20. Dynamic Programming I

Memoization, Optimal Substructure, Overlapping Sub-Problems, Dependencies, General Procedure. Examples: Fibonacci, Rod Cutting, Longest Ascending Subsequence, Longest Common Subsequence, Edit Distance, Matrix Chain Multiplication (Strassen)

[Ottman/Widmayer, Kap. 1.2.3, 7.1, 7.4, Cormen et al, Kap. 15]

Fibonacci Numbers

$$F_n := \begin{cases} n & \text{if } n < 2 \\ F_{n-1} + F_{n-2} & \text{if } n \ge 2. \end{cases}$$

Analysis: why ist the recursive algorithm so slow?

Algorithm FibonacciRecursive(n)

```
Input: n \geq 0
Output: n-th Fibonacci number

if n < 2 then
\mid f \leftarrow n
else
\mid f \leftarrow \text{FibonacciRecursive}(n-1) + \text{FibonacciRecursive}(n-2)
return f
```

Analysis

T(n): Number executed operations.

- $n = 0, 1: T(n) = \Theta(1)$
- $n \ge 2: T(n) = T(n-2) + T(n-1) + c.$ $T(n) = T(n-2) + T(n-1) + c \ge 2T(n-2) + c \ge 2^{n/2}c' = (\sqrt{2})^n c'$

Algorithm is **exponential** in n.

Reason (visual)

Nodes with same values are evaluated (too) often.

Memoization

Memoization (sic) saving intermediate results.

- Before a subproblem is solved, the existence of the corresponding intermediate result is checked.
- If an intermediate result exists then it is used.
- Otherwise the algorithm is executed and the result is saved accordingly.

Memoization with Fibonacci

Rectangular nodes have been computed before.

Algorithm FibonacciMemoization(n)

```
Input: n > 0
Output: n-th Fibonacci number
if n < 2 then
     f \leftarrow 1
else if \exists memo[n] then
     f \leftarrow \mathsf{memo}[n]
else
     f \leftarrow \mathsf{FibonacciMemoization}(n-1) + \mathsf{FibonacciMemoization}(n-2)
     \mathsf{memo}[n] \leftarrow f
return f
```

Analysis

Computational complexity:

$$T(n) = T(n-1) + c = \dots = \mathcal{O}(n).$$

because after the call to f(n-1), f(n-2) has already been computed. A different argument: f(n) is computed exactly once recursively for each n. Runtime costs: n calls with $\Theta(1)$ costs per call $n \cdot c \in \Theta(n)$. The recursion vanishes from the running time computation.

Algorithm requires $\Theta(n)$ memory.²⁹

 $^{^{29}}$ But the naive recursive algorithm also requires $\Theta(n)$ memory implicitly.

Looking closer ...

... the algorithm computes the values of F_1 , F_2 , F_3 ,... in the **top-down** approach of the recursion.

Can write the algorithm **bottom-up**. This is characteristic for **dynamic programming**.

Algorithm FibonacciBottomUp(n)

Dynamic Programming: Idea

- Divide a complex problem into a reasonable number of sub-problems
- The solution of the sub-problems will be used to solve the more complex problem
- Identical problems will be computed only once

Dynamic Programming Consequence

Identical problems will be computed only once

⇒ Results are saved

We trade speed against memory consumption

Dynamic Programming = Divide-And-Conquer?

- In both cases the original problem can be solved (more easily) by utilizing the solutions of sub-problems. The problem provides **optimal** substructure.
- Classical Divide-And-Conquer algorithms (such as Mergesort): sub-problems are independent; their solutions are required only once in the algorithm.
- DP: sub-problems are dependent. The problem is said to have overlapping sub-problems that are required multiple-times in the algorithm.
- In order to avoid redundant computations, results are tabulated. For sub-problems there must not be any circular dependencies.

Dynamic Programming: Description

- 1. Use a **DP-table** with information to the subproblems. Dimension of the table? Semantics of the entries?
- 2. Computation of the base cases.
 Which entries do not depend on others?
- 3. Determine **computation order**.

 In which order can the entries be computed such that dependencies are fulfilled?
- 4. Read-out the **solution**How can the solution be read out from the table?

Runtime (typical) = number entries of the table times required operations per entry.

Dynamic Programing: Description (Fibonacci)

Rod Cutting

- Rods (metal sticks) are cut and sold.
- \blacksquare Rods of length $n \in \mathbb{N}$ are available. A cut does not provide any costs.
- lacksquare For each length $l\in\mathbb{N}$, $l\leq n$ known is the value $v_l\in\mathbb{R}^+$
- Goal: cut the rods such (into $k \in \mathbb{N}$ pieces) that

$$\sum_{i=1}^k v_{l_i}$$
 is maximized subject to $\sum_{i=1}^k l_i = n$.

Rod Cutting: Example

Possibilities to cut a rod of length 4 (without permutations)

Length	0	1	2	3	4	\Rightarrow Best cut: 3 + 1 with value 10.
Price	0	2	3	8	9	Dest cut. 5 · 1 with value 10.

How to Find the DP Algorithm.

- 0. Exact formulation of the wanted solution
- 1. Define sub-problems, reformulate (0.) as sub-problem
- 2. Recursion: relate subproblems by enumerating of local properties
- 3. Determine the dependencies of the sub-problems
- 4. Solve the problem Running time = #sub-problems × time/sub-problem

Structure of the problem

- 0. **Wanted:** r_n = maximal value of rod (cut or as a whole) with length n.
- 1. **sub-problems**: maximal value r_k for each $0 \le k < n$
- 2. Local property: length of the first piece **Recursion**

$$r_k = \max\{v_i + r_{k-i} : 0 < i \le k\}, \quad k > 0$$

 $r_0 = 0$

- 3. **Dependency:** r_k depends (only) on values v_i , $1 \le i \le k$ and the optimal cuts r_i , i < k.
- 4. **Solution** in r_n . DP running time: $\Theta(n^2)$

Algorithm RodCut(v,n) (without memoization)

$$^{30}T(n) = T(n-1) + \sum_{i=0}^{n-2} T(i) + c = T(n-1) + (T(n-1) - c) + c = 2T(n-1) \quad (n > 0)$$

Recursion Tree

Algorithm RodCutMemoized(m, v, n)

```
Input: n \ge 0. Prices v. Memoization Table m
Output: best value
a \leftarrow 0
if n > 0 then
   if \exists m[n] then
     q \leftarrow m[n]
   else
    return q
Running time \sum_{i=1}^{n} i = \Theta(n^2)
```

Subproblem-Graph

Describes the mutual dependencies of the subproblems

and must not contain cycles

Construction of the Optimal Cut

- During the (recursive) computation of the optimal solution for each $k \le n$ the recursive algorithm determines the optimal length of the first rod
- \blacksquare Store the length of the first rod in a separate table of length n

Bottom-up Description with the example

Dimension of the table? Semantics of the entries? $n \times 1$ table. nth entry contains the best value of a rod of length n. Which entries do not depend on other entries? Value r_0 is 0 Computation order? 3. $r_i, i = 1, \ldots, n.$ Reconstruction of a solution? 4. r_n is the best value for the rod of length n.

Rabbit!

A rabbit sits on cite (1,1) of an $n \times n$ grid. It can only move to east or south. On each pathway there is a number of carrots. How many carrots does the rabbit collect maximally?

Rabbit!

Number of possible paths?

- Choice of n-1 ways to south out of 2n-2 ways overal.

$$\binom{2n-2}{n-1} \in \Omega(2^n)$$

 \Rightarrow No chance for a naive algorithm

The path 100011 (1:to south, 0: to east)

Recursion

Wanted: $T_{1,1}$ = maximal number carrots from (1,1) to (n,n). Let $w_{(i,j)-(i',j')}$ number of carrots on egde from (i,j) to (i',j'). Recursion (maximal number of carrots from (i,j) to (n,n)

$$T_{ij} = \begin{cases} \max\{w_{(i,j)-(i,j+1)} + T_{i,j+1}, w_{(i,j)-(i+1,j)} + T_{i+1,j}\}, & i < n, j < n \\ w_{(i,j)-(i,j+1)} + T_{i,j+1}, & i = n, j < n \\ w_{(i,j)-(i+1,j)} + T_{i+1,j}, & i < n, j = n \\ 0 & i = j = n \end{cases}$$

Graph of Subproblem Dependencies

Bottom-up Description with the example

1.	Dimension of the table? Semantics of the entries?
	Table T with size $n \times n$. Entry at i,j provides the maximal number of carrots from (i,j) to (n,n) .
2.	Which entries do not depend on other entries?
	Value $T_{n,n}$ is 0
3.	Computation order?
	$T_{i,j}$ with $i=n\searrow 1$ and for each $i:j=n\searrow 1$, (or vice-versa: $j=n\searrow 1$ and for each $j:i=n\searrow 1$).
4.	Reconstruction of a solution?
	$T_{1,1}$ provides the maximal number of carrots.

Longest Ascending Sequence (LAS)

Connect as many as possible fitting ports without lines crossing.

Formally

- Consider Sequence $A_n = (a_1, \ldots, a_n)$.
- Search for a longest increasing subsequence of A_n .
- **Examples** of increasing subsequences: (3, 4, 5), (2, 4, 5, 7), (3, 4, 5, 7), (3, 7).

Generalization: allow any numbers, even with duplicates (still only strictly increasing subsequences permitted). Example: (2,3,3,3,5,1) with increasing subsequence (2,3,5).

First idea (Greedy)

Let L_i = longest ascending subsequence of A_i $(1 \le i \le n)$

Assumption: LAS L_k of A_k known. Compute L_{k+1} for A_{k+1} .

Idea

$$L_{k+1} = \begin{cases} L_k \oplus a_{k+1} & \text{if } a_k > \max(L_k) \\ L_k & \text{otherwise?} \end{cases}$$

Counterexample

$$A_5 = (1, 2, 5, 3, 4).$$

 $A_3 = (1, 2, 5)$ with $L_3 = A_3$ and $L_4 = A_3$.

Greedy idea fails here: we cannot directly infer L_{k+1} from L_k .

Second idea. (Prefix)

Let L_i = longest ascending subsequence of A_i $(1 \le i \le n)$

Assumption: a LAS L_j that ends in a_j is known for each $j \leq k$. Now compute LAS L_{k+1} for k+1.

Look at all fitting $L_{k+1} = L_j \oplus a_{k+1}$ $(j \le k)$ and choose a longest sequence.

Example

$$A_5 = (1, 2, 5, 3, 4).$$

$$L_1 = (1), L_2 = (1, 2), L_3 = (1, 2, 5), L_4 = (1, 2, 3), L_5 = (1, 2, 3, 4).$$

This works with running time n^2 (and requires access to all sequences L_i .

Third approach

Let $M_{n,i}$ = longest ascending subsequence of A_i $(1 \le i \le n)$

Assumption: the LAS M_j for A_k , that end with smallest element are known for each of the lengths 1 < j < k.

Consider all fitting $M_{k,j} \oplus a_{k+1}$ $(j \leq k)$ and update the table of the LAS,that end with smallest possible element.

Third approach Example

Example: A = (1, 1000, 1001, 4, 5, 2, 6, 7)

A	LAT $M_{k,\cdot}$
1	(1)
+ 1000	(1), (1, 1000)
+ 1001	(1), (1, 1000), (1, 1000, 1001)
+4	(1), (1, 4), (1, 1000, 1001)
+5	(1), (1,4), (1,4,5)
+2	(1), (1, 2), (1, 4, 5)
+6	(1), (1, 2), (1, 4, 5), (1, 4, 5, 6)
+ 7	(1), (1, 2), (1, 4, 5), (1, 4, 5, 6), (1, 4, 5, 6, 7)

DP Table

- Idea: save the last element of the increasing sequence $M_{k,j}$ at slot j.
- Example: 13 12 15 11 16 14
- Problem: Table does not contain the subsequence, only the last value.
- Solution: second table with the values of the predecessors.

i	1	2	3	4	5	6
value a_i	13	12	15	11	16	14
Predecessor	$-\infty$	$-\infty$	12	$-\infty$	15	11

j	0					
$(L_i)_i$	-∞	11	14	16	∞	

Dynamic Programming Algorithm LAS

Table dimension? Semantics?

Two tables $T[0,\ldots,n]$ and $V[1,\ldots,n]$. T[j]: last Element of the increasing subequence $M_{n,j}$

V[j]: Value of the predecessor of a_j .

Start with $T[0] \leftarrow -\infty$, $T[i] \leftarrow \infty \; \forall i > 1$

Computation of an entry

Entries in T sorted in ascending order. For each new entry a_k binary search for l, such that $T[l] < a_k < T[l+1]$. Set $T[l+1] \leftarrow a_k$. Set V[k] = T[l].

Dynamic Programming algorithm LAS

Computation order

3.

Traverse the list anc compute T[k] and V[k] with ascending k

Reconstruction of a solution?

4. Search the largest l with $T[l] < \infty$. l is the last index of the LAS. Starting at l search for the index i < l such that $V[l] = a_i$, i is the predecessor of l. Repeat with $l \leftarrow i$ until $T[l] = -\infty$

Analysis

- Computation of the table:
 - Initialization: $\Theta(n)$ Operations
 - Computation of the kth entry: binary search on positions $\{1, \ldots, k\}$ plus constant number of assignments.

$$\sum_{k=1}^{n} (\log k + \mathcal{O}(1)) = \mathcal{O}(n) + \sum_{k=1}^{n} \log(k) = \Theta(n \log n).$$

■ Reconstruction: traverse A from right to left: $\mathcal{O}(n)$.

Overal runtime:

$$\Theta(n \log n)$$
.

20.7 Editing Distance

Minimal Editing Distance

Editing distance of two sequences $A_n = (a_1, \ldots, a_n)$, $B_m = (b_1, \ldots, b_m)$. **Editing operations**:

- Insertion of a character
- Deletion of a character
- Replacement of a character

Question: how many editing operations at least required in order to transform string A into string B.

$$TIGER \rightarrow ZIGER \rightarrow ZIEGER \rightarrow ZIEGE$$

Minimal Editing Distance

Wanted: cheapest character-wise transformation $A_n \to B_m$ with costs

operation	Levenshtein	LCS ³¹	general
Insert c	1	1	ins(c)
Delete c	1	1	del(c)
Replace $c \to c'$	$\mathbb{1}(c \neq c')$	$\infty \cdot \mathbb{1}(c \neq c')$	repl(c,c')

Beispiel

³¹Longest common subsequence – A special case of an editing problem

Idea

$$Z I E G E \rightarrow T I G E R$$

Possibilities

1.

$$c(\text{'ZIEG'} \to \text{'TIGE'}) + c(\text{'E'} \to \text{'R'})$$
 Z | E G **E** \to T | G E **R**

2

$$c(\texttt{'ZIEGE'} \to \texttt{'TIGE'}) + c(\mathsf{ins}(\texttt{'R'}))$$

$$\mathsf{Z} \mid \mathsf{E} \; \mathsf{G} \; \mathsf{E} \to \mathsf{T} \mid \mathsf{G} \; \mathsf{E} \; + \; \mathbf{R}$$

3.

$$c(\texttt{'ZIEG'} \to \texttt{'TIGER'}) + c(\texttt{del('E')})$$

$$\texttt{ZIEGE} \to \texttt{TIGER}$$

DP

- 0. E(n,m) = mimimum number edit operations (ED cost) $a_{1...n} \rightarrow b_{1...m}$
- 1. Subproblems E(i,j) = ED of $a_{1...i}$, $b_{1...j}$. #SP = $n \cdot m$
- 2. Guess $\mathsf{Costs}\Theta(1)$
 - $\blacksquare a_{1..i} \rightarrow a_{1...i-1}$ (delete)
 - $\blacksquare a_{1..i} \rightarrow a_{1...i}b_j \text{ (insert)}$
 - $\blacksquare \ a_{1..i} \rightarrow a_{1...i-1}b_j$ (replace)
- 3. Rekursion

$$E(i,j) = \min \begin{cases} \operatorname{del}(a_i) + E(i-1,j), \\ \operatorname{ins}(b_j) + E(i,j-1), \\ \operatorname{repl}(a_i,b_j) + E(i-1,j-1) \end{cases}$$

DP

4. Dependencies

- \Rightarrow Computation from left top to bottom right. Row- or column-wise.
- 5. Solution in E(n, m)

Example (Levenshtein Distance)

$$E[i,j] \leftarrow \min \left\{ E[i-1,j] + 1, E[i,j-1] + 1, E[i-1,j-1] + \mathbb{1}(a_i \neq b_j) \right\}$$

Editing steps: from bottom right to top left, following the recursion.

Bottom-Up DP algorithm ED

Dimension of the table? Semantics?

Table $E[0,\ldots,m][0,\ldots,n]$. E[i,j]: minimal edit distance of the strings (a_1,\ldots,a_i) and (b_1,\ldots,b_j)

Computation of an entry

2. $E[0,i] \leftarrow i \ \forall 0 \leq i \leq m, \ E[j,0] \leftarrow i \ \forall 0 \leq j \leq n.$ Computation of E[i,j] otherwise via $E[i,j] = \min\{ \operatorname{del}(a_i) + E(i-1,j), \operatorname{ins}(b_j) + E(i,j-1), \operatorname{repl}(a_i,b_j) + E(i-1,j-1) \}$

Bottom-Up DP algorithm ED

Computation order

3.

Rows increasing and within columns increasing (or the other way round).

Reconstruction of a solution?

Start with j=m, i=n. If $E[i,j]=\operatorname{repl}(a_i,b_j)+E(i-1,j-1)$ then output $a_i\to b_j$ and continue with $(j,i)\leftarrow (j-1,i-1)$; otherwise, if $E[i,j]=\operatorname{del}(a_i)+E(i-1,j)$ output $\operatorname{del}(a_i)$ and continue with $j\leftarrow j-1$ otherwise, if $E[i,j]=\operatorname{ins}(b_j)+E(i,j-1)$, continue with $i\leftarrow i-1$. Terminate for i=0 and j=0.

Analysis ED

- Number table entries: $(m+1) \cdot (n+1)$.
- Constant number of assignments and comparisons each. Number steps: $\mathcal{O}(mn)$
- Determination of solition: decrease i or j. Maximally $\mathcal{O}(n+m)$ steps.

Runtime overal:

 $\mathcal{O}(mn)$.

Matrix-Chain-Multiplication

Task: Computation of the product $A_1 \cdot A_2 \cdot ... \cdot A_n$ of matrices $A_1, ..., A_n$. Matrix multiplication is associative, i.e. the order of evaluation can be chosen arbitrarily

Goal: efficient computation of the product.

Assumption: multiplication of an $(r \times s)$ -matrix with an $(s \times u)$ -matrix provides costs $r \cdot s \cdot u$.

Does it matter?

Recursion

- Assume that the best possible computation of $(A_1 \cdot A_2 \cdots A_i)$ and $(A_{i+1} \cdot A_{i+2} \cdots A_n)$ is known for each i.
- Compute best *i*, done.

 $n \times n$ -table M. entry M[p,q] provides costs of the best possible bracketing $(A_p \cdot A_{p+1} \cdots A_q)$.

$$M[p,q] \leftarrow \min_{p \leq i < q} (M[p,i] + M[i+1,q] + \text{costs of the last multiplication})$$

Computation of the DP-table

- Base cases $M[p,p] \leftarrow 0$ for all $1 \le p \le n$.
- Computation of M[p,q] depends on M[i,j] with $p \le i \le j \le q$, $(i,j) \ne (p,q)$.

In particular M[p,q] depends at most from entries M[i,j] with i-j < q-p.

Consequence: fill the table from the diagonal.

Analysis

DP-table has n^2 entries. Computation of an entry requires considering up to n-1 other entries.

Overal runtime $\mathcal{O}(n^3)$.

Readout the order from M: exercise!

Digression: matrix multiplication

Consider the multiplication of two $n \times n$ matrices. Let

$$A = (a_{ij})_{1 \le i,j \le n}, B = (b_{ij})_{1 \le i,j \le n}, C = (c_{ij})_{1 \le i,j \le n}, C = A \cdot B$$

then

$$c_{ij} = \sum_{k=1}^{n} a_{ik} b_{kj}.$$

Naive algorithm requires $\Theta(n^3)$ elementary multiplications.

Divide and Conquer

Divide and Conquer

- Assumption $n=2^k$.
- Number of elementary multiplications: M(n) = 8M(n/2), M(1) = 1.
- yields $M(n) = 8^{\log_2 n} = n^{\log_2 8} = n^3$. No advantage

e	f	ea + fc	eb + fd
g	h	ga + hc	gb + hd

Strassen's Matrix Multiplication

■ Nontrivial observation by Strassen (1969): It suffices to compute the seven products

$$A = (e + h) \cdot (a + d), B = (g + h) \cdot a, C = e \cdot (b - d),$$

 $D = h \cdot (c - a), E = (e + f) \cdot d, F = (g - e) \cdot (a + b),$
 $G = (f - h) \cdot (c + d).$ Because:

$$ea + fc = A + D - E + G$$
, $eb + fd = C + E$, $ga + hc = B + D$, $gb + hd = A - B + C + F$.

- This yields M'(n) = 7M(n/2), M'(1) = 1. Thus $M'(n) = 7^{\log_2 n} = n^{\log_2 7} \approx n^{2.807}$.
- Fastest currently known algorithm: $\mathcal{O}(n^{2.37})$

e	f	ea + fc	eb + fd
g	h	ga + hc	gb + hd