, 1) of an
n× n grid. It can only move to
east or south. On each path-
way there is a number of car-
rots. How many carrots does
the rabbit collect maximally?

1, 1

1, 2

1, 3

1, 4

2, 1

2, 2

2, 3

2, 4

3, 1

3, 2

3, 3

3, 4

4, 1

4, 2

4, 3

4, 4

4

0

3

2

4

1

1

0

3

2

2

2

2

0

4

3

4

0

4

0

4

2

4

3

590



Rabbit!

Number of possible paths?
Choice of n− 1 ways to south out of 2n− 2
ways overal.

(
2n− 2
n− 1

)
∈ Ω(2n)

⇒ No chance for a naive algorithm The path 100011
(1:to south, 0: to east)

591



Rabbit!

Number of possible paths?
Choice of n− 1 ways to south out of 2n− 2
ways overal.

(
2n− 2
n− 1

)
∈ Ω(2n)

⇒ No chance for a naive algorithm The path 100011
(1:to south, 0: to east)

591



Recursion

Wanted: T1,1 = maximal number carrots from (1, 1) to (n, n).
Let w(i,j)−(i′,j′) number of carrots on egde from (i, j) to (i′, j′).
Recursion (maximal number of carrots from (i, j) to (n, n)

Tij =


max{w(i,j)−(i,j+1) + Ti,j+1, w(i,j)−(i+1,j) + Ti+1,j}, i < n, j < n

w(i,j)−(i,j+1) + Ti,j+1, i = n, j < n

w(i,j)−(i+1,j) + Ti+1,j, i < n, j = n

0 i = j = n

592



Graph of Subproblem Dependencies

(1, 1)

(1, 2)

(1, 3)

(1, 4)

(2, 1)

(2, 2)

(2, 3)

(2, 4)

(3, 1)

(3, 2)

(3, 3)

(3, 4)

(4, 1)

(4, 2)

(4, 3)

(4, 4)

593



Bottom-up Description with the example

1.
Dimension of the table? Semantics of the entries?

Table T with size n × n. Entry at i, j provides the maximal number of
carrots from (i, j) to (n, n).

2.
Which entries do not depend on other entries?

Value Tn,n is 0

3.
Computation order?

Ti,j with i = n ↘ 1 and for each i: j = n ↘ 1, (or vice-versa: j = n ↘ 1
and for each j: i = n↘ 1).

4.
Reconstruction of a solution?

T1,1 provides the maximal number of carrots. 594



Longest Ascending Sequence (LAS)

1 2 3 4 5 6 7

3 2 4 6 5 7 1

1 2 3 4 5 6 7

3 2 4 6 5 7 1

Connect as many as possible �tting ports without lines crossing.

595



Longest Ascending Sequence (LAS)

1 2 3 4 5 6 7

3 2 4 6 5 7 1

1 2 3 4 5 6 7

3 2 4 6 5 7 1

Connect as many as possible �tting ports without lines crossing.

595



Longest Ascending Sequence (LAS)

1 2 3 4 5 6 7

3 2 4 6 5 7 1

1 2 3 4 5 6 7

3 2 4 6 5 7 1

Connect as many as possible �tting ports without lines crossing.

595



Longest Ascending Sequence (LAS)

1 2 3 4 5 6 7

3 2 4 6 5 7 1

1 2 3 4 5 6 7

3 2 4 6 5 7 1

Connect as many as possible �tting ports without lines crossing.

595



Formally

Consider Sequence An = (a1, . . . , an).
Search for a longest increasing subsequence
of An.
Examples of increasing subsequences: (3, 4, 5),
(2, 4, 5, 7), (3, 4, 5, 7), (3, 7).

1 2 3 4 5 6 7

3 2 4 6 5 7 1
A

Generalization: allow any numbers, even with duplicates (still only strictly
increasing subsequences permitted). Example: (2, 3, 3, 3, 5, 1) with
increasing subsequence (2, 3, 5).

596



Formally

Consider Sequence An = (a1, . . . , an).
Search for a longest increasing subsequence
of An.
Examples of increasing subsequences: (3, 4, 5),
(2, 4, 5, 7), (3, 4, 5, 7), (3, 7).

1 2 3 4 5 6 7

3 2 4 6 5 7 1
A

Generalization: allow any numbers, even with duplicates (still only strictly
increasing subsequences permitted). Example: (2, 3, 3, 3, 5, 1) with
increasing subsequence (2, 3, 5).

596



First idea (Greedy)

Let Li = longest ascending subsequence of Ai (1 ≤ i ≤ n)

Assumption: LAS Lk of Ak known. Compute Lk+1 for Ak+1.

Idea

Lk+1 =

Lk ⊕ ak+1 if ak > max(Lk)
Lk otherwise?

Counterexample

A5 = (1, 2, 5, 3, 4).
A3 = (1, 2, 5) with L3 = A3 and L4 = A3.

Greedy idea fails here: we cannot directly infer Lk+1 from Lk.

597



First idea (Greedy)

Let Li = longest ascending subsequence of Ai (1 ≤ i ≤ n)

Assumption: LAS Lk of Ak known. Compute Lk+1 for Ak+1.

Idea

Lk+1 =

Lk ⊕ ak+1 if ak > max(Lk)
Lk otherwise?

Counterexample

A5 = (1, 2, 5, 3, 4).
A3 = (1, 2, 5) with L3 = A3 and L4 = A3.

Greedy idea fails here: we cannot directly infer Lk+1 from Lk.

597



First idea (Greedy)

Let Li = longest ascending subsequence of Ai (1 ≤ i ≤ n)

Assumption: LAS Lk of Ak known. Compute Lk+1 for Ak+1.

Idea

Lk+1 =

Lk ⊕ ak+1 if ak > max(Lk)
Lk otherwise?

Counterexample

A5 = (1, 2, 5, 3, 4).
A3 = (1, 2, 5) with L3 = A3 and L4 = A3.

Greedy idea fails here: we cannot directly infer Lk+1 from Lk.

597



First idea (Greedy)

Let Li = longest ascending subsequence of Ai (1 ≤ i ≤ n)

Assumption: LAS Lk of Ak known. Compute Lk+1 for Ak+1.

Idea

Lk+1 =

Lk ⊕ ak+1 if ak > max(Lk)
Lk otherwise?

Counterexample

A5 = (1, 2, 5, 3, 4).
A3 = (1, 2, 5) with L3 = A3 and L4 = A3.

Greedy idea fails here: we cannot directly infer Lk+1 from Lk.
597



Second idea. (Pre�x)

Let Li = longest ascending subsequence of Ai (1 ≤ i ≤ n)

Assumption: a LAS Lj that ends in aj is known for each j ≤ k. Now
compute LAS Lk+1 for k + 1.

Look at all �tting Lk+1 = Lj ⊕ ak+1 (j ≤ k) and choose a longest sequence.

Example

A5 = (1, 2, 5, 3, 4).
L1 = (1), L2 = (1, 2), L3 = (1, 2, 5), L4 = (1, 2, 3), L5 = (1, 2, 3, 4).

This works with running time n2 (and requires access to all sequences Li.

598



Second idea. (Pre�x)

Let Li = longest ascending subsequence of Ai (1 ≤ i ≤ n)

Assumption: a LAS Lj that ends in aj is known for each j ≤ k. Now
compute LAS Lk+1 for k + 1.

Look at all �tting Lk+1 = Lj ⊕ ak+1 (j ≤ k) and choose a longest sequence.

Example

A5 = (1, 2, 5, 3, 4).
L1 = (1), L2 = (1, 2), L3 = (1, 2, 5), L4 = (1, 2, 3), L5 = (1, 2, 3, 4).

This works with running time n2 (and requires access to all sequences Li.

598



Second idea. (Pre�x)

Let Li = longest ascending subsequence of Ai (1 ≤ i ≤ n)

Assumption: a LAS Lj that ends in aj is known for each j ≤ k. Now
compute LAS Lk+1 for k + 1.

Look at all �tting Lk+1 = Lj ⊕ ak+1 (j ≤ k) and choose a longest sequence.

Example

A5 = (1, 2, 5, 3, 4).
L1 = (1), L2 = (1, 2), L3 = (1, 2, 5), L4 = (1, 2, 3), L5 = (1, 2, 3, 4).

This works with running time n2 (and requires access to all sequences Li.

598



Third approach

Let Mn,i = longest ascending subsequence of Ai (1 ≤ i ≤ n)
Assumption: the LAS Mj for Ak, that end with smallest element are known
for each of the lengths 1 ≤ j ≤ k.

Consider all �tting Mk,j ⊕ ak+1 (j ≤ k) and update the table of the LAS,that
end with smallest possible element.

599



Third approach

Let Mn,i = longest ascending subsequence of Ai (1 ≤ i ≤ n)
Assumption: the LAS Mj for Ak, that end with smallest element are known
for each of the lengths 1 ≤ j ≤ k.
Consider all �tting Mk,j ⊕ ak+1 (j ≤ k) and update the table of the LAS,that
end with smallest possible element.

599



Third approach Example

Example: A = (1, 1000, 1001, 4, 5, 2, 6, 7)
A LAT Mk,·

1 (1)

+ 1000 (1), (1, 1000)
+ 1001 (1), (1, 1000), (1, 1000, 1001)
+ 4 (1), (1,4), (1, 1000, 1001)
+ 5 (1), (1, 4), (1, 4, 5)
+ 2 (1), (1, 2), (1, 4, 5)
+ 6 (1), (1, 2), (1, 4, 5), (1, 4, 5,6)
+ 7 (1), (1, 2), (1, 4, 5), (1, 4, 5, 6), (1, 4, 5, 6, 7)

600



Third approach Example

Example: A = (1, 1000, 1001, 4, 5, 2, 6, 7)
A LAT Mk,·

1 (1)
+ 1000 (1), (1, 1000)

+ 1001 (1), (1, 1000), (1, 1000, 1001)
+ 4 (1), (1,4), (1, 1000, 1001)
+ 5 (1), (1, 4), (1, 4, 5)
+ 2 (1), (1, 2), (1, 4, 5)
+ 6 (1), (1, 2), (1, 4, 5), (1, 4, 5,6)
+ 7 (1), (1, 2), (1, 4, 5), (1, 4, 5, 6), (1, 4, 5, 6, 7)

600



Third approach Example

Example: A = (1, 1000, 1001, 4, 5, 2, 6, 7)
A LAT Mk,·

1 (1)
+ 1000 (1), (1, 1000)
+ 1001 (1), (1, 1000), (1, 1000, 1001)

+ 4 (1), (1,4), (1, 1000, 1001)
+ 5 (1), (1, 4), (1, 4, 5)
+ 2 (1), (1, 2), (1, 4, 5)
+ 6 (1), (1, 2), (1, 4, 5), (1, 4, 5,6)
+ 7 (1), (1, 2), (1, 4, 5), (1, 4, 5, 6), (1, 4, 5, 6, 7)

600



Third approach Example

Example: A = (1, 1000, 1001, 4, 5, 2, 6, 7)
A LAT Mk,·

1 (1)
+ 1000 (1), (1, 1000)
+ 1001 (1), (1, 1000), (1, 1000, 1001)
+ 4 (1), (1,4), (1, 1000, 1001)

+ 5 (1), (1, 4), (1, 4, 5)
+ 2 (1), (1, 2), (1, 4, 5)
+ 6 (1), (1, 2), (1, 4, 5), (1, 4, 5,6)
+ 7 (1), (1, 2), (1, 4, 5), (1, 4, 5, 6), (1, 4, 5, 6, 7)

600



Third approach Example

Example: A = (1, 1000, 1001, 4, 5, 2, 6, 7)
A LAT Mk,·

1 (1)
+ 1000 (1), (1, 1000)
+ 1001 (1), (1, 1000), (1, 1000, 1001)
+ 4 (1), (1,4), (1, 1000, 1001)
+ 5 (1), (1, 4), (1, 4, 5)

+ 2 (1), (1, 2), (1, 4, 5)
+ 6 (1), (1, 2), (1, 4, 5), (1, 4, 5,6)
+ 7 (1), (1, 2), (1, 4, 5), (1, 4, 5, 6), (1, 4, 5, 6, 7)

600



Third approach Example

Example: A = (1, 1000, 1001, 4, 5, 2, 6, 7)
A LAT Mk,·

1 (1)
+ 1000 (1), (1, 1000)
+ 1001 (1), (1, 1000), (1, 1000, 1001)
+ 4 (1), (1,4), (1, 1000, 1001)
+ 5 (1), (1, 4), (1, 4, 5)
+ 2 (1), (1, 2), (1, 4, 5)

+ 6 (1), (1, 2), (1, 4, 5), (1, 4, 5,6)
+ 7 (1), (1, 2), (1, 4, 5), (1, 4, 5, 6), (1, 4, 5, 6, 7)

600



Third approach Example

Example: A = (1, 1000, 1001, 4, 5, 2, 6, 7)
A LAT Mk,·

1 (1)
+ 1000 (1), (1, 1000)
+ 1001 (1), (1, 1000), (1, 1000, 1001)
+ 4 (1), (1,4), (1, 1000, 1001)
+ 5 (1), (1, 4), (1, 4, 5)
+ 2 (1), (1, 2), (1, 4, 5)
+ 6 (1), (1, 2), (1, 4, 5), (1, 4, 5,6)

+ 7 (1), (1, 2), (1, 4, 5), (1, 4, 5, 6), (1, 4, 5, 6, 7)

600



Third approach Example

Example: A = (1, 1000, 1001, 4, 5, 2, 6, 7)
A LAT Mk,·

1 (1)
+ 1000 (1), (1, 1000)
+ 1001 (1), (1, 1000), (1, 1000, 1001)
+ 4 (1), (1,4), (1, 1000, 1001)
+ 5 (1), (1, 4), (1, 4, 5)
+ 2 (1), (1, 2), (1, 4, 5)
+ 6 (1), (1, 2), (1, 4, 5), (1, 4, 5,6)
+ 7 (1), (1, 2), (1, 4, 5), (1, 4, 5, 6), (1, 4, 5, 6, 7)

600



DP Table

Idea: save the last element
of the increasing sequence
Mk,j at slot j.

Example:
13 12 15 11 16 14
Problem: Table does not
contain the subsequence,
only the last value.
Solution: second table with
the values of the
predecessors.

i 1 2 3 4 5 6
value ai 13 12 15 11 16 14

Predecessor −∞ −∞ 12 −∞ 15 11

j 0 1 2 3 4 ...

(Lj)j -∞ 11 14 16 ∞

601



DP Table

Idea: save the last element
of the increasing sequence
Mk,j at slot j.
Example:
13 12 15 11 16 14

Problem: Table does not
contain the subsequence,
only the last value.
Solution: second table with
the values of the
predecessors.

i 1 2 3 4 5 6
value ai 13 12 15 11 16 14

Predecessor −∞ −∞ 12 −∞ 15 11

j 0 1 2 3 4 ...

(Lj)j -∞ 11 14 16 ∞

601



DP Table

Idea: save the last element
of the increasing sequence
Mk,j at slot j.
Example:
13 12 15 11 16 14

Problem: Table does not
contain the subsequence,
only the last value.
Solution: second table with
the values of the
predecessors.

i 1 2 3 4 5 6
value ai 13 12 15 11 16 14

Predecessor −∞ −∞ 12 −∞ 15 11

j 0 1 2 3 4 ...
(Lj)j -∞ ∞ ∞ ∞ ∞

(Lj)j -∞ 11 14 16 ∞

601



DP Table

Idea: save the last element
of the increasing sequence
Mk,j at slot j.
Example:
13 12 15 11 16 14

Problem: Table does not
contain the subsequence,
only the last value.
Solution: second table with
the values of the
predecessors.

i 1 2 3 4 5 6
value ai 13 12 15 11 16 14

Predecessor −∞ −∞ 12 −∞ 15 11

j 0 1 2 3 4 ...
(Lj)j -∞ 13 ∞ ∞ ∞

(Lj)j -∞ 11 14 16 ∞

601



DP Table

Idea: save the last element
of the increasing sequence
Mk,j at slot j.
Example:
13 12 15 11 16 14

Problem: Table does not
contain the subsequence,
only the last value.
Solution: second table with
the values of the
predecessors.

i 1 2 3 4 5 6
value ai 13 12 15 11 16 14

Predecessor −∞ −∞ 12 −∞ 15 11

j 0 1 2 3 4 ...
(Lj)j -∞ 12 ∞ ∞ ∞

(Lj)j -∞ 11 14 16 ∞

601



DP Table

Idea: save the last element
of the increasing sequence
Mk,j at slot j.
Example:
13 12 15 11 16 14

Problem: Table does not
contain the subsequence,
only the last value.
Solution: second table with
the values of the
predecessors.

i 1 2 3 4 5 6
value ai 13 12 15 11 16 14

Predecessor −∞ −∞ 12 −∞ 15 11

j 0 1 2 3 4 ...
(Lj)j -∞ 12 15 ∞ ∞

(Lj)j -∞ 11 14 16 ∞

601



DP Table

Idea: save the last element
of the increasing sequence
Mk,j at slot j.
Example:
13 12 15 11 16 14

Problem: Table does not
contain the subsequence,
only the last value.
Solution: second table with
the values of the
predecessors.

i 1 2 3 4 5 6
value ai 13 12 15 11 16 14

Predecessor −∞ −∞ 12 −∞ 15 11

j 0 1 2 3 4 ...
(Lj)j -∞ 11 15 ∞ ∞

(Lj)j -∞ 11 14 16 ∞

601



DP Table

Idea: save the last element
of the increasing sequence
Mk,j at slot j.
Example:
13 12 15 11 16 14

Problem: Table does not
contain the subsequence,
only the last value.
Solution: second table with
the values of the
predecessors.

i 1 2 3 4 5 6
value ai 13 12 15 11 16 14

Predecessor −∞ −∞ 12 −∞ 15 11

j 0 1 2 3 4 ...
(Lj)j -∞ 11 15 16 ∞

(Lj)j -∞ 11 14 16 ∞

601



DP Table

Idea: save the last element
of the increasing sequence
Mk,j at slot j.
Example:
13 12 15 11 16 14
Problem: Table does not
contain the subsequence,
only the last value.

Solution: second table with
the values of the
predecessors.

i 1 2 3 4 5 6
value ai 13 12 15 11 16 14

Predecessor −∞ −∞ 12 −∞ 15 11

j 0 1 2 3 4 ...
(Lj)j -∞ 11 14 16 ∞

601



DP Table

Idea: save the last element
of the increasing sequence
Mk,j at slot j.
Example:
13 12 15 11 16 14
Problem: Table does not
contain the subsequence,
only the last value.
Solution: second table with
the values of the
predecessors.

i 1 2 3 4 5 6
value ai 13 12 15 11 16 14

Predecessor −∞ −∞ 12 −∞ 15 11

j 0 1 2 3 4 ...
(Lj)j -∞ 11 14 16 ∞

601



DP Table

Idea: save the last element
of the increasing sequence
Mk,j at slot j.
Example:
13 12 15 11 16 14
Problem: Table does not
contain the subsequence,
only the last value.
Solution: second table with
the values of the
predecessors.

i 1 2 3 4 5 6
value ai 13 12 15 11 16 14
Predecessor −∞ −∞ 12 −∞ 15 11

j 0 1 2 3 4 ...
(Lj)j -∞ 11 14 16 ∞

601



Dynamic Programming Algorithm LAS

1.

Table dimension? Semantics?

Two tables T [0, . . . , n] and V [1, . . . , n]. T [j]: last Element of the increasing
subequence Mn,j

V [j]: Value of the predecessor of aj .
Start with T [0]← −∞, T [i]←∞ ∀i > 1

2.
Computation of an entry

Entries in T sorted in ascending order. For each new entry ak binary search
for l, such that T [l] < ak < T [l + 1]. Set T [l + 1]← ak . Set V [k] = T [l].

602



Dynamic Programming algorithm LAS

3.
Computation order

Traverse the list anc compute T [k] and V [k] with ascending k

4.

Reconstruction of a solution?

Search the largest l with T [l] < ∞. l is the last index of the LAS. Starting
at l search for the index i < l such that V [l] = ai, i is the predecessor of l.
Repeat with l← i until T [l] = −∞

603



Analysis

Computation of the table:

Initialization: Θ(n) Operations
Computation of the kth entry: binary search on positions {1, . . . , k} plus
constant number of assignments.

n∑
k=1

(log k +O(1)) = O(n) +
n∑

k=1
log(k) = Θ(n log n).

Reconstruction: traverse A from right to left: O(n).
Overal runtime:

Θ(n log n).

604



20.7 Editing Distance

605



Minimal Editing Distance

Editing distance of two sequences An = (a1, . . . , an), Bm = (b1, . . . , bm).
Editing operations:
Insertion of a character
Deletion of a character
Replacement of a character

Question: how many editing operations at least required in order to
transform string A into string B.

TIGER→ ZIGER→ ZIEGER→ ZIEGE

606



Minimal Editing Distance

Wanted: cheapest character-wise transformation An → Bm with costs

operation Levenshtein LCS31 general
Insert c 1 1 ins(c)
Delete c 1 1 del(c)
Replace c→ c′ 1(c 6= c′) ∞ · 1(c 6= c′) repl(c, c′)

Beispiel
T I G E R
Z I E G E

T I _ G E R
Z I E G E _

T→Z +E -R
Z→T -E +R

31Longest common subsequence – A special case of an editing problem
607



Idea

Z I E G E→ T I G E R

Possibilities
1.

c(’ZIEG’→ ’TIGE’) + c(’E’→ ’R’)
Z I E G E→ T I G E R

2.
c(’ZIEGE’→ ’TIGE’) + c(ins(’R’))

Z I E G E→ T I G E + R
3.

c(’ZIEG’→ ’TIGER’) + c(del(’E’))
Z I E G E - E→ T I G E R

608



DP

0. E(n, m) = mimimum number edit operations (ED cost) a1...n → b1...m

1. Subproblems E(i, j) = ED of a1...i, b1...j . #SP = n ·m
2. Guess CostsΘ(1)

a1..i → a1...i−1 (delete)
a1..i → a1...ibj (insert)
a1..i → a1...i−1bj (replace)

3. Rekursion

E(i, j) = min


del(ai) + E(i− 1, j),
ins(bj) + E(i, j − 1),
repl(ai, bj) + E(i− 1, j − 1)

609



DP

4. Dependencies

⇒ Computation from left top to bottom right. Row- or column-wise.
5. Solution in E(n, m)

610



Example (Levenshtein Distance)

E[i, j]← min
{
E[i− 1, j] + 1, E[i, j − 1] + 1, E[i− 1, j − 1] + 1(ai 6= bj)

}
∅ Z I E G E

∅ 0 1 2 3 4 5
T 1 1 2 3 4 5
I 2 2 1 2 3 4
G 3 3 2 2 2 3
E 4 4 3 2 3 2
R 5 5 4 3 3 3

Editing steps: from bottom right to top left, following the recursion.
611



Bottom-Up DP algorithm ED

1.
Dimension of the table? Semantics?

Table E[0, . . . , m][0, . . . , n]. E[i, j]: minimal edit distance of the strings
(a1, . . . , ai) and (b1, . . . , bj)

2.

Computation of an entry

E[0, i]← i ∀0 ≤ i ≤ m, E[j, 0]← i ∀0 ≤ j ≤ n. Computation of E[i, j] oth-
erwise viaE[i, j] = min{del(ai)+E(i−1, j), ins(bj)+E(i, j−1), repl(ai, bj)+
E(i− 1, j − 1)}

612



Bottom-Up DP algorithm ED

3.
Computation order

Rows increasing and within columns increasing (or the other way round).

4.

Reconstruction of a solution?

Start with j = m, i = n. If E[i, j] = repl(ai, bj) + E(i− 1, j− 1) then output
ai → bj and continue with (j, i) ← (j − 1, i − 1); otherwise, if E[i, j] =
del(ai) + E(i− 1, j) output del(ai) and continue with j ← j− 1 otherwise,
if E[i, j] = ins(bj) + E(i, j − 1), continue with i ← i − 1 . Terminate for
i = 0 and j = 0.

613



Analysis ED

Number table entries: (m + 1) · (n + 1).
Constant number of assignments and comparisons each. Number steps:
O(mn)
Determination of solition: decrease i or j. Maximally O(n + m) steps.

Runtime overal:
O(mn).

614



Matrix-Chain-Multiplication

Task: Computation of the product A1 · A2 · ... · An of matrices A1, . . . , An.
Matrix multiplication is associative, i.e. the order of evaluation can be
chosen arbitrarily
Goal: e�cient computation of the product.
Assumption: multiplication of an (r × s)-matrix with an (s× u)-matrix
provides costs r · s · u.

615



Does it matter?

·

A1

1

k
k

1 ·

A2

1

k

A3

=

A1 ·A2

·

A3

=

A1 ·A2 ·A3

k2 operations! k2 operations!

·

1

k

A1

k
1 ·

A2
1

k

A3

=

A1

·

A2 ·A3

=

A1 ·A2 ·A3

k operations!k operations!

616



Does it matter?

·

A1

1

k
k

1 ·

A2

1

k

A3

=

A1 ·A2

·

A3

=

A1 ·A2 ·A3

k2 operations! k2 operations!

·

1

k

A1

k
1 ·

A2
1

k

A3

=

A1

·

A2 ·A3

=

A1 ·A2 ·A3

k operations!k operations!

616



Does it matter?

·

A1

1

k
k

1 ·

A2

1

k

A3

=

A1 ·A2

·

A3

=

A1 ·A2 ·A3

k2 operations! k2 operations!

·

1

k

A1

k
1 ·

A2
1

k

A3

=

A1

·

A2 ·A3

=

A1 ·A2 ·A3

k operations!k operations!

616



Does it matter?

·

A1

1

k
k

1 ·

A2

1

k

A3

=

A1 ·A2

·

A3

=

A1 ·A2 ·A3

k2 operations! k2 operations!

·

1

k

A1

k
1 ·

A2
1

k

A3

=

A1

·

A2 ·A3

=

A1 ·A2 ·A3

k operations!k operations!

616



Does it matter?

·

A1

1

k
k

1 ·

A2

1

k

A3

=

A1 ·A2

·

A3

=

A1 ·A2 ·A3

k2 operations! k2 operations!

·

1

k

A1

k
1 ·

A2
1

k

A3

=

A1

·

A2 ·A3

=

A1 ·A2 ·A3

k operations!k operations!

616



Does it matter?

·

A1

1

k
k

1 ·

A2

1

k

A3

=

A1 ·A2

·

A3

=

A1 ·A2 ·A3

k2 operations! k2 operations!

·

1

k

A1

k
1 ·

A2
1

k

A3

=

A1

·

A2 ·A3

=

A1 ·A2 ·A3

k operations!k operations!

616



Does it matter?

·

A1

1

k
k

1 ·

A2

1

k

A3

=

A1 ·A2

·

A3

=

A1 ·A2 ·A3

k2 operations! k2 operations!

·

1

k

A1

k
1 ·

A2
1

k

A3

=

A1

·

A2 ·A3

=

A1 ·A2 ·A3

k operations!k operations!

616



Does it matter?

·

A1

1

k
k

1 ·

A2

1

k

A3

=

A1 ·A2

·

A3

=

A1 ·A2 ·A3

k2 operations! k2 operations!

·

1

k

A1

k
1 ·

A2
1

k

A3

=

A1

·

A2 ·A3

=

A1 ·A2 ·A3

k operations!k operations!

616



Recursion

Assume that the best possible computation of (A1 · A2 · · ·Ai) and
(Ai+1 · Ai+2 · · ·An) is known for each i.
Compute best i, done.

n× n-table M . entry M [p, q] provides costs of the best possible bracketing
(Ap · Ap+1 · · ·Aq).

M [p, q]← min
p≤i<q

(M [p, i] + M [i + 1, q] + costs of the last multiplication)

617



Computation of the DP-table

Base cases M [p, p]← 0 for all 1 ≤ p ≤ n.
Computation of M [p, q] depends on M [i, j] with p ≤ i ≤ j ≤ q,
(i, j) 6= (p, q).
In particular M [p, q] depends at most from entries M [i, j] with
i− j < q − p.
Consequence: �ll the table from the diagonal.

618



Analysis

DP-table has n2 entries. Computation of an entry requires considering up
to n− 1 other entries.
Overal runtime O(n3).

Readout the order from M : exercise!

619



Digression: matrix multiplication

Consider the multiplication of two n× n matrices.
Let

A = (aij)1≤i,j≤n, B = (bij)1≤i,j≤n, C = (cij)1≤i,j≤n,

C = A ·B

then

cij =
n∑

k=1
aikbkj.

Naive algorithm requires Θ(n3) elementary multiplications.

620



Divide and Conquer

C = ABA

B

e f

g h

a b

c d

ea + fc eb + fd

ga + hc gb + hd

621



Divide and Conquer

Assumption n = 2k.
Number of elementary multiplications:
M(n) = 8M(n/2), M(1) = 1.
yields M(n) = 8log2 n = nlog2 8 = n3. No
advantage

e f

g h

a b

c d

ea + fc eb + fd

ga + hc gb + hd

622



Strassen’s Matrix Multiplication

Nontrivial observation by Strassen (1969): It
su�ces to compute the seven products
A = (e + h) · (a + d), B = (g + h) · a, C = e · (b− d),
D = h · (c− a), E = (e + f) · d, F = (g − e) · (a + b),
G = (f − h) · (c + d). Because:
ea + fc = A + D − E + G, eb + fd = C + E,
ga + hc = B + D, gb + hd = A−B + C + F .
This yields M ′(n) = 7M(n/2), M ′(1) = 1.
Thus M ′(n) = 7log2 n = nlog2 7 ≈ n2.807.

Fastest currently known algorithm: O(n2.37)

e f

g h

a b

c d

ea + fc eb + fd

ga + hc gb + hd

623


	Dynamic Programming I
	Fibonacci Numbers
	Memoization
	Description of the Result
	Rod Cutting
	Rabbit (Longest Path)
	Longest Ascending Sequence
	Editing Distance
	Matrix-Chain-Multiplication
	Strassen's Matrix Multiplication


