## 19. Quadtrees

Quadtrees, Collision Detection, Image Segmentation



A quad tree is a tree of order 4.



... and as such it is not particularly interesting except when it is used for ...

#### Quadtree - Interpretation und Nutzen

Separation of a two-dimensional range into 4 equally sized parts.



[analogously in three dimensions with an octtree (tree of order 8)]

#### **Example 1: Collision Detection**

- Objects in the 2D-plane, e.g. particle simulation on the screen.
- Goal: collision detection





# Many objects: n<sup>2</sup> detections (naively) Improvement?



- Many objects:  $n^2$  detections (naively)
- Improvement?
- Obviously: collision detection not required for objects far away from each other



- Many objects:  $n^2$  detections (naively)
- Improvement?
- Obviously: collision detection not required for objects far away from each other
- What is "far away"?



- Many objects:  $n^2$  detections (naively)
- Improvement?
- Obviously: collision detection not required for objects far away from each other
- What is "far away"?
- Grid  $(m \times m)$



- Many objects:  $n^2$  detections (naively)
- Improvement?
- Obviously: collision detection not required for objects far away from each other
- What is "far away"?
- Grid  $(m \times m)$
- Collision detection per grid cell



A grid often helps, but not alwaysImprovement?



- A grid often helps, but not always
- Improvement?
- More finegrained grid?



- A grid often helps, but not always
- Improvement?
- More finegrained grid?
- Too many grid cells!



A grid often helps, but not alwaysImprovement?



- A grid often helps, but not always
- Improvement?
- Adaptively refine grid



- A grid often helps, but not always
- Improvement?
- Adaptively refine grid



- A grid often helps, but not always
- Improvement?
- Adaptively refine grid
- Quadtree!



#### Quadtree starts with a single node



 Quadtree starts with a single node
Objects are added to the node. When a node contains too many objects, the node is split.



- Quadtree starts with a single node
- Objects are added to the node. When a node contains too many objects, the node is split.



- Quadtree starts with a single node
- Objects are added to the node. When a node contains too many objects, the node is split.



- Quadtree starts with a single node
- Objects are added to the node. When a node contains too many objects, the node is split.



- Quadtree starts with a single node
- Objects are added to the node. When a node contains too many objects, the node is split.
- Objects that are on the boundary of the quadtree remain in the higher level node.



#### Algorithm: Collision Detection

Run through the quadtree in a recursive way. For each node test collision with all objects contained in the same or (recursively) contained nodes.



#### Example 2: Image Segmentation



(Possible applications: compression, denoising, edge detection)

#### Quadtree on Monochrome Bitmap



Similar procedure to generate the quadtree: split nodes recursively until each node only contains pixels of the same color.

#### Quadtree with Approximation

When there are more than two color values, the quadtree can get very large.  $\Rightarrow$  Compressed representation: *approximate* the image piecewise constant on the rectangles of a quadtree.





(Grey-value) Image  $\boldsymbol{y} \in \mathbb{R}^S$  on pixel indices S. <sup>27</sup> Rectangle  $r \subset S$ . Goal: determine

$$\arg\min_{v\in\mathbb{R}}\sum_{s\in r}(y_s-v)^2$$

 $<sup>^{27} \</sup>mathrm{we}$  assume that S is a square with side length  $2^k$  for some  $k \geq 0$ 

(Grey-value) Image  $\pmb{y}\in\mathbb{R}^S$  on pixel indices S.  $^{27}$  Rectangle  $r\subset S.$  Goal: determine

$$\arg\min_{v\in\mathbb{R}}\sum_{s\in r}(y_s-v)^2$$

Solution: the arithmetic mean  $\mu_r = \frac{1}{|r|} \sum_{s \in r} y_s$ 

 $<sup>^{27} \</sup>mathrm{we}$  assume that S is a square with side length  $2^k$  for some  $k \geq 0$ 

The (w.r.t. mean squared error) best approximation

$$\mu_r = \frac{1}{|r|} \sum_{s \in r} y_s$$

and the corresponding error

$$\sum_{s\in r} (y_s - \mu_r)^2 =: \|\boldsymbol{y}_r - \boldsymbol{\mu}_r\|_2^2$$

can be computed quickly after a  $\mathcal{O}(|S|)$  tabulation: prefix sums!

Conflict

- As close as possible to the data ⇒ small rectangles, large quadtree . Extreme case: one node per pixel. Approximation = original
- Small amount of nodes ⇒ large rectangles, small quadtree Extreme case: a single rectangle. Approximation = a single grey value.

Idea: choose between data fidelity and complexity with a regularisation parameter  $\gamma \geq 0$ 

Choose quadtree T with leaves  $^{\rm 28}$  L(T) such that it minimizes the following function

$$H_{\gamma}(T, \boldsymbol{y}) := \gamma \cdot \underbrace{|L(T)|}_{\text{Number of Leaves}} + \underbrace{\sum_{r \in L(T)} \|y_r - \mu_r\|_2^2}_{\text{Cummulative approximation error of all leaves}}$$

<sup>&</sup>lt;sup>28</sup>here: leaf: node with null-children

Let T be a quadtree over a rectangle  $S_T$  and let  $T_{ll}, T_{lr}, T_{ul}, T_{ur}$  be the four possible sub-trees and

$$\widehat{H}_{\gamma}(T,y) := \min_{T} \gamma \cdot |L(T)| + \sum_{r \in L(T)} \|y_r - \mu_r\|_2^2$$

Extreme cases:  $\gamma = 0 \Rightarrow$  original data;  $\gamma \rightarrow \infty \Rightarrow$  a single rectangle

#### **Observation:** Recursion

If the (sub-)quadtree T represents only one pixel, then it cannot be split and it holds that

$$\widehat{H}_{\gamma}(T, \boldsymbol{y}) = \gamma$$

Let, otherwise,

$$M_1 := \gamma + \|\boldsymbol{y}_{S_T} - \boldsymbol{\mu}_{S_T}\|_2^2$$
  
$$M_2 := \widehat{H}_{\gamma}(T_{ll}, \boldsymbol{y}) + \widehat{H}_{\gamma}(T_{lr}, \boldsymbol{y}) + \widehat{H}_{\gamma}(T_{ul}, \boldsymbol{y}) + \widehat{H}_{\gamma}(T_{ur}, \boldsymbol{y})$$

then

$$\widehat{H}_{\gamma}(T,y) = \min\{\underbrace{M_1(T,\gamma,\boldsymbol{y})}_{\text{no split}},\underbrace{M_2(T,\gamma,\boldsymbol{y})}_{\text{split}}\}$$

### Algorithmus: Minimize( $y,r,\gamma$ )

Input: Image data  $\boldsymbol{y} \in \mathbb{R}^{S}$ , rectangle  $r \subset S$ , regularization  $\gamma > 0$ Output:  $\min_{T} \gamma |L(T)| + \|\boldsymbol{y} - \boldsymbol{\mu}_{L(T)}\|_{2}^{2}$ 

 $\text{ if } m' < m \text{ then } m \leftarrow m' \\$ 

 $\mathbf{return}\ m$ 

## The minimization algorithm over dyadic partitions (quadtrees) takes $\mathcal{O}(|S|\log|S|)$ steps.

#### Application: Denoising Wedgelets)

#### (with addditional





noised

 $\gamma = 0.003$ 

 $\gamma = 0.01$ 

 $\gamma = 0.1$ 



# Extensions: Affine Regression + Wedgelets



#### Other ideas

# no quadtree: hierarchical one-dimensional modell (requires dynamic programming)







# 19.1 Appendix

Linear Regression

# The Learning Problem

#### Setup

- We observe N data points
- $\blacksquare$  Input examples:  $oldsymbol{X} = (oldsymbol{X}_1, \dots, oldsymbol{X}_N)^ op$
- Output examples:  $\boldsymbol{y} = (y_1, \dots, y_N)^\top$
- Assupmtion: there is an underlying truth

$$f: \mathcal{X} \to \mathcal{Y}$$



**Goal**: find a good approximation  $h \approx g$  to make predictions h(x) for new data points or to explain the data in order to find a compressed representation, for instance. Here  $\mathcal{X} = \mathbb{R}^d$ .  $\mathcal{Y} = \mathbb{R}$  (Regression).

#### Model: Linear Regression

Assumption: The underlying truth can be represented as

$$h_{\boldsymbol{w}}(\boldsymbol{x}) = w_0 + w_1 x_1 + \dots + w_d x_d = w_0 + \sum_{i=1}^d w_i x_i.$$
 linear in  $\boldsymbol{w}$  !

 $\Rightarrow$  We search for  $\boldsymbol{w}$  (sometimes also d).





# Trick for simplified notation

$$\boldsymbol{x} = (x_1, \dots, x_d) \rightarrow (\underbrace{x_0}_{\equiv 1}, x_1, \dots, x_d)$$

$$egin{aligned} h_{oldsymbol{w}}(oldsymbol{x}) &= w_0 x_0 + w_1 x_1 + \cdots + w_d x_d \ &= \sum\limits_{i=0}^d w_i x_i \ &= oldsymbol{w}^ op oldsymbol{x} \end{aligned}$$

## Data matrix

$$\mathbf{X} = \begin{bmatrix} \mathbf{X}_{1} \\ \mathbf{X}_{2} \\ \vdots \\ \mathbf{X}_{n} \end{bmatrix} = \begin{bmatrix} X_{1,0} & X_{1,1} & X_{1,2} & \dots & X_{1,d} \\ X_{2,0} & X_{2,1} & X_{2,2} & \dots & X_{2,d} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ X_{n,0} & X_{n,1} & X_{n,2} & \dots & X_{n,d} \end{bmatrix}, \quad \mathbf{y} = \begin{bmatrix} y_{1} \\ y_{2} \\ \vdots \\ y_{n} \end{bmatrix}, \qquad \mathbf{w} = \begin{bmatrix} w_{1} \\ \vdots \\ w_{d} \end{bmatrix}$$

 $Xw \approx y?$ 

#### Imprecise observations

#### Reality: the data are imprecise or the model is only a model.



data with noise data with noise 15 10 5 0 -5 -10 12 3 4 5 6 -10 2 3 4 5 6 -10 2 3 4 5 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10

What to do?

#### Error function

$$E(\boldsymbol{w}) = \sum_{i=1}^{N} (h_{\boldsymbol{w}}(\boldsymbol{X}_i) - y_i)^2$$

#### Want a $\widehat{\boldsymbol{w}}$ that minimizes ELinarity of $h_{\boldsymbol{w}}$ in $\boldsymbol{w} \Rightarrow$ solution with linear algebra.

1





#### Solution from Linear Algebra

$$\widehat{\boldsymbol{w}} = \underbrace{\left(\boldsymbol{X}^{\top}\boldsymbol{X}\right)^{-1}\boldsymbol{X}^{\top}}_{=:\boldsymbol{X}^{\dagger}}\boldsymbol{y}.$$

 $X^{\dagger}$ : Moore-Penroe Pseudo-Inverse

## **Fitting Polynomials**

Also works with linear regression.

$$h_{w}(x) = w_{0} + w_{1}x^{1} + w_{2}x^{2} + \dots + w_{d}x^{d} = w_{0} + \sum_{i=1}^{d} w_{i}x^{i}.$$

because  $h_{\boldsymbol{w}}(x)$  remains being linear in  $\boldsymbol{w}$  !

$$\boldsymbol{X} = \begin{bmatrix} 1 & x_1 & (x_1)^2 & \dots & (x_1)^d \\ 1 & x_2 & (x_2)^2 & \dots & (x_2)^d \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & x_n & (x_n)^2 & \dots & (x_n)^d \end{bmatrix}, \quad \boldsymbol{y} = \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{bmatrix}, \qquad \boldsymbol{w} = \begin{bmatrix} w_0 \\ \vdots \\ w_d \end{bmatrix}$$

# Example: Constant Approximation

## Example: Linear Approximation

$$\widehat{\boldsymbol{w}} = \left(\boldsymbol{X}^{\top}\boldsymbol{X}\right)^{-1}\boldsymbol{X}^{\top}\boldsymbol{y} = \begin{bmatrix} N & \sum x_i^{(1)} & \sum x_i^{(2)} \\ \sum x_i^{(1)} & \sum \left(x_i^{(1)}\right)^2 & \sum x_i^{(1)} \cdot x_i^{(2)} \\ \sum x_i^{(2)} & \sum x_i^{(1)} \cdot x_i^{(2)} & \sum \left(x_i^{(2)}\right)^2 \end{bmatrix}^{-1} \cdot \begin{bmatrix} \sum y_i \\ \sum y_i \cdot x_i^{(1)} \\ \sum y_i \cdot x_i^{(2)} \end{bmatrix}$$