### 18. AVL Trees

Balanced Trees [Ottman/Widmayer, Kap. 5.2-5.2.1, Cormen et al, Kap. Problem 13-3]

## Background

- Search tree: Search, insertion and removal of a key in average in  $\mathcal{O}(\log n)$  steps (given n keys in the tree)
- Worst case, though:  $\Theta(n)$  (degenerated tree)

**Goal:** Avoid degeneration, by balancing the tree after each update operation.

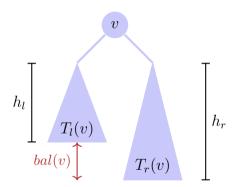
**Balancing**: guarantee that a tree with n nodes always has a height of  $\mathcal{O}(\log n)$ .

#### Adelson-Velsky and Landis (1962): AVL-Trees

#### Balance of a node

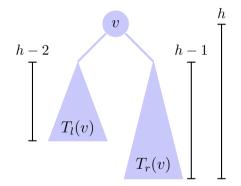
The *balance* of a node v is defined as the height difference of its sub-trees  $T_l(v)$  and  $T_r(v)$ 

$$bal(v) := h(T_r(v)) - h(T_l(v))$$

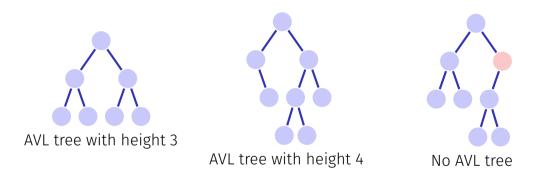


### **AVL Condition**

AVL Condition: for each node v of a tree  $bal(v) \in \{-1, 0, 1\}$ 



# (Counter-)Examples



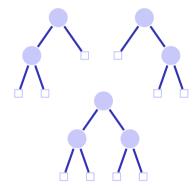
#### Number of Leaves

- 1. observation: a binary tree with n keys provides exactly n+1 leaves. Simple induction argument.
  - The binary tree with n = 0 keys has m = 1 leaves
  - When a key is added  $(n \to n+1)$ , then it replaces a leaf and adds two new leafs  $(m \to m-1+2=m+1)$ .
- 2. observation: a lower bound of the number of leaves in a binary tree with given height implies an upper bound of the height of a binary tree with given number of keys.

#### Lower bound of the leaves



AVL tree with height 1 has N(1) := 2 leaves.

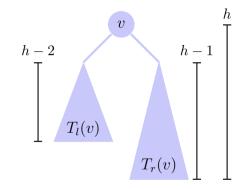


AVL tree with height 2 has at least N(2) := 3 leaves.

### Lower bound on the leaves for h > 2 in AVL trees

- Height of one subtree > h 1.
- Height of the other subtree  $\geq h-2$ . Minimal number of leaves N(h) is

$$N(h) = N(h-1) + N(h-2)$$



Overal we have  $N(h) = F_{h+2}$  with **Fibonacci-numbers**  $F_0 := 0$ ,  $F_1 := 1$ ,  $F_n := F_{n-1} + F_{n-2}$  for n > 1.

It holds that<sup>20</sup>

$$F_i = \frac{1}{\sqrt{5}} (\phi^i - \hat{\phi}^i)$$

with the roots  $\phi$ ,  $\hat{\phi}$  of the golden ratio equation  $x^2 - x - 1 = 0$ :

$$\phi = \frac{1 + \sqrt{5}}{2} \approx 1.618$$

$$\hat{\phi} = \frac{1 - \sqrt{5}}{2} \approx -0.618$$

<sup>&</sup>lt;sup>20</sup>Derivation using generating functions (power series) in the appendix.

# Tree Height

Because  $|\hat{\phi}| < 1$ , overal we have

$$N(h) \in \Theta\left(\left(\frac{1+\sqrt{5}}{2}\right)^h\right) \subseteq \Omega(1.618^h)$$

and thus

$$N(h) \ge c \cdot 1.618^h \quad \Rightarrow \quad h \le 1.44 \log_2 n + c'.$$

- I.e. an AVL tree has, as desired, a height of  $\mathcal{O}(\log n)$
- and is asymptotically not more than 44% higher than a perfectly balanced tree (height  $\lceil \log_2 n + 1 \rceil$ )

# Insertion and Balancing

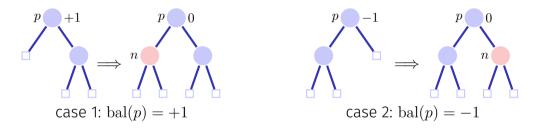
#### Balance:

- lacktriang Insertion potentially violates AVL condition ightarrow balancing
- For that, we store the balance in each node

#### Insert:

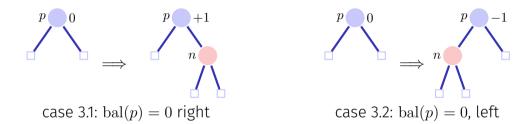
- $\blacksquare$  Insert new node n, as done for search trees
- lacksquare Check, and potentially restore, balance of all nodes from n upwards to the root

#### Balance at Insertion Point



Directly done in both cases because the height of subtree p did not change. Balance of parent node thus also unchanged.

#### Balance at Insertion Point



Not yet done in both case, since parent node potentially no longer balanced  $\rightarrow$  Invocation of function upin(p) (upwards + insert)

# upin(p): Recursive Invocation Requirement

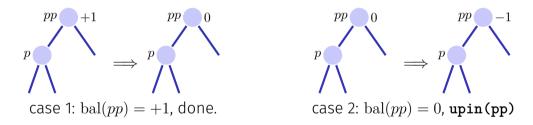
For every call upin(p) it must hold that

- $\blacksquare$  the subtree p grew and thereby
- changed bal(p) from 0 to  $\in \{-1, +1\}$ .

Because only in this situation can the newly developed imbalance of p (bal $(p) \neq 0$ ) affect the tree structure above.

# upin(p)

Assumption: p is left son of  $pp^{21}$ 

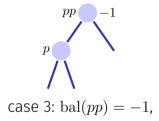


In both cases the AVL-Condition holds for the subtree from pp

 $<sup>^{21}</sup>$ lf p is a right son: symmetric cases with exchange of +1 and -1

# upin(p)

Assumption: p is left son of pp

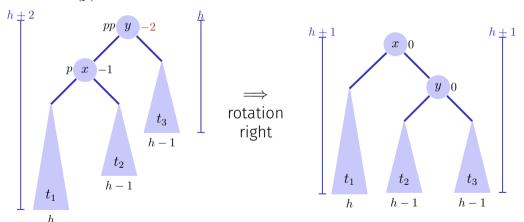


This case is problematic: adding n to the subtree from pp has violated the AVL-condition. Re-balance!

Two cases bal(p) = -1, bal(p) = +1

### **Rotations**

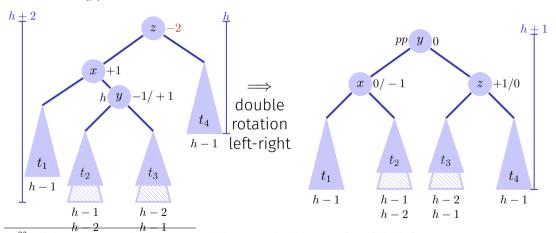
case 1.1 bal(p) = -1. <sup>22</sup>



 $<sup>^{22}</sup>p$  right son:  $\Rightarrow$  bal(pp) =bal(p) = +1, left rotation

#### Rotations

case 1.2 bal(p) = +1. <sup>23</sup>



 $^{23}p$  right son  $\Rightarrow$  bal(pp) = +1, bal(p) = -1, double rotation right left

### **Analysis**

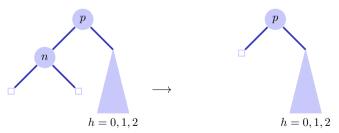
- Tree height:  $\mathcal{O}(\log n)$ .
- Insertion like in binary search tree.
- Balancing via recursion from node to the root (during recursive ascend). Maximal path lenght  $\mathcal{O}(\log n)$ .

Insertion in an AVL-tree provides run time costs of  $\mathcal{O}(\log n)$ .

#### Deletion

Case 1: Children of node n are both leaves. Let p be parent node of  $n \Rightarrow$  Other subtree has height h' = 0, 1 or 2.

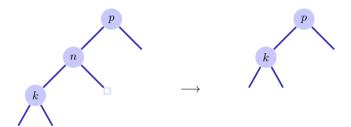
- h' = 1: Adapt bal(p).
- h' = 0: Adapt bal(p). Call **upout**(p).
- h' = 2: Rebalanciere des Teilbaumes. Call **upout(p)**.



#### Deletion

Case 2: one child k of node n is an inner node

■ Replace n by k. upout(k)



#### Deletion

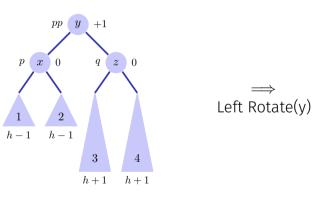
Case 3: both children of node n are inner nodes

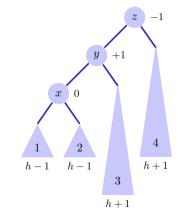
- Replace n by symmetric successor  $\Rightarrow$  **upout(k)**
- Deletion of the symmetric successor is as in case 1 or 2.

Let pp be the parent node of p.

- (a) p left child of pp
  - 1.  $bal(pp) = -1 \Rightarrow bal(pp) \leftarrow 0$ . upout (pp)
  - 2.  $bal(pp) = 0 \Rightarrow bal(pp) \leftarrow +1$ .
  - 3.  $bal(pp) = +1 \Rightarrow next slides$ .
- (b) p right child of pp: Symmetric cases exchanging +1 and -1.

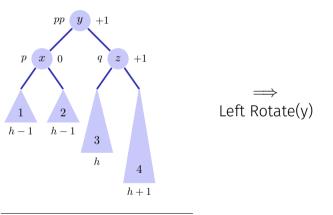
Case (a).3: bal(pp) = +1. Let q be brother of p (a).3.1: bal(q) = 0.<sup>24</sup>

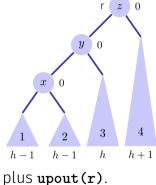




 $<sup>^{24}(</sup>b).3.1: bal(pp) = -1, bal(q) = 0, Right rotation$ 

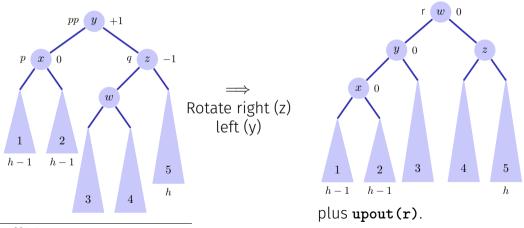
Case (a).3: bal(pp) = +1. (a).3.2: bal(q) = +1.<sup>25</sup>





 $<sup>^{25}</sup>$ (b).3.2: bal(pp) = -1, bal(q) = +1, Right rotation+upout

Case (a).3: bal(pp) = +1. (a).3.3: bal(q) = -1.



<sup>&</sup>lt;sup>26</sup>(b).3.3: bal(pp) = -1, bal(q) = -1, left-right rotation + upout

#### Conclusion

- AVL trees have worst-case asymptotic runtimes of  $\mathcal{O}(\log n)$  for searching, insertion and deletion of keys.
- Insertion and deletion is relatively involved. For small trees (key sets), the costs of balancing outweighs the gain of  $\mathcal{O}(\log n)$  height.
- Several other balanced trees exist: Red-Black tree (std::map in C++), B-tree (std::collections::BTreeMap in Rust), Splay tree; Treap (balanced with high probability)

# 18.6 Appendix

Derivation of some mathemmatical formulas

# Fibonacci Numbers, Inductive Proof

$$F_i \stackrel{!}{=} \frac{1}{\sqrt{5}} (\phi^i - \hat{\phi}^i) \qquad [*] \qquad \qquad \left(\phi = \frac{1+\sqrt{5}}{2}, \hat{\phi} = \frac{1-\sqrt{5}}{2}\right).$$

- 1. Immediate for i = 0, i = 1.
- 2. Let i > 2 and claim [\*] true for all  $F_i$ , j < i.

$$\begin{split} F_i &\stackrel{def}{=} F_{i-1} + F_{i-2} \stackrel{[*]}{=} \frac{1}{\sqrt{5}} (\phi^{i-1} - \hat{\phi}^{i-1}) + \frac{1}{\sqrt{5}} (\phi^{i-2} - \hat{\phi}^{i-2}) \\ &= \frac{1}{\sqrt{5}} (\phi^{i-1} + \phi^{i-2}) - \frac{1}{\sqrt{5}} (\hat{\phi}^{i-1} + \hat{\phi}^{i-2}) = \frac{1}{\sqrt{5}} \phi^{i-2} (\phi + 1) - \frac{1}{\sqrt{5}} \hat{\phi}^{i-2} (\hat{\phi} + 1) \\ (\phi, \hat{\phi} \text{ fulfil } x + 1 = x^2) \\ &= \frac{1}{\sqrt{5}} \phi^{i-2} (\phi^2) - \frac{1}{\sqrt{5}} \hat{\phi}^{i-2} (\hat{\phi}^2) = \frac{1}{\sqrt{5}} (\phi^i - \hat{\phi}^i). \end{split}$$

Closed form of the Fibonacci numbers: computation via generation functions:

1. Power series approach

$$f(x) := \sum_{i=0}^{\infty} F_i \cdot x^i$$

2. For Fibonacci Numbers it holds that  $F_0 = 0$ ,  $F_1 = 1$ ,  $F_i = F_{i-1} + F_{i-2} \ \forall i > 1$ . Therefore:

$$f(x) = x + \sum_{i=2}^{\infty} F_i \cdot x^i = x + \sum_{i=2}^{\infty} F_{i-1} \cdot x^i + \sum_{i=2}^{\infty} F_{i-2} \cdot x^i$$

$$= x + x \sum_{i=2}^{\infty} F_{i-1} \cdot x^{i-1} + x^2 \sum_{i=2}^{\infty} F_{i-2} \cdot x^{i-2}$$

$$= x + x \sum_{i=0}^{\infty} F_i \cdot x^i + x^2 \sum_{i=0}^{\infty} F_i \cdot x^i$$

$$= x + x \cdot f(x) + x^2 \cdot f(x).$$

3. Thus:

$$f(x) \cdot (1 - x - x^2) = x.$$
  
 $\Leftrightarrow f(x) = \frac{x}{1 - x - x^2} = -\frac{x}{x^2 + x - 1}$ 

with the roots  $-\phi$  and  $-\hat{\phi}$  of  $x^2 + x - 1$ ,

$$\phi = \frac{1 + \sqrt{5}}{2} \approx 1.6, \qquad \hat{\phi} = \frac{1 - \sqrt{5}}{2} \approx -0.6.$$

it holds that  $\phi \cdot \hat{\phi} = -1$  and thus

$$f(x) = -\frac{x}{(x+\phi)\cdot(x+\hat{\phi})} = \frac{x}{(1-\phi x)\cdot(1-\hat{\phi}x)}$$

4. It holds that:

$$(1 - \hat{\phi}x) - (1 - \phi x) = \sqrt{5} \cdot x.$$

Damit:

$$f(x) = \frac{1}{\sqrt{5}} \frac{(1 - \hat{\phi}x) - (1 - \phi x)}{(1 - \phi x) \cdot (1 - \hat{\phi}x)}$$
$$= \frac{1}{\sqrt{5}} \left( \frac{1}{1 - \phi x} - \frac{1}{1 - \hat{\phi}x} \right)$$

5. Power series of  $g_a(x) = \frac{1}{1-a \cdot x}$  ( $a \in \mathbb{R}$ ):

$$\frac{1}{1 - a \cdot x} = \sum_{i=0}^{\infty} a^i \cdot x^i.$$

E.g. Taylor series of  $g_a(x)$  at x=0 or like this: Let  $\sum_{i=0}^{\infty} G_i \cdot x^i$  a power series of g. By the identity  $g_a(x)(1-a\cdot x)=1$  it holds that for all x (within the radius of convergence)

$$1 = \sum_{i=0}^{\infty} G_i \cdot x^i - a \cdot \sum_{i=0}^{\infty} G_i \cdot x^{i+1} = G_0 + \sum_{i=1}^{\infty} (G_i - a \cdot G_{i-1}) \cdot x^i$$

For x=0 it follows  $G_0=1$  and for  $x\neq 0$  it follows then that  $G_i=a\cdot G_{i-1}\Rightarrow G_i=a^i$ .

6. Fill in the power series:

$$f(x) = \frac{1}{\sqrt{5}} \left( \frac{1}{1 - \phi x} - \frac{1}{1 - \hat{\phi} x} \right) = \frac{1}{\sqrt{5}} \left( \sum_{i=0}^{\infty} \phi^i x^i - \sum_{i=0}^{\infty} \hat{\phi}^i x^i \right)$$
$$= \sum_{i=0}^{\infty} \frac{1}{\sqrt{5}} (\phi^i - \hat{\phi}^i) x^i$$

Comparison of the coefficients with  $f(x) = \sum_{i=0}^{\infty} F_i \cdot x^i$  yields

$$F_i = \frac{1}{\sqrt{5}} (\phi^i - \hat{\phi}^i).$$