18. AVL-Bäume

Balancierte Bäume [Ottman/Widmayer, Kap. 5.2-5.2.1, Cormen et al, Kap. Problem 13-3]

Hintergrund

- Suchbaum: Suchen, Einfügen und Entfernen eines Schlüssels im Mittel in $\mathcal{O}(\log n)$ Schritten (bei n Schlüsseln im Baum)
- Schlechtester Fall jedoch: $\Theta(n)$ (degenerierter Baum)

Hintergrund

- Suchbaum: Suchen, Einfügen und Entfernen eines Schlüssels im Mittel in $\mathcal{O}(\log n)$ Schritten (bei n Schlüsseln im Baum)
- Schlechtester Fall jedoch: $\Theta(n)$ (degenerierter Baum)

Ziel: Verhindern der Degenerierung, durch Balancieren des Baumes nach jeder Update-Operation.

Balancierung: Garantiere, dass ein Baum mit n Knoten stets eine Höhe von $\mathcal{O}(\log n)$ hat.

Hintergrund

- Suchbaum: Suchen, Einfügen und Entfernen eines Schlüssels im Mittel in $\mathcal{O}(\log n)$ Schritten (bei n Schlüsseln im Baum)
- Schlechtester Fall jedoch: $\Theta(n)$ (degenerierter Baum)

Ziel: Verhindern der Degenerierung, durch Balancieren des Baumes nach jeder Update-Operation.

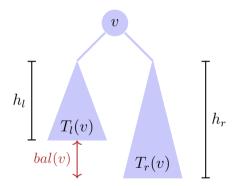
Balancierung: Garantiere, dass ein Baum mit n Knoten stets eine Höhe von $\mathcal{O}(\log n)$ hat.

Adelson-Velski und Landis (1962): AVL-Bäume

Balance eines Knotens

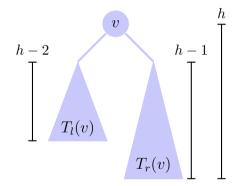
Die Balance eines Knotens v ist definiert als die Höhendifferenz seiner beiden Teilbäume $T_l(v)$ und $T_r(v)$

$$bal(v) := h(T_r(v)) - h(T_l(v))$$

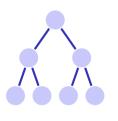


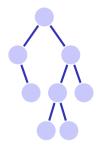
AVL-Bedingung

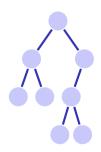
AVL-Bedingung: für jeden Knoten v eines Baumes gilt $\mathrm{bal}(v) \in \{-1,0,1\}$



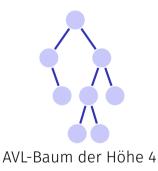
(Gegen-)Beispiele

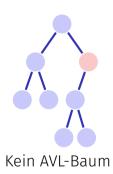






(Gegen-)Beispiele



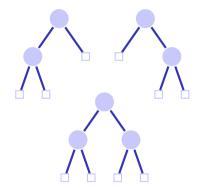


Anzahl Blätter

- lacksquare 1. Beobachtung: Ein Binärbaum mit n Schlüsseln hat genau n+1 Blätter. Einfaches Induktionsargument.
 - lacksquare Der Binärbaum mit n=0 Schlüsseln hat m=1 Blätter
 - Wird ein Schlüssel (Knoten) hinzugefügt $(n \to n+1)$, so ersetzt er ein Blatt und fügt zwei Blätter hinzu $(m \to m-1+2=m+1)$.
- 2. Beobachtung: Untere Grenze für Anzahl Blätter eines Binärbaums zu gegebener Höhe erlaubt Abschätzung der maximalen Höhe eines Binärbaums zu gegebener Anzahl Schlüssel.

Untere Grenze Blätter

 $\mathsf{AVL} ext{-Baum}$ der Höhe 1 hat N(1) := 2 Blätter

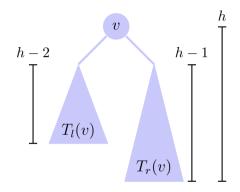


AVL-Baum der Höhe 2 hat mindestens N(2):=3 Blätter

Untere Grenze Blätter für h > 2 in AVL-Bäumen

- Höhe eines Teilbaums > h 1.
- Höhe des anderen Teilbaums $\geq h-2$. Minimale Anzahl Blätter N(h) ist

$$N(h) = N(h-1) + N(h-2)$$



Insgesamt gilt $N(h) = F_{h+2}$ mit **Fibonacci-Zahlen** $F_0 := 0$, $F_1 := 1$, $F_n := F_{n-1} + F_{n-2}$ für n > 1.

Es gilt²²

$$F_i = \frac{1}{\sqrt{5}} (\phi^i - \hat{\phi}^i)$$

mit den Wurzeln $\phi, \hat{\phi}$ der Gleichung vom goldenen Schnitt $x^2 - x - 1 = 0$:

$$\phi = \frac{1 + \sqrt{5}}{2} \approx 1.618$$

$$\hat{\phi} = \frac{1 - \sqrt{5}}{2} \approx -0.618$$

²²Herleitung mit Erzeugendenfunktionen (Potenzreihen) im Anhang

Baumhöhe

Da $|\hat{\phi}| < 1$, gilt insgesamt

$$N(h) \in \Theta\left(\left(\frac{1+\sqrt{5}}{2}\right)^h\right) \subseteq \Omega(1.618^h)$$

und somit

$$N(h) \ge c \cdot 1.618^h \quad \Rightarrow \quad h \le 1.44 \log_2 n + c'.$$

- D.h. ein AVL-Baum hat die gewünschte Höhe von $\mathcal{O}(\log n)$
- und ist asymptotisch nicht mehr als 44% höher als ein perfekt balancierter Baum (Höhe $\lceil \log_2 n + 1 \rceil$)

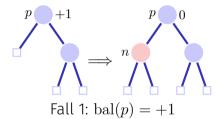
Einfügen und Balancieren

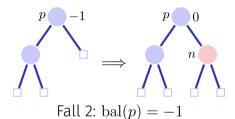
Balancieren:

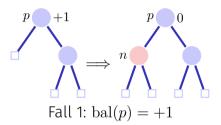
- lacktriangle Einfügen verletzt möglicherweise AVL-Bedingung ightarrow Balancieren
- Dafür wird die Balance an jedem Knoten gespeichert

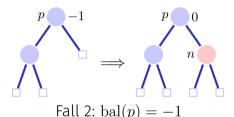
Einfügen:

- lacktriangle Neuen Knoten n einfügen, wie beim Suchbaum
- Dann Prüfen und ggf. Wiederherstellen der Balance für alle Knoten von n aufwärts bis zur Wurzel

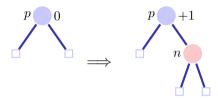




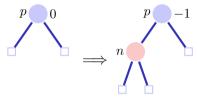




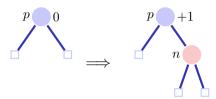
Direkt fertig in beiden Fällen, denn die Höhe des Teilbaums p hat sich nicht verändert. Balance des Elternknoten daher ebenfalls unverändert.



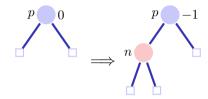
Fall 3.1: bal(p) = 0 rechts



Fall 3.2: bal(p) = 0, links



Fall 3.1: bal(p) = 0 rechts



Fall 3.2: bal(p) = 0, links

In beiden Fällen noch nicht fertig, da Elternknoten nun möglicherweise nicht mehr balanciert → Aufruf der Funktion upin(p) (upwards + insert)

upin(p): Rekursive Aufrufbedingung

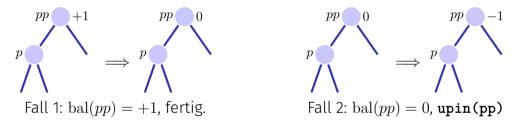
Bei jedem Aufruf upin(p) muss gelten, dass

- \blacksquare der Teilbaum p gewachsen ist und dadurch
- bal(p) von 0 auf $\in \{-1, +1\}$ geändert wurde.

Denn nur in dieser Situation kann das neu entstandene Ungleichgewicht von p (bal $(p) \neq 0$) einen Einfluss auf die Baumstruktur darüber haben.

upin(p)

Annahme: p ist linker Sohn von pp^{23}

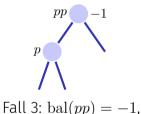


In beiden Fällen gilt nach der Operation die AVL-Bedingung für den Teilbaum ab pp

 $^{^{23}}$ lst p rechter Sohn: symmetrische Fälle unter Vertauschung von +1 und -1

upin(p)

Annahme: p ist linker Sohn von pp

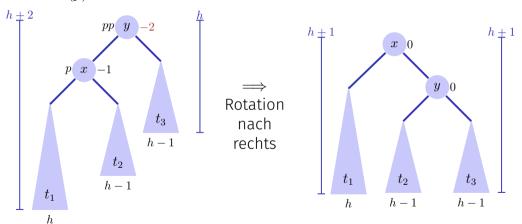


Dieser Fall ist problematisch: das Hinzufügen von n im Teilbaum ab pp hat die AVL-Bedingung verletzt. Rebalancieren!

Zwei Fälle bal(p) = -1, bal(p) = +1

Rotationen

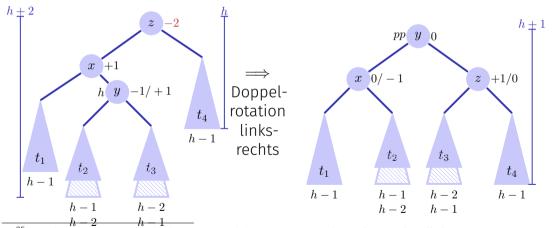
Fall 1.1 bal(p) = -1. ²⁴



 $^{^{24}}p$ rechter Sohn \Rightarrow bal(pp) = bal(p) = +1, Linksrotation

Rotationen

Fall 1.2 bal(p) = +1. ²⁵



 ^{25}p rechter Sohn $\Rightarrow \text{bal}(pp) = +1$, bal(p) = -1, Doppelrotation rechts links

Analyse

- Höhe des Baumes: $\mathcal{O}(\log n)$.
- Einfügen wie beim binären Suchbaum.
- Balancieren durch Rekursion vom Knoten zur Wurzel (beim rekursiven Aufstieg). Maximale Pfadlänge $\mathcal{O}(\log n)$.

Das Einfügen im AVL-Baum hat Laufzeitkosten von $\mathcal{O}(\log n)$.

Löschen

Entfernen eines Knotens aus einem AVL-Baum zieht ebenfalls Rotationen nach sich, ist aber noch etwas komplexer – und nicht prüfungsrelevant. Bei Interesse finden Sie mehr Informationen im Handout.

Zusammenfassung

- AVL-Bäume haben asymptotische Laufzeit von $\mathcal{O}(\log n)$ (schlechtester Fall) für das Suchen, Einfügen und Löschen von Schlüsseln
- Einfügen und Löschen ist verhältnismässig aufwändig. Bei kleinen Bäumen (Schlüsselmengen) überwiegen die Rotationskosten den Gewinn durch $\mathcal{O}(\log n)$ Höhe.
- Diverse andere balancierte Bäume existieren: Red-Black tree (std::map in C++), B-tree (std::collections::BTreeMap in Rust), Splay tree; Treap (mit hoher Wahrscheinlichkeit balanciert)

18.6 Anhang

Herleitung einiger mathematischen Formeln

Fibonacci Zahlen, Induktiver Beweis

$$F_i \stackrel{!}{=} \frac{1}{\sqrt{5}} (\phi^i - \hat{\phi}^i) \qquad [*] \qquad \qquad \left(\phi = \frac{1+\sqrt{5}}{2}, \hat{\phi} = \frac{1-\sqrt{5}}{2}\right).$$

- 1. Klar für i = 0, i = 1.
- 2. Sei i > 2 und Behauptung [*] wahr für alle F_j , j < i.

$$\begin{split} F_i &\stackrel{def}{=} F_{i-1} + F_{i-2} \stackrel{[*]}{=} \frac{1}{\sqrt{5}} (\phi^{i-1} - \hat{\phi}^{i-1}) + \frac{1}{\sqrt{5}} (\phi^{i-2} - \hat{\phi}^{i-2}) \\ &= \frac{1}{\sqrt{5}} (\phi^{i-1} + \phi^{i-2}) - \frac{1}{\sqrt{5}} (\hat{\phi}^{i-1} + \hat{\phi}^{i-2}) = \frac{1}{\sqrt{5}} \phi^{i-2} (\phi + 1) - \frac{1}{\sqrt{5}} \hat{\phi}^{i-2} (\hat{\phi} + 1) \\ (\phi, \hat{\phi} \text{ erfüllen } x + 1 = x^2) \\ &= \frac{1}{\sqrt{5}} \phi^{i-2} (\phi^2) - \frac{1}{\sqrt{5}} \hat{\phi}^{i-2} (\hat{\phi}^2) = \frac{1}{\sqrt{5}} (\phi^i - \hat{\phi}^i). \end{split}$$

Geschlossene Form der Fibonacci Zahlen: Berechnung über erzeugende Funktionen:

1. Potenzreihenansatz

$$f(x) := \sum_{i=0}^{\infty} F_i \cdot x^i$$

2. Für Fibonacci Zahlen gilt $F_0 = 0$, $F_1 = 1$, $F_i = F_{i-1} + F_{i-2} \forall i > 1$. Daher:

$$f(x) = x + \sum_{i=2}^{\infty} F_i \cdot x^i = x + \sum_{i=2}^{\infty} F_{i-1} \cdot x^i + \sum_{i=2}^{\infty} F_{i-2} \cdot x^i$$

$$= x + x \sum_{i=2}^{\infty} F_{i-1} \cdot x^{i-1} + x^2 \sum_{i=2}^{\infty} F_{i-2} \cdot x^{i-2}$$

$$= x + x \sum_{i=0}^{\infty} F_i \cdot x^i + x^2 \sum_{i=0}^{\infty} F_i \cdot x^i$$

$$= x + x \cdot f(x) + x^2 \cdot f(x).$$

3. Damit:

$$f(x) \cdot (1 - x - x^2) = x.$$

 $\Leftrightarrow f(x) = \frac{x}{1 - x - x^2} = -\frac{x}{x^2 + x - 1}$

Mit den Wurzeln $-\phi$ und $-\hat{\phi}$ von $x^2 + x - 1$,

$$\phi = \frac{1 + \sqrt{5}}{2} \approx 1.6, \qquad \hat{\phi} = \frac{1 - \sqrt{5}}{2} \approx -0.6.$$

gilt $\phi \cdot \hat{\phi} = -1$ und somit

$$f(x) = -\frac{x}{(x+\phi)\cdot(x+\hat{\phi})} = \frac{x}{(1-\phi x)\cdot(1-\hat{\phi}x)}$$

4. Es gilt:

$$(1 - \hat{\phi}x) - (1 - \phi x) = \sqrt{5} \cdot x.$$

Damit:

$$f(x) = \frac{1}{\sqrt{5}} \frac{(1 - \hat{\phi}x) - (1 - \phi x)}{(1 - \phi x) \cdot (1 - \hat{\phi}x)}$$
$$= \frac{1}{\sqrt{5}} \left(\frac{1}{1 - \phi x} - \frac{1}{1 - \hat{\phi}x} \right)$$

5. Potenzreihenentwicklung von $g_a(x) = \frac{1}{1-a \cdot x}$ $(a \in \mathbb{R})$:

$$\frac{1}{1 - a \cdot x} = \sum_{i=0}^{\infty} a^i \cdot x^i.$$

Sieht man mit Taylor-Entwicklung von $g_a(x)$ um x=0 oder so: Sei $\sum_{i=0}^{\infty}G_i\cdot x^i$ eine Potenzreihenentwicklung von g. Mit der Identität $g_a(x)(1-a\cdot x)=1$ gilt für alle x (im Konvergenzradius)

$$1 = \sum_{i=0}^{\infty} G_i \cdot x^i - a \cdot \sum_{i=0}^{\infty} G_i \cdot x^{i+1} = G_0 + \sum_{i=1}^{\infty} (G_i - a \cdot G_{i-1}) \cdot x^i$$

Für x = 0 folgt $G_0 = 1$ und für $x \neq 0$ folgt dann $G_i = a \cdot G_{i-1} \Rightarrow G_i = a^i$.

6. Einsetzen der Potenzreihenentwicklung:

$$f(x) = \frac{1}{\sqrt{5}} \left(\frac{1}{1 - \phi x} - \frac{1}{1 - \hat{\phi} x} \right) = \frac{1}{\sqrt{5}} \left(\sum_{i=0}^{\infty} \phi^i x^i - \sum_{i=0}^{\infty} \hat{\phi}^i x^i \right)$$
$$= \sum_{i=0}^{\infty} \frac{1}{\sqrt{5}} (\phi^i - \hat{\phi}^i) x^i$$

Koeffizientenvergleich mit $f(x) = \sum_{i=0}^{\infty} F_i \cdot x^i$ liefert

$$F_i = \frac{1}{\sqrt{5}} (\phi^i - \hat{\phi}^i).$$