20. Dynamic Programming I

Memoization, Optimal Substructure, Overlapping Sub-Problems, Dependencies, General Procedure. Examples: Fibonacci, Rod Cutting, Longest Ascending Subsequence, Longest Common Subsequence, Edit Distance, Matrix Chain Multiplication (Strassen)
[Ottman/Widmayer, Kap. 1.2.3, 7.1, 7.4, Cormen et al, Kap. 15]

Fibonacci Numbers
(again)

$$
F_{n}:= \begin{cases}n & \text { if } n<2 \\ F_{n-1}+F_{n-2} & \text { if } n \geq 2 .\end{cases}
$$

Analysis: why ist the recursive algorithm so slow?

Algorithm FibonacciRecursive(n)

```
Input: \(n \geq 0\)
Output: \(n\)-th Fibonacci number
if \(n<2\) then
    \(f \leftarrow n\)
else
    \(f \leftarrow \operatorname{FibonacciRecursive}(n-1)+\operatorname{FibonacciRecursive}(n-2)\)
return \(f\)
```


Analysis

$T(n)$: Number executed operations.
■ $n=0,1: T(n)=\Theta(1)$
■ $n \geq 2: T(n)=T(n-2)+T(n-1)+c$.

$$
T(n)=T(n-2)+T(n-1)+c \geq 2 T(n-2)+c \geq 2^{n / 2} c^{\prime}=(\sqrt{2})^{n} c^{\prime}
$$

Algorithm is exponential in n.

Reason (visual)

Nodes with same values are evaluated (too) often.

Memoization

Memoization (sic) saving intermediate results.
■ Before a subproblem is solved, the existence of the corresponding intermediate result is checked.
■ If an intermediate result exists then it is used.
■ Otherwise the algorithm is executed and the result is saved accordingly.

Memoization with Fibonacci

Rectangular nodes have been computed before.

Algorithm FibonacciMemoization(n)

```
Input: \(n \geq 0\)
Output: \(n\)-th Fibonacci number
if \(n \leq 2\) then
    \(f \leftarrow 1\)
else if \(\exists \mathrm{memo}[n]\) then
    \(f \leftarrow \operatorname{memo}[n]\)
else
    \(f \leftarrow\) FibonacciMemoization \((n-1)+\) FibonacciMemoization \((n-2)\)
    memo \([n] \leftarrow f\)
return \(f\)
```


Analysis

Computational complexity:

$$
T(n)=T(n-1)+c=\ldots=\mathcal{O}(n) .
$$

because after the call to $f(n-1), f(n-2)$ has already been computed. A different argument: $f(n)$ is computed exactly once recursively for each n. Runtime costs: n calls with $\Theta(1)$ costs per call $n \cdot c \in \Theta(n)$. The recursion vanishes from the running time computation. Algorithm requires $\Theta(n)$ memory. ${ }^{29}$

[^0]
Looking closer ...

... the algorithm computes the values of $F_{1}, F_{2}, F_{3}, \ldots$ in the top-down approach of the recursion.
Can write the algorithm bottom-up. This is characteristic for dynamic programming.

Algorithm FibonacciBottomUp(n)

Input: $n \geq 0$
Output: n-th Fibonacci number

$$
\begin{aligned}
& F[1] \leftarrow 1 \\
& F[2] \leftarrow 1 \\
& \text { for } i \leftarrow 3, \ldots, n \text { do } \\
& \quad F[i] \leftarrow F[i-1]+F[i-2] \\
& \text { return } F[n]
\end{aligned}
$$

Dynamic Programming: Idea

- Divide a complex problem into a reasonable number of sub-problems

■ The solution of the sub-problems will be used to solve the more complex problem
■ Identical problems will be computed only once

Dynamic Programming Consequence

Identical problems will be computed only once
$\Rightarrow \quad$ Results are saved

192.-

HyperX Fury ($2 x, 8 G B$, DDR4-2400, DIMM 288) We trade speed against
memory consumption

Dynamic Programming = Divide-And-Conquer ?

■ In both cases the original problem can be solved (more easily) by utilizing the solutions of sub-problems. The problem provides optimal substructure.

- Classical Divide-And-Conquer algorithms (such as Mergesort): sub-problems are independent; their solutions are required only once in the algorithm.
■ DP: sub-problems are dependent. The problem is said to have overlapping sub-problems that are required multiple-times in the algorithm.
- In order to avoid redundant computations, results are tabulated. For sub-problems there must not be any circular dependencies.

Dynamic Programming: Description

1. Use a DP-table with information to the subproblems.

Dimension of the table? Semantics of the entries?
2. Computation of the base cases.

Which entries do not depend on others?
3. Determine computation order.

In which order can the entries be computed such that dependencies are fulfilled?
4. Read-out the solution

How can the solution be read out from the table?
Runtime (typical) = number entries of the table times required operations per entry.

Dynamic Programing: Description (Fibonacci)

Dimension of the table? Semantics of the entries?
1.
$n \times 1$ table. nth entry contains nth Fibonacci number.
Which entries do not depend on other entries?
2.

Values F_{1} and F_{2} can be computed easily and independently.
Computation order?
3.
F_{i} with increasing i.
Reconstruction of a solution?
F_{n} is the n-th Fibonacci number.

Rod Cutting

■ Rods (metal sticks) are cut and sold.
■ Rods of length $n \in \mathbb{N}$ are available. A cut does not provide any costs.
■ For each length $l \in \mathbb{N}, l \leq n$ known is the value $v_{l} \in \mathbb{R}^{+}$
■ Goal: cut the rods such (into $k \in \mathbb{N}$ pieces) that

$$
\sum_{i=1}^{k} v_{l_{i}} \text { is maximized subject to } \sum_{i=1}^{k} l_{i}=n .
$$

Rod Cutting: Example

Possibilities to cut a rod of length 4 (without permutations)

Length	0	1	2	3	4
Price	0	2	3	8	9

How to Find the DP Algorithm.

0 . Exact formulation of the wanted solution

1. Define sub-problems, reformulate (0.) as sub-problem
2. Recursion: relate subproblems by enumerating of local properties
3. Determine the dependencies of the sub-problems
4. Solve the problem

Running time $=$ \#sub-problems \times time/sub-problem

Structure of the problem

0 . Wanted: $r_{n}=$ maximal value of rod (cut or as a whole) with length n.

1. sub-problems: maximal value r_{k} for each $0 \leq k<n$
2. Local property: length of the first piece Recursion

$$
\begin{aligned}
& r_{k}=\max \left\{v_{i}+r_{k-i}: 0<i \leq k\right\}, \quad k>0 \\
& r_{0}=0
\end{aligned}
$$

3. Dependency: r_{k} depends (only) on values $v_{i}, 1 \leq i \leq k$ and the optimal cuts $r_{i}, i<k$.
4. Solution in r_{n}. DP running time: $\Theta\left(n^{2}\right)$

Algorithm RodCut (v, n) (without memoization)

Input: $n \geq 0$, Prices v
Output: best value

```
\(q \leftarrow 0\)
if \(n>0\) then
        for \(\begin{aligned} & \leftarrow 1, \ldots, n \text { do } \\ L & \leftarrow \max \left\{q, v_{i}+\operatorname{RodCut}(v, n-i)\right\} ;\end{aligned}\)
```

return q
Running time $T(n)=\sum_{i=0}^{n-1} T(i)+c \quad \Rightarrow^{30} \quad T(n) \in \Theta\left(2^{n}\right)$
${ }^{30} T(n)=T(n-1)+\sum_{i=0}^{n-2} T(i)+c=T(n-1)+(T(n-1)-c)+c=2 T(n-1) \quad(n>0)$

Recursion Tree

Algorithm RodCutMemoized (m, v, n)

Input: $n \geq 0$, Prices v, Memoization Table m
Output: best value

```
\(q \leftarrow 0\)
if \(n>0\) then
    if \(\exists m[n]\) then
        \(q \leftarrow m[n]\)
    else
        for \(i \leftarrow 1, \ldots, n\) do
            \(L q \leftarrow \max \left\{q, v_{i}+\operatorname{RodCutMemoized}(m, v, n-i)\right\}\);
        \(m[n] \leftarrow q\)
return \(q\)
Running time \(\sum_{i=1}^{n} i=\Theta\left(n^{2}\right)\)
```


Subproblem-Graph

Describes the mutual dependencies of the subproblems

and must not contain cycles

Construction of the Optimal Cut

■ During the (recursive) computation of the optimal solution for each $k \leq n$ the recursive algorithm determines the optimal length of the first rod

■ Store the lenght of the first rod in a separate table of length n

Bottom-up Description with the example

Dimension of the table? Semantics of the entries?
1.
$n \times 1$ table. nth entry contains the best value of a rod of length n.
Which entries do not depend on other entries?
2.

Value r_{0} is 0
Computation order?
$r_{i}, i=1, \ldots, n$.
Reconstruction of a solution?
4.
r_{n} is the best value for the rod of length n.

Rabbit!

A rabbit sits on cite $(1,1)$ of an $n \times n$ grid. It can only move to east or south. On each pathway there is a number of carrots. How many carrots does the rabbit collect maximally?

Rabbit!

Number of possible paths?

- Choice of $n-1$ ways to south out of $2 n-2$ ways overal.

$$
\binom{2 n-2}{n-1} \in \Omega\left(2^{n}\right)
$$

\Rightarrow No chance for a naive algorithm

Recursion

Wanted: $T_{1,1}=$ maximal number carrots from $(1,1)$ to (n, n). Let $w_{(i, j)-\left(i^{\prime}, j^{\prime}\right)}$ number of carrots on egde from (i, j) to $\left(i^{\prime}, j^{\prime}\right)$. Recursion (maximal number of carrots from (i, j) to (n, n)

$$
T_{i j}= \begin{cases}\max \left\{w_{(i, j)-(i, j+1)}+T_{i, j+1}, w_{(i, j)-(i+1, j)}+T_{i+1, j}\right\}, & i<n, j<n \\ w_{(i, j)-(i, j+1)}+T_{i, j+1}, & i=n, j<n \\ w_{(i, j)-(i+1, j)}+T_{i+1, j}, & i<n, j=n \\ 0 & i=j=n\end{cases}
$$

Graph of Subproblem Dependencies

Bottom-up Description with the example

Dimension of the table? Semantics of the entries?

1. Table T with size $n \times n$. Entry at i, j provides the maximal number of carrots from (i, j) to (n, n).

Which entries do not depend on other entries?
2.

Value $T_{n, n}$ is 0

Computation order?

3.

$T_{i, j}$ with $i=n \searrow 1$ and for each $i: j=n \searrow 1$, (or vice-versa: $j=n \searrow 1$ and for each $j: i=n \searrow 1$).

Reconstruction of a solution?
$T_{1,1}$ provides the maximal number of carrots.

Longest Ascending Sequence (LAS)

Connect as many as possible fitting ports without lines crossing.

Formally

■ Consider Sequence $A_{n}=\left(a_{1}, \ldots, a_{n}\right)$.

- Search for a longest increasing subsequence of A_{n}.
■ Examples of increasing subsequences: $(3,4,5)$, $(2,4,5,7),(3,4,5,7),(3,7)$.

Generalization: allow any numbers, even with duplicates (still only strictly increasing subsequences permitted). Example: (2, 3, 3, 3, 5, 1) with increasing subsequence $(2,3,5)$.

First idea (Greedy)

Let $L_{i}=$ longest ascending subsequence of $A_{i}(1 \leq i \leq n)$
Assumption: LAS L_{k} of A_{k} known. Compute L_{k+1} for A_{k+1}.
Idea

$$
L_{k+1}= \begin{cases}L_{k} \oplus a_{k+1} & \text { if } a_{k}>\max \left(L_{k}\right) \\ L_{k} & \text { otherwise? }\end{cases}
$$

Counterexample

$$
\begin{aligned}
& A_{5}=(1,2,5,3,4) . \\
& A_{3}=(1,2,5) \text { with } L_{3}=A_{3} \text { and } L_{4}=A_{3} .
\end{aligned}
$$

Greedy idea fails here: we cannot directly infer L_{k+1} from L_{k}.

Second idea. (Prefix)

Let $L_{i}=$ longest ascending subsequence of $A_{i}(1 \leq i \leq n)$
Assumption: a LAS L_{j} that ends in a_{j} is known for each $j \leq k$. Now compute LAS L_{k+1} for $k+1$.

Look at all fitting $L_{k+1}=L_{j} \oplus a_{k+1}(j \leq k)$ and choose a longest sequence.
Example

$$
\begin{aligned}
& A_{5}=(1,2,5,3,4) . \\
& L_{1}=(1), L_{2}=(1,2), L_{3}=(1,2,5), L_{4}=(1,2,3), L_{5}=(1,2,3,4) .
\end{aligned}
$$

This works with running time n^{2} (and requires access to all sequences L_{i}.

Third approach

Let $M_{n, i}=$ longest ascending subsequence of $A_{i}(1 \leq i \leq n)$
Assumption: the LAS M_{j} for A_{k}, that end with smallest element are known for each of the lengths $1 \leq j \leq k$.
Consider all fitting $M_{k, j} \oplus a_{k+1}(j \leq k)$ and update the table of the LAS,that end with smallest possible element.

Third approach Example

Example: $A=(1,1000,1001,4,5,2,6,7)$

A	LAT $M_{k,}$
1	$(\mathbf{1})$
+1000	$(1),(1, \mathbf{1 0 0 0})$
+1001	$(1),(1,1000),(1,1000, \mathbf{1 0 0 1})$
+4	$(1),(1, \mathbf{4}),(1,1000,1001)$
+5	$(1),(1,4),(1,4, \mathbf{5})$
+2	$(1),(1, \mathbf{2}),(1,4,5)$
+6	$(1),(1,2),(1,4,5),(1,4,5, \mathbf{6})$
+7	$(1),(1,2),(1,4,5),(1,4,5,6),(1,4,5,6, \mathbf{7})$

DP Table

■ Idea: save the last element of the increasing sequence $M_{k, j}$ at slot j.

- Example:

13	12	15	11	16	14

■ Problem: Table does not contain the subsequence, only the last value.
■ Solution: second table with the values of the predecessors.

i	1	2	3	4	5	6
value a_{i}	13	12	15	11	16	14
Predecessor	$-\infty$	$-\infty$	12	$-\infty$	15	11

j	0	1	2	3	4	\ldots
$\left(L_{j}\right)_{j}$	$-\infty$	11	14	16	∞	

Dynamic Programming Algorithm LAS

Table dimension? Semantics?

Two tables $T[0, \ldots, n]$ and $V[1, \ldots, n] . T[j]$: last Element of the increasing subequence $M_{n, j}$
$V[j]$: Value of the predecessor of a_{j}.
Start with $T[0] \leftarrow-\infty, T[i] \leftarrow \infty \forall i>1$

Computation of an entry

2. Entries in T sorted in ascending order. For each new entry a_{k} binary search for l, such that $T[l]<a_{k}<T[l+1]$. Set $T[l+1] \leftarrow a_{k}$. Set $V[k]=T[l]$.

Dynamic Programming algorithm LAS

Computation order

Traverse the list anc compute $T[k]$ and $V[k]$ with ascending k
Reconstruction of a solution?
4. Search the largest l with $T[l]<\infty . l$ is the last index of the LAS. Starting at l search for the index $i<l$ such that $V[l]=a_{i}, i$ is the predecessor of l. Repeat with $l \leftarrow i$ until $T[l]=-\infty$

Analysis

- Computation of the table:
- Initialization: $\Theta(n)$ Operations

■ Computation of the k th entry: binary search on positions $\{1, \ldots, k\}$ plus constant number of assignments.

$$
\sum_{k=1}^{n}(\log k+\mathcal{O}(1))=\mathcal{O}(n)+\sum_{k=1}^{n} \log (k)=\Theta(n \log n)
$$

■ Reconstruction: traverse A from right to left: $\mathcal{O}(n)$.
Overal runtime:

$$
\Theta(n \log n)
$$

20.7 Editing Distance

Minimal Editing Distance

Editing distance of two sequences $A_{n}=\left(a_{1}, \ldots, a_{n}\right), B_{m}=\left(b_{1}, \ldots, b_{m}\right)$.

Editing operations:

- Insertion of a character
- Deletion of a character
- Replacement of a character

Question: how many editing operations at least required in order to transform string A into string B.

$$
\text { TIGER } \rightarrow \text { ZIGER } \rightarrow \text { ZIEGER } \rightarrow \text { ZIEGE }
$$

Minimal Editing Distance

Wanted: cheapest character-wise transformation $A_{n} \rightarrow B_{m}$ with costs

operation	Levenshtein	LCS^{31}	general
Insert c	1	1	ins (c)
Delete c	1	1	$\operatorname{del}(c)$
Replace $c \rightarrow c^{\prime}$	$\mathbb{1}\left(c \neq c^{\prime}\right)$	$\infty \cdot \mathbb{1}\left(c \neq c^{\prime}\right)$	$\operatorname{repl}\left(c, c^{\prime}\right)$

Beispiel

T	I	G	R	T	I	G	E	R	$T \rightarrow Z$	$+E$	$-R$		
Z	I	E	G	E	Z	I	E	G	E	-	$Z \rightarrow T$	$-E$	$+R$

[^1]Idea

ZIEGE \rightarrow TIGER

Possibilities
1.

$$
\begin{gathered}
c\left(\text { ' } \mathrm{ZIEG}^{\prime} \rightarrow{ }^{\prime} \mathrm{TIGE}{ }^{\prime}\right)+c\left(\text { ' }^{\prime}{ }^{\prime} \rightarrow{ }^{\prime} \mathrm{R}^{\prime}\right) \\
\mathrm{Z}|\mathrm{EG} \mathbf{E} \rightarrow \mathrm{~T}| \mathrm{GE} \mathbf{R}
\end{gathered}
$$

2.

$$
\begin{gathered}
c\left(\text { ' }^{\text {ZIEGE' }} \rightarrow \text { 'TIGE' }\right)+c(\text { ins('R' }) ~ \\
\text { Z I E GE } \rightarrow \text { TIGE } \boldsymbol{+} \mathbf{R}
\end{gathered}
$$

3.

$$
\begin{gathered}
c\left(\text { ' }_{\text {ZIEG' }}{ }^{\prime} \text { 'TIGER' }\right)+c(\text { del('E' }) ~ \\
\text { ZIEGE-E } \rightarrow \text { TIGER }
\end{gathered}
$$

DP

0. $E(n, m)=$ mimimum number edit operations (ED cost) $a_{1 \ldots n} \rightarrow b_{1 \ldots m}$
1. Subproblems $E(i, j)=$ ED of $a_{1 \ldots i}, b_{1 \ldots j}$.
\#SP $=n \cdot m$
2. Guess

- $a_{1 . . i} \rightarrow a_{1 \ldots i-1}$ (delete)
- $a_{1 . . i} \rightarrow a_{1 \ldots . .} b_{j}$ (insert)
- $a_{1 . . i} \rightarrow a_{1 \ldots i-1} b_{j}$ (replace)

3. Rekursion

$$
E(i, j)=\min \left\{\begin{array}{l}
\operatorname{del}\left(a_{i}\right)+E(i-1, j) \\
\operatorname{ins}\left(b_{j}\right)+E(i, j-1) \\
\operatorname{repl}\left(a_{i}, b_{j}\right)+E(i-1, j-1)
\end{array}\right.
$$

DP

4. Dependencies
\Rightarrow Computation from left top to bottom right. Row- or column-wise.
5. Solution in $E(n, m)$

Example (Levenshtein Distance)

$$
E[i, j] \leftarrow \min \left\{E[i-1, j]+1, E[i, j-1]+1, E[i-1, j-1]+\mathbb{1}\left(a_{i} \neq b_{j}\right)\right\}
$$

	\emptyset	Z	I	E	G	E
\emptyset	0	1	2	3	4	5
T	1	1	2	3	4	5
I	2	2	1	2	3	4
G	3	3	2	2	2	3
E	4	4	3	2	3	2
R	5	5	4	3	3	3

Editing steps: from bottom right to top left, following the recursion.

Bottom-Up DP algorithm ED

Dimension of the table? Semantics?

1. Table $E[0, \ldots, m][0, \ldots, n]$. $E[i, j]$: minimal edit distance of the strings $\left(a_{1}, \ldots, a_{i}\right)$ and $\left(b_{1}, \ldots, b_{j}\right)$

Computation of an entry
2. $E[0, i] \leftarrow i \forall 0 \leq i \leq m, E[j, 0] \leftarrow i \forall 0 \leq j \leq n$. Computation of $E[i, j]$ otherwise via $E[i, j]=\min \left\{\operatorname{del}\left(a_{i}\right)+E(i-1, j), \operatorname{ins}\left(b_{j}\right)+E(i, j-1)\right.$, $\operatorname{repl}\left(a_{i}, b_{j}\right)+$ $E(i-1, j-1)\}$

Bottom-Up DP algorithm ED

Computation order

Rows increasing and within columns increasing (or the other way round).
Reconstruction of a solution?
Start with $j=m, i=n$. If $E[i, j]=\operatorname{repl}\left(a_{i}, b_{j}\right)+E(i-1, j-1)$ then output
4. $\quad a_{i} \rightarrow b_{j}$ and continue with $(j, i) \leftarrow(j-1, i-1)$; otherwise, if $E[i, j]=$ $\operatorname{del}\left(a_{i}\right)+E(i-1, j)$ output $\operatorname{del}\left(a_{i}\right)$ and continue with $j \leftarrow j-1$ otherwise, if $E[i, j]=\operatorname{ins}\left(b_{j}\right)+E(i, j-1)$, continue with $i \leftarrow i-1$. Terminate for $i=0$ and $j=0$.

Analysis ED

■ Number table entries: $(m+1) \cdot(n+1)$.
■ Constant number of assignments and comparisons each. Number steps: $\mathcal{O}(m n)$
■ Determination of solition: decrease i or j. Maximally $\mathcal{O}(n+m)$ steps.
Runtime overal:

$$
\mathcal{O}(m n) .
$$

Matrix-Chain-Multiplication

Task: Computation of the product $A_{1} \cdot A_{2} \cdot \ldots \cdot A_{n}$ of matrices A_{1}, \ldots, A_{n}. Matrix multiplication is associative, i.e. the order of evaluation can be chosen arbitrarily
Goal: efficient computation of the product.
Assumption: multiplication of an $(r \times s)$-matrix with an $(s \times u)$-matrix provides costs $r \cdot s \cdot u$.

Does it matter?

Recursion

■ Assume that the best possible computation of $\left(A_{1} \cdot A_{2} \cdots A_{i}\right)$ and $\left(A_{i+1} \cdot A_{i+2} \cdots A_{n}\right)$ is known for each i.
■ Compute best i, done.
$n \times n$-table M. entry $M[p, q]$ provides costs of the best possible bracketing $\left(A_{p} \cdot A_{p+1} \cdots A_{q}\right)$.

$$
M[p, q] \leftarrow \min _{p \leq i<q}(M[p, i]+M[i+1, q]+\text { costs of the last multiplication })
$$

Computation of the DP-table

- Base cases $M[p, p] \leftarrow 0$ for all $1 \leq p \leq n$.

■ Computation of $M[p, q]$ depends on $M[i, j]$ with $p \leq i \leq j \leq q$, $(i, j) \neq(p, q)$.
In particular $M[p, q]$ depends at most from entries $M[i, j]$ with $i-j<q-p$.
Consequence: fill the table from the diagonal.

Analysis

DP-table has n^{2} entries. Computation of an entry requires considering up to $n-1$ other entries.
Overal runtime $\mathcal{O}\left(n^{3}\right)$.

Readout the order from M : exercise!

Digression: matrix multiplication

Consider the multiplication of two $n \times n$ matrices.
Let

$$
\begin{aligned}
& A=\left(a_{i j}\right)_{1 \leq i, j \leq n}, B=\left(b_{i j}\right)_{1 \leq i, j \leq n}, C=\left(c_{i j}\right)_{1 \leq i, j \leq n}, \\
& C=A \cdot B
\end{aligned}
$$

then

$$
c_{i j}=\sum_{k=1}^{n} a_{i k} b_{k j} .
$$

Naive algorithm requires $\Theta\left(n^{3}\right)$ elementary multiplications.

Divide and Conquer

Divide and Conquer

■ Assumption $n=2^{k}$.
■ Number of elementary multiplications:
$M(n)=8 M(n / 2), M(1)=1$.
■ yields $M(n)=8^{\log _{2} n}=n^{\log _{2} 8}=n^{3}$. No advantage $)$

Strassen's Matrix Multiplication

■ Nontrivial observation by Strassen (1969): It suffices to compute the seven products
$A=(e+h) \cdot(a+d), B=(g+h) \cdot a, C=e \cdot(b-d)$,
$D=h \cdot(c-a), E=(e+f) \cdot d, F=(g-e) \cdot(a+b)$,
$G=(f-h) \cdot(c+d)$. Because:
$e a+f c=A+D-E+G, e b+f d=C+E$,
$g a+h c=B+D, g b+h d=A-B+C+F$.
■ This yields $M^{\prime}(n)=7 M(n / 2), M^{\prime}(1)=1$.
Thus $M^{\prime}(n)=7^{\log _{2} n}=n^{\log _{2} 7} \approx n^{2.807}$.

■ Fastest currently known algorithm: $\mathcal{O}\left(n^{2.37}\right)$

[^0]: ${ }^{29}$ But the naive recursive algorithm also requires $\Theta(n)$ memory implicitly.

[^1]: ${ }^{31}$ Longest common subsequence - A special case of an editing problem

