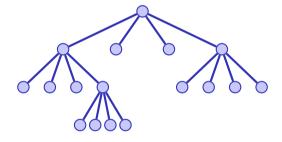
19. Quadtrees

Quadtrees, Kollisionsdetektion, Bildsegmentierung

Quadtree

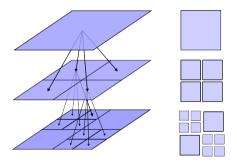
Ein Quadtree ist ein Baum der Ordnung 4.



... und ist als solcher nicht besonders interessant, ausser man verwendet ihn zur...

Quadtree - Interpretation und Nutzen

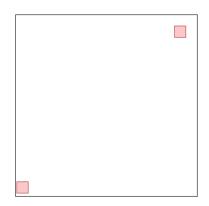
Partitionierung eines zweidimensionalen Bereiches in 4 gleich grosse Teile.



[Analog für drei Dimensionen mit einem Octtree (Baum der Ordnung 8)]

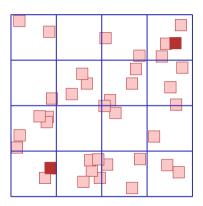
Beispiel 1: Erkennung von Kollisionen

- Objekte in der 2D-Ebene, z.B. Teilchensimulation auf dem Bildschirm.
- Ziel: Frkennen von Kollisionen



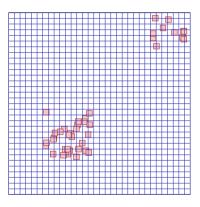
Idee

- Viele Objekte: n^2 Vergleiche (naiv)
- Verbesserung?
- Offensichtlich: keine Kollisionsdetektion für weit entfernte Objekte nötig.
- Was ist "weit entfernt"?
- \blacksquare Gitter $(m \times m)$
- Kollisionsdetektion pro Gitterzelle



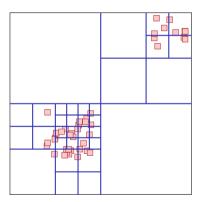
Gitter

- Gitter hilft oft, aber nicht immer
- Verbesserung?
- Gitter verfeinern?
- Zu viele Gitterzellen!



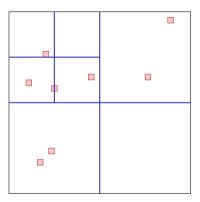
Adaptive Gitter

- Gitter hilft oft, aber nicht immer
- Verbesserung?
- Gitter adaptiv verfeinern!
- Quadtree!



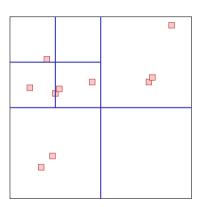
Algorithmus: Einfügen

- Quadtree startet mit einem einzigen Knoten
- Objekte werden zu dem Knoten hinzugefügt. Wenn in einem Knoten zu viele Objekte sind, wird der Knoten geteilt.
- Objekte, die beim Split auf dem Rand zu liegen kommen, werden im höher gelegenen Knoten belassen.

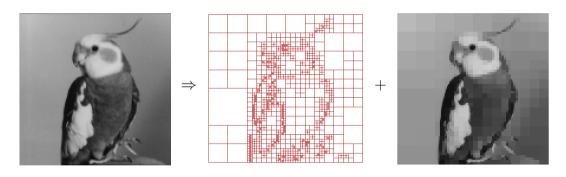


Algorithmus: Kollisionsdetektion

Durchlaufe den Quadtree rekursiv. Für jeden Knoten teste die Kollision der enthaltenen Objekte mit Objekten im selben Knoten oder (rekursiv) enthaltenen Knoten.

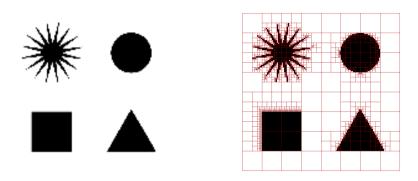


Beispiel 2: Bildsegmentierung



(Mögliche Anwendungen: Kompression, Entrauschen, Kantendetektion)

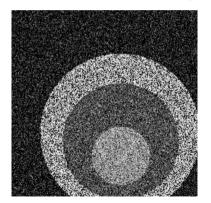
Quadtree auf Einfarbenbild

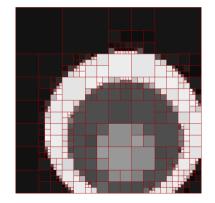


Erzeugung des Quadtree ähnlich wie oben: unterteile Knoten rekursiv bis jeder Knoten nur Pixel einer Farbe enthält.

Quadtree mit Approximation

Wenn mehr als zwei Farbewerte vorhanden sind, wird der Quadtree oft sehr gross. ⇒ Komprimierte Darstellung: *approximiere* das Bild stückweise konstant auf Rechtecken eines Quadtrees.





Stückweise konstante Approximation

(Graustufen-)Bild $oldsymbol{y} \in \mathbb{R}^S$ auf den Pixelindizes S. ²⁹

Rechteck $r \subset S$.

Ziel: bestimme

$$\arg\min_{v\in\mathbb{R}}\sum_{s\in r}(y_s-v)^2$$

Lösung: das arithmetisches Mittel $\mu_r = \frac{1}{|r|} \sum_{s \in r} y_s$

 $^{^{29}}$ Wir nehmen an, dass S ein Quadrat ist mit Seitenlänge 2^k für ein $k \geq 0$

Zwischenergebnis

Die im Sinne des mittleren quadratischen Fehlers beste Approximation

$$\mu_r = \frac{1}{|r|} \sum_{s \in r} y_s$$

und der dazugehörige Fehler

$$\sum_{s \in r} (y_s - \mu_r)^2 =: \| \boldsymbol{y}_r - \boldsymbol{\mu}_r \|_2^2$$

können nach einer $\mathcal{O}(|S|)$ Tabellierung schnell berechnet werden: Präfixsummen!

Welcher Quadtree?

Konflikt

- Möglichst nahe an den Daten ⇒ kleine Rechtecke, grosser Quadtree. Extremer Fall: ein Knoten pro Pixel. Approximation = Original
- Möglichst wenige Knoten ⇒ Grosse Rechtecke, kleiner Quadtree Extremfall: ein einziges Rechteck. Approximation = ein Grauwert

Welcher Quadtree?

Idee: wähle zwischen Datentreue und Komplexität durch Einführung eines Regularisierungsparameters $\gamma \geq 0$

Wähle Quadtree T mit Blättern $^{30}\ L(T)$ so, dass T folgenden Funktion minimiert

$$H_{\gamma}(T, \boldsymbol{y}) := \gamma \cdot \underbrace{|L(T)|}_{\text{Anzahl Blätter}} + \underbrace{\sum_{r \in L(T)} \|y_r - \mu_r\|_2^2}_{\text{Summierter Approximationsfehler aller Blätter}}$$

³⁰hier: Blatt = Knoten mit Nullkindern,

Regularisierung

Sei T ein Quadtree über einem Rechteck S_T und seien $T_{ll}, T_{lr}, T_{ul}, T_{ur}$ vier mögliche Unterbäume und

$$\widehat{H}_{\gamma}(T, y) := \min_{T} \gamma \cdot |L(T)| + \sum_{r \in L(T)} \|y_r - \mu_r\|_2^2$$

Extremfälle:

 $\gamma = 0 \Rightarrow$ Originaldaten;

 $\gamma \to \infty \Rightarrow {\rm ein} \; {\rm Rechteck}$

Beobachtung: Rekursion

■ Wenn der (Sub-)Quadtree T nur ein Pixel hat, so kann nicht aufgeteilt werden und es gilt

$$\widehat{H}_{\gamma}(T,\boldsymbol{y}) = \gamma$$

Andernfalls seien

$$M_1 := \gamma + \|\boldsymbol{y}_{S_T} - \boldsymbol{\mu}_{S_T}\|_2^2$$

$$M_2 := \widehat{H}_{\gamma}(T_{ll}, \boldsymbol{y}) + \widehat{H}_{\gamma}(T_{lr}, \boldsymbol{y}) + \widehat{H}_{\gamma}(T_{ul}, \boldsymbol{y}) + \widehat{H}_{\gamma}(T_{ur}, \boldsymbol{y})$$

Dann

$$\widehat{H}_{\gamma}(T,y) = \min\{\underbrace{M_1(T,\gamma,\boldsymbol{y})}_{\text{kein Split}}, \underbrace{M_2(T,\gamma,\boldsymbol{y})}_{\text{Split}}\}$$

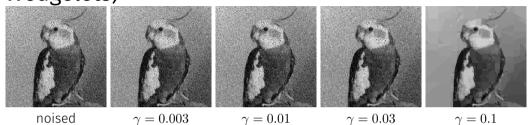
Algorithmus: Minimize (y,r,γ)

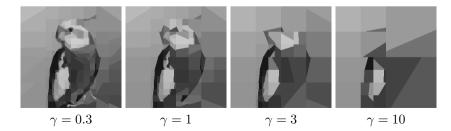
```
Input: Bilddaten y \in \mathbb{R}^S, Rechteck r \subset S, Regularisierung \gamma > 0
Output: \min_{T} \gamma |L(T)| + ||y - \mu_{L(T)}||_{2}^{2}
if |r| = 0 then return 0
m \leftarrow \gamma + \sum_{s \in r} (y_s - \mu_r)^2
if |r| > 1 then
      Split r into r_{ll}, r_{lr}, r_{ul}, r_{ur}
      m_1 \leftarrow \text{Minimize}(\boldsymbol{y}, r_{ll}, \gamma); m_2 \leftarrow \text{Minimize}(\boldsymbol{y}, r_{lr}, \gamma)
      m_3 \leftarrow \text{Minimize}(\boldsymbol{y}, r_{ul}, \gamma); m_4 \leftarrow \text{Minimize}(\boldsymbol{y}, r_{ur}, \gamma)
      m' \leftarrow m_1 + m_2 + m_3 + m_4
else
 \perp m' \leftarrow \infty
if m' < m then m \leftarrow m'
return m
```

Analyse

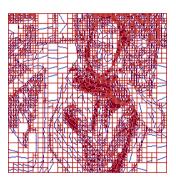
Der Minimierungsalgorithmus über dyadische Partitionen (Quadtree) benötigt $\mathcal{O}(|S|\log|S|)$ Schritte.

Anwendung: Entrauschen (zusätzlich mi Wedgelets)





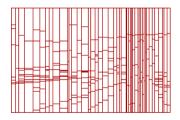
Erweiterungen: Affine Regression + Wedgelets



Andere Ideen

kein Quadtree: hierarchisch-eindimensionales Modell (benötigt Dynamic Programming)





19.1 Anhang

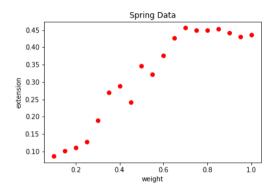
Lineare Regression

Das Lernproblem

Ausgangslage

- lacktriangle Wir beobachten N Datenpunkte
- lacksquare Eingaben: $oldsymbol{X} = (oldsymbol{X}_1, \dots, oldsymbol{X}_N)^ op$
- Beobachtete Ausgaben: $\mathbf{u} = (u_1, \dots, u_m)^{\top}$
 - $\boldsymbol{y} = (y_1, \dots, y_N)^{\top}$
- Annahme: es gibt eine zugrundeliegende Wahrheit

$$f: \mathcal{X} \to \mathcal{Y}$$



Ziel: Finden einer approximativen Wahrheit $h \approx f$, um Prädiktionen $h(\boldsymbol{x})$ für neue Datenpunkte \boldsymbol{x} zu machen oder um die Daten zu erklären und beispielsweise komprimiert darzustellen.

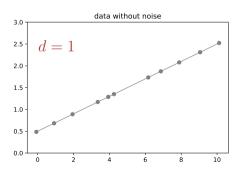
Hier $\mathcal{X} = \mathbb{R}^d$. $\mathcal{Y} = \mathbb{R}$ (Regression).

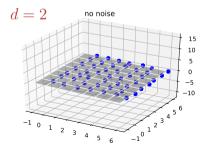
Modell: Lineare Regression

Annahme: Die zugrunde liegende Wahrheit lässt sich darstellen als

$$h_{\mathbf{w}}(\mathbf{x}) = w_0 + w_1 x_1 + \dots + w_d x_d = w_0 + \sum_{i=1}^d w_i x_i.$$

 \Rightarrow Wir suchen \boldsymbol{w} (manchmal auch d).





linear in w!

Trick für vereinfachte Notation

$$\boldsymbol{x} = (x_1, \dots, x_d) \to (\underbrace{x_0}_{\equiv 1}, x_1, \dots, x_d)$$

$$h_{\boldsymbol{w}}(\boldsymbol{x}) = w_0 x_0 + w_1 x_1 + \dots + w_d x_d$$

= $\sum_{i=0}^d w_i x_i$
= $\boldsymbol{w}^{\top} \boldsymbol{x}$

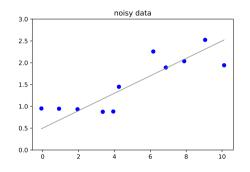
Datenmatrix

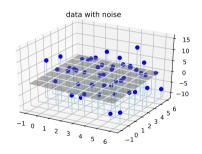
$$\boldsymbol{X} = \begin{bmatrix} \boldsymbol{X}_1 \\ \boldsymbol{X}_2 \\ \vdots \\ \boldsymbol{X}_n \end{bmatrix} = \begin{bmatrix} X_{1,0} & X_{1,1} & X_{1,2} & \dots & X_{1,d} \\ X_{2,0} & X_{2,1} & X_{2,2} & \dots & X_{2,d} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ X_{n,0} & X_{n,1} & X_{n,2} & \dots & X_{n,d} \end{bmatrix}, \quad \boldsymbol{y} = \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{bmatrix}, \qquad \boldsymbol{w} = \begin{bmatrix} w_1 \\ \vdots \\ w_d \end{bmatrix}$$

$$Xw \approx y$$
?

Ungenaue Beobachtungen

Realität: die Daten sind ungenau bzw. das Modell ist nur ein Modell.



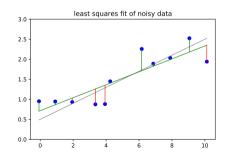


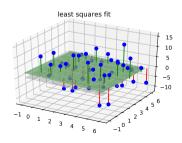
Was tun?

Fehlerfunktion

$$E(\boldsymbol{w}) = \sum_{i=1}^{N} (h_{\boldsymbol{w}}(\boldsymbol{X}_i) - y_i)^2$$

Suchen ein $\widehat{\boldsymbol{w}}$ das E(w) minimiert. Linearität von $h_{\boldsymbol{w}}$ in $\boldsymbol{w} \Rightarrow$ Lösung mit linearer Algebra.





Lösung aus der Linearen Algebra

$$\widehat{\boldsymbol{w}} = \underbrace{\left(\boldsymbol{X}^{\top}\boldsymbol{X}\right)^{-1}\boldsymbol{X}^{\top}}_{=:\boldsymbol{X}^{\dagger}}\boldsymbol{y}.$$

 $oldsymbol{X}^{\dagger}$: Moore-Penroe Pseudo-Inverse

Polynome fitten

Geht genauso mit linearer Regression.

$$h_{\mathbf{w}}(x) = w_0 + w_1 x^1 + w_2 x^2 + \dots + w_d x^d = w_0 + \sum_{i=1}^d w_i x^i.$$

Denn $h_{\boldsymbol{w}}(x)$ ist immer noch linear in \boldsymbol{w} !

$$\boldsymbol{X} = \begin{bmatrix} 1 & x_1 & (x_1)^2 & \dots & (x_1)^d \\ 1 & x_2 & (x_2)^2 & \dots & (x_2)^d \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & x_n & (x_n)^2 & \dots & (x_n)^d \end{bmatrix}, \quad \boldsymbol{y} = \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{bmatrix}, \quad \boldsymbol{w} = \begin{bmatrix} w_0 \\ \vdots \\ w_d \end{bmatrix}$$

Beispiel: Konstante Approximation

$$oldsymbol{X} = egin{bmatrix} 1 \ 1 \ \vdots \ 1 \end{bmatrix}, \quad oldsymbol{y} = egin{bmatrix} y_1 \ y_2 \ \vdots \ y_n \end{bmatrix}, \quad oldsymbol{w} = egin{bmatrix} w_0 \end{bmatrix} \ \widehat{oldsymbol{w}} = oldsymbol{ig(X^ op X)}^{-1} oldsymbol{X}^ op oldsymbol{y} = ig[rac{1}{n} \sum y_i \end{bmatrix}.$$

Beispiel: Lineare Approximation

$$m{X} = egin{bmatrix} 1 & x_1^{(1)} & x_1^{(2)} \ 1 & x_2^{(1)} & x_2^{(2)} \ dots & & & \ 1 & x_n^{(1)} & x_n^{(2)} \end{pmatrix}, \quad m{y} = egin{bmatrix} y_1 \ y_2 \ dots \ y_n \end{bmatrix}, \qquad m{w} = m{bmatrix} w_0 \end{bmatrix}$$

$$\widehat{\boldsymbol{w}} = \left(\boldsymbol{X}^{\top} \boldsymbol{X}\right)^{-1} \boldsymbol{X}^{\top} \boldsymbol{y} = \begin{bmatrix} N & \sum x_i^{(1)} & \sum x_i^{(2)} \\ \sum x_i^{(1)} & \sum \left(x_i^{(1)}\right)^2 & \sum x_i^{(1)} \cdot x_i^{(2)} \\ \sum x_i^{(2)} & \sum x_i^{(1)} \cdot x_i^{(2)} & \sum \left(x_i^{(2)}\right)^2 \end{bmatrix}^{-1} \cdot \begin{bmatrix} \sum y_i \\ \sum y_i \cdot x_i^{(1)} \\ \sum y_i \cdot x_i^{(1)} \end{bmatrix}$$