18. AVL Trees

Balanced Trees [Ottman/Widmayer, Kap. 5.2-5.2.1, Cormen et al, Kap. Problem 13-3]

Background

■ Search tree: Search, insertion and removal of a key in average in $\mathcal{O}(\log n)$ steps (given n keys in the tree)
■ Worst case, though: $\Theta(n)$ (degenerated tree)

Background

- Search tree: Search, insertion and removal of a key in average in $\mathcal{O}(\log n)$ steps (given n keys in the tree)
■ Worst case, though: $\Theta(n)$ (degenerated tree)
Goal: Avoid degeneration, by balancing the tree after each update operation.
Balancing: guarantee that a tree with n nodes always has a height of $\mathcal{O}(\log n)$.

Background

■ Search tree: Search, insertion and removal of a key in average in $\mathcal{O}(\log n)$ steps (given n keys in the tree)
■ Worst case, though: $\Theta(n)$ (degenerated tree)
Goal: Avoid degeneration, by balancing the tree after each update operation.
Balancing: guarantee that a tree with n nodes always has a height of $\mathcal{O}(\log n)$.

Adelson-Velsky and Landis (1962): AVL-Trees

Balance of a node

The balance of a node v is defined as the height difference of its sub-trees $T_{l}(v)$ and $T_{r}(v)$

$$
\operatorname{bal}(v):=h\left(T_{r}(v)\right)-h\left(T_{l}(v)\right)
$$

AVL Condition

AVL Condition: for each node v of a tree $\operatorname{bal}(v) \in\{-1,0,1\}$

$$
\frac{h-2}{}
$$

(Counter-)Examples

(Counter-)Examples

AVL tree with height 3
AVL tree with height 4

Number of Leaves

■ 1. observation: a binary tree with n keys provides exactly $n+1$ leaves. simple induction argument.

- The binary tree with $n=0$ keys has $m=1$ leaves

■ When a key is added $(n \rightarrow n+1)$, then it replaces a leaf and adds two new leafs $(m \rightarrow m-1+2=m+1)$.

- 2. observation: a lower bound of the number of leaves in a binary tree with given height implies an upper bound of the height of a binary tree with given number of keys.

Lower bound of the leaves

AVL tree with height 1 has $N(1):=2$ leaves.

AVL tree with height 2 has at least $N(2):=3$ leaves.

Lower bound on the leaves for $h>2$ in AVL trees

■ Height of one subtree $\geq h-1$.

- Height of the other subtree $\geq h-2$. Minimal number of leaves $N(h)$ is

$$
N(h)=N(h-1)+N(h-2)
$$

Overal we have $N(h)=F_{h+2}$ with Fibonacci-numbers $F_{0}:=0, F_{1}:=1$, $F_{n}:=F_{n-1}+F_{n-2}$ for $n>1$.

Fibonacci Numbers, closed Form

It holds that ${ }^{20}$

$$
F_{i}=\frac{1}{\sqrt{5}}\left(\phi^{i}-\hat{\phi}^{i}\right)
$$

with the roots $\phi, \hat{\phi}$ of the golden ratio equation $x^{2}-x-1=0$:

$$
\begin{aligned}
& \phi=\frac{1+\sqrt{5}}{2} \approx 1.618 \\
& \hat{\phi}=\frac{1-\sqrt{5}}{2} \approx-0.618
\end{aligned}
$$

${ }^{20}$ Derivation using generating functions (power series) in the appendix.

Tree Height

Because $|\hat{\phi}|<1$, overal we have

$$
N(h) \in \Theta\left(\left(\frac{1+\sqrt{5}}{2}\right)^{h}\right) \subseteq \Omega\left(1.618^{h}\right)
$$

and thus

$$
N(h) \geq c \cdot 1.618^{h} \quad \Rightarrow \quad h \leq 1.44 \log _{2} n+c^{\prime}
$$

■ I.e. an AVL tree has, as desired, a height of $\mathcal{O}(\log n)$

- and is asymptotically not more than 44% higher than a perfectly balanced tree (height $\left\lceil\log _{2} n+1\right\rceil$)

Insertion and Balancing

Balance:
■ Insertion potentially violates AVL condition \rightarrow balancing
■ For that, we store the balance in each node
Insert:
■ Insert new node n, as done for search trees
■ Check, and potentially restore, balance of all nodes from n upwards to the root

Balance at Insertion Point

case 1: $\operatorname{bal}(p)=+1$

case 2: $\operatorname{bal}(p)=-1$

Balance at Insertion Point

Directly done in both cases because the height of subtree p did not change. Balance of parent node thus also unchanged.

Balance at Insertion Point

case 3.1: $\operatorname{bal}(p)=0$ right

case 3.2: $\operatorname{bal}(p)=0$, left

Balance at Insertion Point

case 3.1: $\operatorname{bal}(p)=0$ right

case 3.2: $\operatorname{bal}(p)=0$, left

Not yet done in both case, since parent node potentially no longer balanced \rightarrow Invocation of function upin (p) (upwards + insert)

upin(p): Recursive Invocation Requirement

For every call upin(p) it must hold that

- the subtree p grew and thereby
- changed $\operatorname{bal}(p)$ from 0 to $\in\{-1,+1\}$.

Because only in this situation can the newly developed imbalance of p $(\operatorname{bal}(p) \neq 0)$ affect the tree structure above.

upin(p)

Assumption: p is left son of $p p^{21}$

In both cases the AVL-Condition holds for the subtree from $p p$
${ }^{21}$ If p is a right son: symmetric cases with exchange of +1 and -1

upin(p)

Assumption: p is left son of $p p$

$$
\operatorname{case} 3: \operatorname{bal}(p p)=-1,
$$

This case is problematic: adding n to the subtree from $p p$ has violated the AVL-condition. Re-balance!
Two cases $\operatorname{bal}(p)=-1, \operatorname{bal}(p)=+1$

Rotations

case $1.1 \operatorname{bal}(p)=-1 .{ }^{22}$

${ }^{22} p$ right son: $\Rightarrow \operatorname{bal}(p p)=\operatorname{bal}(p)=+1$, left rotation

Rotations

case $1.2 \operatorname{bal}(p)=+1 .{ }^{23}$

${ }^{23} p$ right son $\Rightarrow \operatorname{bal}(p p)=+1, \operatorname{bal}(p)=-1$, double rotation right left

Analysis

■ Tree height: $\mathcal{O}(\log n)$.
■ Insertion like in binary search tree.

- Balancing via recursion from node to the root (during recursive ascend). Maximal path lenght $\mathcal{O}(\log n)$.
Insertion in an AVL-tree provides run time costs of $\mathcal{O}(\log n)$.

Deletion

Removing a node from an AVL tree also entails rotations, but is yet a bit more complex - and not exam relevant. If you're interested, see the handout for further information.

Conclusion

- AVL trees have worst-case asymptotic runtimes of $\mathcal{O}(\log n)$ for searching, insertion and deletion of keys.
■ Insertion and deletion is relatively involved. For small trees (key sets), the costs of balancing outweighs the gain of $\mathcal{O}(\log n)$ height.
■ Several other balanced trees exist: Red-Black tree (std: :map in C++), B-tree (std:: collections: :BTreeMap in Rust), Splay tree; Treap (balanced with high probability)

18.6 Appendix

Derivation of some mathemmatical formulas

Fibonacci Numbers, Inductive Proof

$F_{i} \stackrel{!}{=} \frac{1}{\sqrt{5}}\left(\phi^{i}-\hat{\phi}^{i}\right) \quad[*] \quad\left(\phi=\frac{1+\sqrt{5}}{2}, \hat{\phi}=\frac{1-\sqrt{5}}{2}\right)$.

1. Immediate for $i=0, i=1$.
2. Let $i>2$ and claim $[*]$ true for all $F_{j}, j<i$.

$$
\begin{aligned}
F_{i} & \stackrel{\text { def }}{=} F_{i-1}+F_{i-2} \stackrel{[*]}{=} \frac{1}{\sqrt{5}}\left(\phi^{i-1}-\hat{\phi}^{i-1}\right)+\frac{1}{\sqrt{5}}\left(\phi^{i-2}-\hat{\phi}^{i-2}\right) \\
& =\frac{1}{\sqrt{5}}\left(\phi^{i-1}+\phi^{i-2}\right)-\frac{1}{\sqrt{5}}\left(\hat{\phi}^{i-1}+\hat{\phi}^{i-2}\right)=\frac{1}{\sqrt{5}} \phi^{i-2}(\phi+1)-\frac{1}{\sqrt{5}} \hat{\phi}^{i-2}(\hat{\phi}+1)
\end{aligned}
$$

$\left(\phi, \hat{\phi}\right.$ fulfil $x+1=x^{2}$)

$$
=\frac{1}{\sqrt{5}} \phi^{i-2}\left(\phi^{2}\right)-\frac{1}{\sqrt{5}} \hat{\phi}^{i-2}\left(\hat{\phi}^{2}\right)=\frac{1}{\sqrt{5}}\left(\phi^{i}-\hat{\phi}^{i}\right) .
$$

[Fibonacci Numbers: closed form]

Closed form of the Fibonacci numbers: computation via generation functions:

1. Power series approach

$$
f(x):=\sum_{i=0}^{\infty} F_{i} \cdot x^{i}
$$

2. For Fibonacci Numbers it holds that $F_{0}=0, F_{1}=1$, $F_{i}=F_{i-1}+F_{i-2} \forall i>1$. Therefore:

$$
\begin{aligned}
f(x) & =x+\sum_{i=2}^{\infty} F_{i} \cdot x^{i}=x+\sum_{i=2}^{\infty} F_{i-1} \cdot x^{i}+\sum_{i=2}^{\infty} F_{i-2} \cdot x^{i} \\
& =x+x \sum_{i=2}^{\infty} F_{i-1} \cdot x^{i-1}+x^{2} \sum_{i=2}^{\infty} F_{i-2} \cdot x^{i-2} \\
& =x+x \sum_{i=0}^{\infty} F_{i} \cdot x^{i}+x^{2} \sum_{i=0}^{\infty} F_{i} \cdot x^{i} \\
& =x+x \cdot f(x)+x^{2} \cdot f(x) .
\end{aligned}
$$

3. Thus:

$$
\begin{aligned}
& f(x) \cdot\left(1-x-x^{2}\right)=x . \\
\Leftrightarrow & f(x)=\frac{x}{1-x-x^{2}}=-\frac{x}{x^{2}+x-1}
\end{aligned}
$$

with the roots $-\phi$ and $-\hat{\phi}$ of $x^{2}+x-1$,

$$
\phi=\frac{1+\sqrt{5}}{2} \approx 1.6, \quad \hat{\phi}=\frac{1-\sqrt{5}}{2} \approx-0.6
$$

it holds that $\phi \cdot \hat{\phi}=-1$ and thus

$$
f(x)=-\frac{x}{(x+\phi) \cdot(x+\hat{\phi})}=\frac{x}{(1-\phi x) \cdot(1-\hat{\phi} x)}
$$

[Fibonacci Numbers: closed form]
4. It holds that:

$$
(1-\hat{\phi} x)-(1-\phi x)=\sqrt{5} \cdot x
$$

Damit:

$$
\begin{aligned}
f(x) & =\frac{1}{\sqrt{5}} \frac{(1-\hat{\phi} x)-(1-\phi x)}{(1-\phi x) \cdot(1-\hat{\phi} x)} \\
& =\frac{1}{\sqrt{5}}\left(\frac{1}{1-\phi x}-\frac{1}{1-\hat{\phi} x}\right)
\end{aligned}
$$

[Fibonacci Numbers: closed form]

5. Power series of $g_{a}(x)=\frac{1}{1-a \cdot x}(a \in \mathbb{R})$:

$$
\frac{1}{1-a \cdot x}=\sum_{i=0}^{\infty} a^{i} \cdot x^{i}
$$

E.g. Taylor series of $g_{a}(x)$ at $x=0$ or like this: Let $\sum_{i=0}^{\infty} G_{i} \cdot x^{i}$ a power series of g. By the identity $g_{a}(x)(1-a \cdot x)=1$ it holds that for all x (within the radius of convergence)

$$
1=\sum_{i=0}^{\infty} G_{i} \cdot x^{i}-a \cdot \sum_{i=0}^{\infty} G_{i} \cdot x^{i+1}=G_{0}+\sum_{i=1}^{\infty}\left(G_{i}-a \cdot G_{i-1}\right) \cdot x^{i}
$$

For $x=0$ it follows $G_{0}=1$ and for $x \neq 0$ it follows then that $G_{i}=a \cdot G_{i-1} \Rightarrow$ $G_{i}=a^{i}$.
6. Fill in the power series:

$$
\begin{aligned}
f(x) & =\frac{1}{\sqrt{5}}\left(\frac{1}{1-\phi x}-\frac{1}{1-\hat{\phi} x}\right)=\frac{1}{\sqrt{5}}\left(\sum_{i=0}^{\infty} \phi^{i} x^{i}-\sum_{i=0}^{\infty} \hat{\phi}^{i} x^{i}\right) \\
& =\sum_{i=0}^{\infty} \frac{1}{\sqrt{5}}\left(\phi^{i}-\hat{\phi}^{i}\right) x^{i}
\end{aligned}
$$

Comparison of the coefficients with $f(x)=\sum_{i=0}^{\infty} F_{i} \cdot x^{i}$ yields

$$
F_{i}=\frac{1}{\sqrt{5}}\left(\phi^{i}-\hat{\phi}^{i}\right) .
$$

