
18. AVL Trees

Balanced Trees [Ottman/Widmayer, Kap. 5.2-5.2.1, Cormen et al, Kap.
Problem 13-3]

494

Background

Search tree: Search, insertion and removal of a key in average in O(log n)
steps (given n keys in the tree)
Worst case, though: Θ(n) (degenerated tree)

Goal: Avoid degeneration, by balancing the tree after each update
operation.
Balancing: guarantee that a tree with n nodes always has a height of
O(log n).

Adelson-Velsky and Landis (1962): AVL-Trees

495

Background

Search tree: Search, insertion and removal of a key in average in O(log n)
steps (given n keys in the tree)
Worst case, though: Θ(n) (degenerated tree)

Goal: Avoid degeneration, by balancing the tree after each update
operation.
Balancing: guarantee that a tree with n nodes always has a height of
O(log n).

Adelson-Velsky and Landis (1962): AVL-Trees

495

Background

Search tree: Search, insertion and removal of a key in average in O(log n)
steps (given n keys in the tree)
Worst case, though: Θ(n) (degenerated tree)

Goal: Avoid degeneration, by balancing the tree after each update
operation.
Balancing: guarantee that a tree with n nodes always has a height of
O(log n).

Adelson-Velsky and Landis (1962): AVL-Trees

495

Balance of a node

The balance of a node v is de�ned as
the height di�erence of its sub-trees Tl(v)
and Tr(v)

bal(v) := h(Tr(v))− h(Tl(v))

v

Tl(v)

Tr(v)

hl

hr

bal(v)

496

AVL Condition

AVL Condition: for each node v of a tree
bal(v) ∈ {−1, 0, 1}

v

Tl(v)

Tr(v)

h− 2 h− 1

h

497

(Counter-)Examples

AVL tree with height 3
AVL tree with height 4 No AVL tree

498

(Counter-)Examples

AVL tree with height 3
AVL tree with height 4 No AVL tree

498

Number of Leaves

1. observation: a binary tree with n keys provides exactly n+ 1 leaves.
Simple induction argument.

The binary tree with n = 0 keys has m = 1 leaves
When a key is added (n→ n+ 1), then it replaces a leaf and adds two new
leafs (m→ m− 1 + 2 = m+ 1).

2. observation: a lower bound of the number of leaves in a binary tree
with given height implies an upper bound of the height of a binary tree
with given number of keys.

499

Lower bound of the leaves

AVL tree with height 1 has
N(1) := 2 leaves.

AVL tree with height 2 has at
least N(2) := 3 leaves.

500

Lower bound on the leaves for h > 2 in AVL trees

Height of one subtree ≥ h− 1.
Height of the other subtree ≥ h− 2.

Minimal number of leaves N(h) is

N(h) = N(h− 1) +N(h− 2)

v

Tl(v)

Tr(v)

h− 2 h− 1

h

Overal we have N(h) = Fh+2 with Fibonacci-numbers F0 := 0, F1 := 1,
Fn := Fn−1 + Fn−2 for n > 1.

501

Fibonacci Numbers, closed Form

It holds that20

Fi = 1√
5

(φi − φ̂i)

with the roots φ, φ̂ of the golden ratio equation x2 − x− 1 = 0:

φ = 1 +
√

5
2 ≈ 1.618

φ̂ = 1−
√

5
2 ≈ −0.618

20Derivation using generating functions (power series) in the appendix.
502

Tree Height

Because |φ̂| < 1, overal we have

N(h) ∈ Θ

(1 +
√

5
2

)h
 ⊆ Ω(1.618h)

and thus
N(h) ≥ c · 1.618h ⇒ h ≤ 1.44 log2 n+ c′.

I.e. an AVL tree has, as desired, a height of O(log n)
and is asymptotically not more than 44% higher than a perfectly
balanced tree (height dlog2 n+ 1e)

503

Insertion and Balancing

Balance:
Insertion potentially violates AVL condition→ balancing
For that, we store the balance in each node

Insert:
Insert new node n, as done for search trees
Check, and potentially restore, balance of all nodes from n upwards to
the root

504

Balance at Insertion Point

=⇒

+1 0p p

n

case 1: bal(p) = +1

=⇒

−1 0p p

n

case 2: bal(p) = −1

Directly done in both cases because the height of subtree p did not
change. Balance of parent node thus also unchanged.

505

Balance at Insertion Point

=⇒

+1 0p p

n

case 1: bal(p) = +1

=⇒

−1 0p p

n

case 2: bal(p) = −1

Directly done in both cases because the height of subtree p did not
change. Balance of parent node thus also unchanged.

505

Balance at Insertion Point

=⇒

0 +1p p

n

case 3.1: bal(p) = 0 right

=⇒

0 −1p p

n

case 3.2: bal(p) = 0, left

Not yet done in both case, since parent node potentially no longer
balanced→ Invocation of function upin(p) (upwards + insert)

506

Balance at Insertion Point

=⇒

0 +1p p

n

case 3.1: bal(p) = 0 right

=⇒

0 −1p p

n

case 3.2: bal(p) = 0, left

Not yet done in both case, since parent node potentially no longer
balanced→ Invocation of function upin(p) (upwards + insert)

506

upin(p): Recursive Invocation Requirement

For every call upin(p) it must hold that
the subtree p grew and thereby
changed bal(p) from 0 to ∈ {−1,+1}.

Because only in this situation can the newly developed imbalance of p
(bal(p) 6= 0) a�ect the tree structure above.

507

upin(p)

Assumption: p is left son of pp21

=⇒

pp +1 pp 0

p p

case 1: bal(pp) = +1, done.

=⇒

pp 0 pp −1

p p

case 2: bal(pp) = 0, upin(pp)

In both cases the AVL-Condition holds for the subtree from pp

21If p is a right son: symmetric cases with exchange of +1 and −1
508

upin(p)

Assumption: p is left son of pp

pp −1

p

case 3: bal(pp) = −1,

This case is problematic: adding n to the subtree from pp has violated the
AVL-condition. Re-balance!
Two cases bal(p) = −1, bal(p) = +1

509

Rotations
case 1.1 bal(p) = −1. 22

y

x

t1

t2

t3

pp −2

p −1

h

h− 1

h− 1

h+ 2 h

=⇒
rotation
right

x

y

t1 t2 t3

0

0

h h− 1 h− 1

h+ 1 h+ 1

22p right son: ⇒ bal(pp) = bal(p) = +1, left rotation
510

Rotations
case 1.2 bal(p) = +1. 23

z

x

y

t1
t2 t3

t4

−2

+1

h −1/+ 1

h− 1

h− 1
h− 2

h− 2
h− 1

h− 1

h+ 2 h

=⇒
double
rotation
left-right

y

x z

t1

t2 t3
t4

pp 0

0/− 1 +1/0

h− 1 h− 1
h− 2

h− 2
h− 1

h− 1

h+ 1

23p right son⇒ bal(pp) = +1, bal(p) = −1, double rotation right left
511

Analysis

Tree height: O(log n).
Insertion like in binary search tree.
Balancing via recursion from node to the root (during recursive ascend).
Maximal path lenght O(log n).

Insertion in an AVL-tree provides run time costs of O(log n).

512

Deletion

Removing a node from an AVL tree also entails rotations, but is yet a bit
more complex – and not exam relevant. If you’re interested, see the
handout for further information.

513

Conclusion

AVL trees have worst-case asymptotic runtimes of O(log n) for searching,
insertion and deletion of keys.
Insertion and deletion is relatively involved. For small trees (key sets),
the costs of balancing outweighs the gain of O(log n) height.
Several other balanced trees exist: Red-Black tree (std::map in C++),
B-tree (std::collections::BTreeMap in Rust), Splay tree; Treap
(balanced with high probability)

521

18.6 Appendix

Derivation of some mathemmatical formulas

522

Fibonacci Numbers, Inductive Proof
Fi

!= 1√
5(φi − φ̂i) [∗]

(
φ = 1+

√
5

2 , φ̂ = 1−
√

5
2

)
.

1. Immediate for i = 0, i = 1.

2. Let i > 2 and claim [∗] true for all Fj , j < i.

Fi
def= Fi−1 + Fi−2

[∗]= 1√
5

(φi−1 − φ̂i−1) + 1√
5

(φi−2 − φ̂i−2)

= 1√
5

(φi−1 + φi−2)− 1√
5

(φ̂i−1 + φ̂i−2) = 1√
5
φi−2(φ+ 1)− 1√

5
φ̂i−2(φ̂+ 1)

(φ, φ̂ ful�l x+ 1 = x2)

= 1√
5
φi−2(φ2)− 1√

5
φ̂i−2(φ̂2) = 1√

5
(φi − φ̂i).

523

[Fibonacci Numbers: closed form]

Closed form of the Fibonacci numbers: computation via generation
functions:
1. Power series approach

f(x) :=
∞∑

i=0
Fi · xi

524

[Fibonacci Numbers: closed form]

2. For Fibonacci Numbers it holds that F0 = 0, F1 = 1,
Fi = Fi−1 + Fi−2 ∀ i > 1. Therefore:

f(x) = x+
∞∑

i=2
Fi · xi = x+

∞∑
i=2

Fi−1 · xi +
∞∑

i=2
Fi−2 · xi

= x+ x
∞∑

i=2
Fi−1 · xi−1 + x2

∞∑
i=2

Fi−2 · xi−2

= x+ x
∞∑

i=0
Fi · xi + x2

∞∑
i=0

Fi · xi

= x+ x · f(x) + x2 · f(x).

525

[Fibonacci Numbers: closed form]

3. Thus:
f(x) · (1− x− x2) = x.

⇔ f(x) = x

1− x− x2 = − x

x2 + x− 1

with the roots −φ and −φ̂ of x2 + x− 1,

φ = 1 +
√

5
2 ≈ 1.6, φ̂ = 1−

√
5

2 ≈ −0.6.

it holds that φ · φ̂ = −1 and thus

f(x) = − x

(x+ φ) · (x+ φ̂)
= x

(1− φx) · (1− φ̂x)

526

[Fibonacci Numbers: closed form]

4. It holds that:
(1− φ̂x)− (1− φx) =

√
5 · x.

Damit:

f(x) = 1√
5

(1− φ̂x)− (1− φx)
(1− φx) · (1− φ̂x)

= 1√
5

(
1

1− φx −
1

1− φ̂x

)

527

[Fibonacci Numbers: closed form]

5. Power series of ga(x) = 1
1−a·x (a ∈ R):

1
1− a · x =

∞∑
i=0

ai · xi.

E.g. Taylor series of ga(x) at x = 0 or like this: Let
∑∞

i=0Gi · xi a power series
of g. By the identity ga(x)(1− a · x) = 1 it holds that for all x (within the
radius of convergence)

1 =
∞∑

i=0
Gi · xi − a ·

∞∑
i=0

Gi · xi+1 = G0 +
∞∑

i=1
(Gi − a ·Gi−1) · xi

For x = 0 it follows G0 = 1 and for x 6= 0 it follows then that Gi = a ·Gi−1 ⇒
Gi = ai.

528

[Fibonacci Numbers: closed form]

6. Fill in the power series:

f(x) = 1√
5

(
1

1− φx −
1

1− φ̂x

)
= 1√

5

(∞∑
i=0

φixi −
∞∑

i=0
φ̂ixi

)

=
∞∑

i=0

1√
5

(φi − φ̂i)xi

Comparison of the coe�cients with f(x) = ∑∞
i=0 Fi · xi yields

Fi = 1√
5

(φi − φ̂i).

529

	AVL Trees
	Balance
	AVL Condition
	Fibonacci Numbers
	Insert
	Deletion
	Appendix

