18. AVL Trees

Balanced Trees [Ottman/Widmayer, Kap. 5.2-5.2.1, Cormen et al, Kap.
Problem 13-3]

494

m Search tree: Search, insertion and removal of a key in average in O(logn)
steps (given n keys in the tree)

m Worst case, though: ©(n) (degenerated tree)

495

m Search tree: Search, insertion and removal of a key in average in O(logn)
steps (given n keys in the tree)

m Worst case, though: ©(n) (degenerated tree)

Goal: Avoid degeneration, by balancing the tree after each update
operation.

Balancing: guarantee that a tree with n nodes always has a height of
O(logn).

495

m Search tree: Search, insertion and removal of a key in average in O(logn)
steps (given n keys in the tree)

m Worst case, though: ©(n) (degenerated tree)

Goal: Avoid degeneration, by balancing the tree after each update
operation.

Balancing: guarantee that a tree with n nodes always has a height of
O(logn).

Adelson-Velsky and Landis (1962): AVL-Trees

495

Balance of a node

The balance of a node v is defined as
the height difference of its sub-trees 7;(v)
and T,.(v) hy

bal(v) := h(T,(v)) — h(T;(v)) Ti(v)

496

AVL Condition

AVL Condition: for each node v of a tree
bal(v) € {~1,0,1}

Ti(v)

497

(Counter-)Examples

/' \ /' \
\ /N [\ [
/\ /\

/' \
AYEVA

(Counter-)Examples

/' \ /' \

/' \
S \ /N [\ [
/\ /\

AVL tree with height 3
AVL tree with height 4 No AVL tree

Number of Leaves

m 1. observation: a binary tree with n keys provides exactly n + 1 leaves.
Simple induction argument.

m The binary tree with n = 0 keys has m = 1 leaves
m When a key is added (n — n 4+ 1), then it replaces a leaf and adds two new
leafs(m > m —14+2=m+1).

m 2. observation: a lower bound of the number of leaves in a binary tree
with given height implies an upper bound of the height of a binary tree
with given number of keys.

499

Lower bound of the leaves

/N /\
an /\ /\

AVL tree with height 1 has / \

N(1) := 2 leaves. /\ /\

AVL tree with height 2 has at
least N(2) := 3 leaves.

500

Lower bound on the leaves for A > 2 in AVL trees

m Height of one subtree > h — 1. h—2 h—1
m Height of the other subtree > h — 2.
Minimal number of leaves N(h) is

N(h)=N(h—=1)+ N(h—2) Ti(v)

Overal we have N(h) = Fj,, with Fibonacci-numbers £, := 0, F} := 1,
Fn = anl —+ Fn72 forn > 1.

501

Fibonacci Numbers, closed Form

It holds that®°

Fi = %(fbl — ')

with the roots ¢, ¢ of the golden ratio equation z2 — z — 1 = 0:

14++/5

2
1
2\/5 ~ —0.618

~ 1.618

©
I

<
I

20Derivation using generating functions (power series) in the appendix.
502

Tree Height

Because |¢| < 1, overal we have

h
N(h)€®© ((1 + ‘/5>) C Q(1.618")

2

and thus
N(h)>¢-1.618" = h<144logon+c.

m |.e. an AVL tree has, as desired, a height of O(logn)

m and is asymptotically not more than 44% higher than a perfectly
balanced tree (height [log,n + 11)

503

Insertion and Balancing

Balance:
m Insertion potentially violates AVL condition — balancing
m For that, we store the balance in each node

Insert:

m Insert new node n, as done for search trees

m Check, and potentially restore, balance of all nodes from n upwards to
the root

504

Balance at Insertion Point

VANEVAN /N /N
A AN A A S A

case 1: bal(p) = +1 case 2: bal(p) = —1

505

Balance at Insertion Point

VANEEVAN 7\ /\
ANVANYA /\ /\ /\

case 1: bal(p) = +1 case 2: bal(p) = —1

Directly done in both cases because the height of subtree p did not
change. Balance of parent node thus also unchanged.

505

Balance at Insertion Point

/N /N /N /N
A A

case 3.1: bal(p) = 0 right case 3.2: bal(p) = 0, left

506

Balance at Insertion Point

PO P+l PO P -1
/NN VA NVAN
— —
/\ /\
case 3.1: bal(p) = 0 right case 3.2: bal(p) = 0, left

Not yet done in both case, since parent node potentially no longer
balanced — Invocation of function upin(p) (upwards + insert)

506

upin(p): Recursive Invocation Requirement

For every call upin(p) it must hold that
m the subtree p grew and thereby
m changed bal(p) from 0 to € {—1,+1}.

Because only in this situation can the newly developed imbalance of p
(bal(p) # 0) affect the tree structure above.

507

upin(p)

Assumption: p is left son of pp”
AR AR
ANEAN ANEAN

case 1: bal(pp) = +1, done. case 2: bal(pp) = 0, upin(pp)

In both cases the AVL-Condition holds for the subtree from pp

2If pis a right son: symmetric cases with exchange of +1 and —1
508

upin(p)

Assumption: p is left son of pp

pp -1

o/ N\
/\

case 3: bal(pp) = —1,

This case is problematic: adding n to the subtree from pp has violated the
AVL-condition. Re-balance!

Two cases bal(p) = —1, bal(p) = +1

509

case 11 bal(p) = —1. %

h :t2 _h
pp y —2 h j:l h j:l

/ \ z 0
2N / \ZIO

" rotation
3 :
- right

to

t 1 1

h
22p right son: = bal(pp) = bal(p) = +1, left rotation

510

case 1.2 bal(p) = +1. %
h42

r +1

N
N

t {3

h—1 h—2

B D) S 1

ty

h

NG

=
double
rotation

h-1 left-right

Zp right son = bal(p'};) - 11, bal(p) = —1, double rotation right left

7N\

t
h—1

pp Yy 0
z 0/—-1 z +1/0
t; t;
ty
h—1 h—2 h —
h—2 h—1

51

m Tree height: O(logn).
m Insertion like in binary search tree.

m Balancing via recursion from node to the root (during recursive ascend).
Maximal path lenght O(logn).

Insertion in an AVL-tree provides run time costs of O(logn).

512

Removing a node from an AVL tree also entails rotations, but is yet a bit
more complex — and not exam relevant. If you're interested, see the
handout for further information.

513

Conclusion

m AVL trees have worst-case asymptotic runtimes of O(logn) for searching,
insertion and deletion of keys.

m Insertion and deletion is relatively involved. For small trees (key sets),
the costs of balancing outweighs the gain of O(logn) height.

m Several other balanced trees exist: Red-Black tree (std: :map in C++),
B-tree (std::collections: :BTreeMap in Rust), Splay tree; Treap
(balanced with high probability)

521

18.6 Appendix

Derivation of some mathemmatical formulas

522

Fibonacci Numbers, Inductive Proof
F =

LR -6 (6="155,5=15).

1. Immediate for: =0,: = 1.

2. Leti > 2 and claim [«] true for all F}, j < i.

F, def F_,+F,_ 2 il (¢1 1 (Zgzel) (d)z 2 Qgi72)

%\

\[
= ﬁ(@bl_l +¢') — %(W_l +¢'7?)

G— 1 21—2/7
\/5¢ 2(¢>+1>—ﬁ¢> *(+1)

(¢, ¢ fulfil z + 1 = 22

IR ST VST N S VAT P :L i i
—\/5¢ (¢7) 5¢ (9%) (¢" — o).

ot

523

[Fibonacci Numbers: closed form]

Closed form of the Fibonacci numbers: computation via generation
functions:

1. Power series approach

flx) = iFZﬂ

=0

524

[Fibonacci Numbers: closed form]

2. For Fibonacci Numbers it holds that £y, = 0, F} =1,
F,=F,_1+ F,_oVi> 1. Therefore:

f@)=ax+) F-a'=z+> F1-2'+) F o'

=2 =2 =2

(o) o0
i—1 2 —2
:ZE-f-:L‘E Fi -2+ E F_5-2t
1=2 =2

:x+xZE-xi+x2ZE~xi
i=0 i=0
=z +ax-f(z)+2° f(a).

525

[Fibonacci Numbers: closed form]

3. Thus:

flz)-(1—z—2°%) ==

& flz)= =

T 1l—z—22 224+ 1-1

with the roots —¢ and —¢ of 22+ z — 1,

¢:1+\/5z1.6, é:l_‘/gz—o.(s.
2 2
it holds that ¢ - ¢ = —1 and thus
X X
f(z)=— =

(@+¢)-(@+9) (1—¢z)-(1- o)

526

[Fibonacci Numbers: closed form]

4. 1t holds that: A
(1—¢x) — (1 —¢x) =5z

Damit:

;(1—&)—(1—?:6)
V5 (1= ¢x)- (1 — dx)

e e
1 — ¢z 1—(&:6

fx) =

5-

527

[Fibonacci Numbers: closed form]

5. Power series of g,(z) = 1~ (a € R):

l—ax

E.g. Taylor series of g,(z) at z = 0 or like this: Let 322, G; - z* a power series
of g. By the identity g,(z)(1 — a -) = 1 it holds that for all z (within the
radius of convergence)

1:ZGi‘xi—a-ZGi-x Go—i-z i—a-Gi_1)-
i=0 i=0

For z = 0 it follows Gy = 1 and for x # 0 it follows then that G; = a - G;_1 =
Gi = ai.

528

[Fibonacci Numbers: closed form]

6. Fill in the power series:

fla) = \}5<1 —1gz5x 1 —1q3x> - 15<§: o §:¢x>
=) (6 =

Comparison of the coefficients with f(x) = 32, F; - ' yields

529

	AVL Trees
	Balance
	AVL Condition
	Fibonacci Numbers
	Insert
	Deletion
	Appendix

