16. Binary Search Trees

[Ottman/Widmayer, Kap. 51, Cormen et al, Kap. 121 - 12.3]

452

Dictionary implementation

Hashing: implementation of dictionaries with expected very fast access
times.
Disadvantages of hashing:

453

Dictionary implementation

Hashing: implementation of dictionaries with expected very fast access
times.

Disadvantages of hashing: linear access time in worst case. Some
operations not supported at all:

m enumerate keys in increasing order

453

Dictionary implementation

Hashing: implementation of dictionaries with expected very fast access
times.
Disadvantages of hashing: linear access time in worst case. Some
operations not supported at all:

m enumerate keys in increasing order

m next smallest key to given key

453

Dictionary implementation

Hashing: implementation of dictionaries with expected very fast access
times.
Disadvantages of hashing: linear access time in worst case. Some
operations not supported at all:

m enumerate keys in increasing order

m next smallest key to given key

m Key k in given interval k € [l,r]

453

Trees

Trees are

m Generalized lists: nodes can have more than one successor

m Special graphs: graphs consist of nodes and edges. A tree is a fully
connected, directed, acyclic graph.

454

Trees

Use

m Decision trees: hierarchic representation of
decision rules

m syntax trees: parsing and traversing of
expressions, e.g. in a compiler

m Code tress: representation of a code, e.g. morse
alphabet, huffman code

m Search trees: allow efficient searching for an
element by value

455

sho g

E rt E/Sta”\T lon
N, N

/ N\ / N\ / N\ / N\
S v R W D K G 0
I\ N /N SN N N SN T

H 'V F 0 L AP J B X C'Y 'z Q' 0O CcH

AVAVAVAVAVAVAVAVAVAVAVAVAVAVAVA

Morsealphabet

3/5+7.0
+
/ / \7.0
/\
3 5

Expression tree

457

Nomenclature

Wurzel

{

SIS I T I

ll\/l;\\ll\ ll\/l\ll\ & &(b///l\/l\

leaves_)

m Order of the tree: maximum number of child nodes (here: 3)
m Height of the tree: maximum path length root to leaf (here: 4)

458

A binary tree is

m either a leaf, i.e. an empty tree,

m or an inner leaf with two trees T; (left subtree) and T, (right subtree) as
left and right successor.

In each inner node v we store key

m a key v.key and left right
m two nodes v.left and v.right to the roots of the left and right subtree.

a leaf is represented by the null-pointer

459

Recap: Linked-list Node in C++

struct llnode

1 5 @&—&— §{ nullptr

/N

key next

struct llnode {

int key;

llnode* next;

llnode(int k, llnode* n): key(k), next(n) {} // Constructor
};

460

Recap: Tree Nodes in C++

tnode
key —— 5

struct tnode {
int key;
tnode* left;

3 8
tnode* right;
tnode(int k, tnode* 1, tnode* r):
key(k), left(l), right(r) {}
}; 5 nullptr
A N

left right

461

Binary search tree

A binary search tree is a binary tree that fulfils the search tree property:

m Every node v stores a key
m Keys in left subtree v.1left are smaller than v.key
m Keys in right subtree v.right are greater than v.key

/ \18
VANVAN
/ /\ \

2 99

462

Input: Binary search tree with root r, key k

Output: Node v with v.key = k or null 8
VT / \
while v # null do
. 4 13
if £ = v.key then
return v / \
else if k < v.key then 10 19
| v 4= v.left /
else 9
| v < v.right

return null

463

Input: Binary search tree with root r, key k
Output: Node v with v.key = k or null

8
VT / \
while v # null do i -

if k = v.key then
return v / \
else if k < v.key then 10 19
| v 4= v.left /
else 9
i | v < v.right Search (12)

return null

463

Input: Binary search tree with root r, key k
Output: Node v with v.key = k or null

8
VT / \
while v # null do i -

if k = v.key then
return v / \
else if k < v.key then 10 19
| v v.left / \
else 9
i | v < v.right Search (12)

return null

463

Input: Binary search tree with root r, key k
Output: Node v with v.key = k or null

8
VT / \
while v # null do i -

if k = v.key then
return v / \
else if k < v.key then 10 19
| v v.left / \
else 9
u L v vright Search (12) — null

return null

463

Searching in C++

bool contains(const llnode* root, int search_key) {
while (root != nullptr) {
if (search_key == root->key) return true;
else if (search_key < root->key) root = root->left;
else root = root->right;

}

return false;

}

464

Searching in C++

bool contains(const llnode* root, int search_key) {
while (root != nullptr) {
if (search_key == root->key) return true;
else if (search_key < root->key) root = root->left;
else root = root->right;

}

return false;

}

Remarks (pot. also for subsequent code):

B contains would typically be a member of function of struct tnode or
class bin_search_tree (— slightly different signature)

m Recursive implementation also possible

464

Height of a tree

The height A(T') of a binary tree T with root r is given by

465

Height of a tree

The height h(T') of a binary tree T with root r is given by

M) {o if + = null

1 4+ max{h(rleft), h(r.right)} otherwise.

The (worst case) run time of the search is thus O(h(T))

465

Insertion of a key

8
Insertion of the key &
4/ \1
\ /
5 10

3

\

19

m Search for k

m |f successful search: e.g. output
error

m If no success: insert the key at the /

leaf reached 2

Insert (5)

466

Remove node

8
3 / \1
Three cases possible: \ /
5 10
/
4

\19
/

9

467

Remove node

Three cases possible: ¢
3 / \1
\ /
5 10
/
4

m Node has no children
m Node has one child
m Node has two children

\19
/

[Leaves do not count here] 9

467

Remove node

Node has no children
Simple case: replace node by leaf.

3 / \13 3 / 8 \1
\ 10/ \19 w%(@ \5 10/

5

QS 9/ 9/

3

\

19

468

Remove node

Node has one child
Also simple: replace node by single child.

8 8
\13 remove(3) > / \13
5 10/ \19 - 4/ 10/ \19

/] /

4 9 9

469

Remove node

Node v has two children

Requirements for replacement node w:
1. w.key is larger than all keys in v.left
2. w.key is smaller than all keys in v.right
3. ideally has not children

470

Node v has two children

Requirements for replacement node w:
1. w.key is larger than all keys in v.left
2. w.key is smaller than all keys in v.right
3. ideally has not children

Observation: the smallest key in the right subtree
v.right (here: 9) meets requirements 1, 2; and has
at most one (right) child.

470

Node v has two children

Requirements for replacement node w:
1. w.key is larger than all keys in v.left
2. w.key is smaller than all keys in v.right
3. ideally has not children

Observation: the smallest key in the right subtree
v.right (here: 9) meets requirements 1, 2; and has
at most one (right) child.

Solution: replace v by exactly this symmetric succes-
sor.

470

By symmetry ...
Node v has two children

3 13

Also possible: replace v by its symmetric pre- \g) 10/ \19

decessor. /
4 9

47

Algorithm SymmetricSuccessor(v)

Input: Node v of a binary search tree.
Output: Symmetric successor of v
w <— v.right
T < w.left
while z # null do
w4 x
T < x.left

return w

472

Deletion of an element v from a tree T requires O(h(T')) fundamental
steps:

m Finding v has costs O(h(T))

m If v has maximal one child unequal to nullthen removal takes O(1) steps

m Finding the symmetric successor n of v takes O(h(T")) steps. Removal
and insertion of n takes O(1) steps.

473

Traversal possibilities

m preorder:
v, then T (v), then Thigns(v).

\

19

3 / | \13
\5 10/
4/

/

9

474

Traversal possibilities

m preorder:
v, then T (v), then Thigns(v).

8
8,3,5, 4,13,10, 9,19
3/ \13
\ / N\
5 10
/
4

19

/

9

474

Traversal possibilities

m preorder:
v, then T (v), then Thigns(v). 8
8,3,5, 4,13,10, 9,19
m postorder: 3 / \13
Tieti (v), then Tygn(v), then v. \ /
5 10
4

\

19

/

9

474

Traversal possibilities

m preorder:
v, then T (v), then Thigns(v). 8
8,3,5, 4,13,10, 9,19
m postorder: 3 / \13
Tiets (v), then Tiiene (v), then v. \ /
4,5,3,9 10,1913, 8 5 10
4

\

19

/

9

474

Traversal possibilities

m preorder:
v, then T (v), then Thigns(v). 8
8,3,5, 4,13,10, 9,19

m postorder: 3/ \13
Tieti (v), then Tygn(v), then v. \ /
4,5,3,9 10,1913, 8 5 10

m inorder: /

Tiete(v), then v, then Thig (v). &

\

19

/

9

474

Traversal possibilities

m preorder:
v, then T (v), then Thigns(v). 8
8,3,5, 4,13,10, 9,19

m postorder: 3/ \13
Tieti (v), then Tygn(v), then v. \ /
4,5,3,9 10,1913, 8 5 10

m inorder: /

Tiete(v), then v, then Thig (v). &

3,4,5,8,910,13,19

\

19

/

9

474

Further supported operations

m Min/Max(T): Query minimal/maximal

8
value in O(R(T))
3 / \13
\ /
5 10
/
4

m ExtractMin/Max(T): Query and remove
remove min/max in O(h(T))

m List(T): Output the sorted list of elements

m Join(Ty, T,): Merge two trees with Max(T}) <
/\/IIH(TQ) in O(h(T17T2))

\

19

/

9

475

Search Trees: Balanced vs. Degenerated

5 / | \13
4/ \8 10/ \19

insert 9,513,4,810,19:
ideally balanced

insert 4,5,8,9,101319:

linear list

insert 19,13,10,9,8,5,4:
linear list

476

Probabilistically

A search tree constructed from a random sequence of numbers provides
an an expected path length of O(logn).

Attention: this only holds for insertions. If the tree is constructed by
random insertions and deletions, the expected path length is O(y/n).

Balanced trees make sure (e.g. with rotations) during insertion or deletion
that the tree stays balanced and provide a O(logn) Worst-case guarantee.

477

1/. Heaps

Data structure optimized for fast extraction of minimum or maximum and
for sorting. [Ottman/Widmayer, Kap. 2.3, Cormen et al, Kap. 6]

478

Binary tree with the following proper- r(ft
ties s

e
20 18 «—parent
/ \ /" \

16 12 15 17 <—-child
/N /N
3 2 8 11 14 \ /\
leaves

*Heap(data structure), not as in “heap and stack” (memory allocation)

479

Binary tree with the following proper- r(ft
ties s
1. complete up to the lowest level
20/ 18 <—parent
/" \ /" \

16 12 15 17 <—child

/N /N

32 8 1M 14 \ / \

leaves

*Heap(data structure), not as in “heap and stack” (memory allocation)

479

Binary tree with the following proper- r(ft
ties >
1. complete up to the lowest level /
2. Gaps (if any) of the tree in the 20 18 +—parent
last level to the right / \l / \
16 12 15 17 +—child
/N /N
302 8 1 14 \ / \
leaves

*Heap(data structure), not as in “heap and stack” (memory allocation)

479

Binary tree with the following proper- root
ties 2‘2
1. complete up to the lowest level /
2. Gaps (if any) of the tree in the 20 18 +—parent
last level to the right / \ / \
3. Heap-Condition: 16 12 15 17 <—child

Max-(Min-)Heap: key of a child /\ /\ / \ /\
smaller (greater) than that of the 3 2 8 11 14

parent node
leaves

*Heap(data structure), not as in “heap and stack” (memory allocation)

479

Heap as Array

Tree — Array:

m children(z) = {2i,2i + 1} /[212]
m parent(s) = [i/2] ” -
parent /[2]\ /[3}\
16 12 15

£ N
[22]20[18]6]12[15[17] 3] 2 [8 [11]14] 3/(}\2 /M\ }\ /17]\

12 N&s AT 8 90mn

Children
Depends on the starting index™

8] [9] [10} [11] [

“For arrays that start at 0: {2i,2i + 1} — {2i +1,2i + 2}, |i/2] — [(i — 1)/2]

480

Height of a Heap

What is the height H(n) of Heap with n nodes? On the i-th level of a
binary tree there are at most 2¢ nodes. Modulo the last level of a heap, all
levels are filled with values.

h—1

H(n) =min{h e N: > 2" >n}

=0

with 21 2i = 20 — 1.
H(n) =min{h € N:2" >n+1},

thus
H(n) = [logy(n + 1)].

481

Heap in C++

class MaxHeap {
int* keys; // Pointer to first key

unsigned int capacity; // Length of key array
unsigned int count; // Keys in use <= capacity
// Or even better: build on top of std::vector

public:
MaxHeap(unsigned int initial_capacity):

keys(new int[initial_capacity]l),
capacity(initial_capacity),

count (0)
{3
void insert(unsigned int key) { ...}
int remove max() { ...}

482

Insert

20/ \18
/ \ / \

281114/\ /\

483

Insert

22
m Insert new kez at the first free position.
Potentially violates the heap property. 20/ \18
/" \ /" \
16 12 15 17

3/ \2 8/ \11 14/\® /\

483

Insert

22
m Insert new kez at the first free position.
Potentially violates the heap property. 20/ \18
m Reestablish heap property: ascend / \ / \
successively 16 2 @ v

3/ \2 8/ \11 14/ \15 /\

483

Insert

m Insert new kez at the first free position.
Potentially violates the heap property. / \
m Reestablish heap property: ascend / \ / \

successively

3/ \2 14 / \

483

Insert

m Insert new kez at the first free position.
Potentially violates the heap pEoperty. / \
m Reestablish heap property: ascend / \ / \
successively
m \Worst-case number of operations: / \ / \
3 2 14

O(logn)

483

Algorithm Sift-Up(A, m)

Input: Array A with at least m keys and heap structure on A[l,...,m — 1]
Output: Array A with heap structure on A[l,...,m]
v < A[m] // new key
¢ < m // index current node (child)
p < |¢/2] // index parent node
while ¢ > 1 and v > A[p| do
Alc] < Alp] // key parent node — key current node
c < p // parent node — current node

P [e/2]
Alc] « v // place new key

484

Remove the Maximum

20/ \18
/ \ / \

281114/\ /\

485

Remove the Maximum

m Replace the maximum by the lower right

o
element / \
20 18
/ N\ / N\
16 12 15 17

1Y YAWA

485

Remove the Maximum

m Replace the maximum by the lower right
element / \
m Reestablish heap property: sink
successively (in the direction of the 16/ \ / \

greater child)
& / \ / \

485

Remove the Maximum

m Replace the maximum by the lower right 20
element / \
m Reestablish heap property: sink 1o
successively (in the direction of the @/ \ / \

greater child)
/ \ / \

485

Remove the Maximum

m Replace the maximum by the lower right 20
element / \
m Reestablish heap property: sink 1o
successively (in the direction of the @/ \ / \

greater child)
m Worst case number of operations: O(logn) 3 /\ / \

485

Why this is correct: Recursive heap structure

A heap consists of two heaps:

20/ \18
/ \ / \

NANA

486

Why this is correct: Recursive heap structure

A heap consists of two heaps:

20

/N /\

16 12

NANA

486

Algorithm SiftDown(A4, i, m)

Input: Array A with heap structure for the children of i. Last element m.
Output: Array A with heap structure for 7 with last element m.
while 2: < m do

J < 2i; // j left child
if j <m and A[j] < A[j + 1] then
L j < j+1;,// jright child with greater key
if Afi] < A[j] then
Swap(A[i], A[j])
i < ji // keep sinking down
else
| i« m; // sift down finished

487

Sorting Heaps

7 6 4 5 1 2

Let A[1,...,n] be a heap.

While n > 1:
1. Swap(A[1], A[n])
2. Siftbown(A,1,n — 1)
3.n+n-—1

488

Sorting Heaps
11111
swap - 264517 H
Let A[1,...,n] be a heap.

While n > 1:
1. Swap(A[1], A[n])
2. Siftbown(A,1,n — 1)
3.n+n-—1

488

Sorting Heaps

1111
swap 2 6 4 5 1
6 5 4 2 1

mE-

=
Let A[1,...,n) be a heap. siftbown =

While n > 1:
1. Swap(A[1], A[n])
2. Siftbown(A,1,n — 1)
3. n<+<n-—1

488

Sorting Heaps

7 6 4
swap - 2 6 4
I 6 5 4

Let A[1,...,n] be a heap. siftbown =
- 1.5 4

swap
While n > 1:

1. Swap(A[1], Aln])
2. Siftbown(A,1,n — 1)
3. n<+<n-—1

488

Sorting Heaps

/A 51 K3 =1 RN 2

swap . HEBBEE

Let A[1,...,n] be a heap. siftDown = ¥ BN B B R
swap -~ 15«2 0@

While n > 1: siftbown = 5 4 2 1 n
1. Swap(A[1], An]) swap -~ 1+ 28288
2. Siftbown(A,1,n — 1) sittown = 4 1 2 HARA
3 n<n-—1 swap - 217AB8Ra
sitbown = 2 1 EAEIEEHE

swap = HHOEEOH

488

Heap creation

Observation: Every leaf of a heap is trivially a correct heap.

Consequence:

489

Heap creation

Observation: Every leaf of a heap is trivially a correct heap.

Consequence: Induction from below!

489

Algorithm HeapSort(A, n)

Input: Array A with length n.

Output: A sorted.

// Build the heap

for i < n/2 downto 1 do

. SiftDown(A,i,n)

// Now A is a heap

for i < n downto 2 do
Swap(A[1], Ali])
SiftDown(A4, 1,7 — 1)

// Now A is sorted.

490

Analysis: sorting a heap

SiftDown traverses at most log n nodes. For each node, 2 key comparisons.
= sorting a heap costs 2logn comparisons in the worst case.

Number of memory movements while sorting a heap also O(nlogn).

491

Analysis: creating a heap

Calls to Siftbown: n/2.

Thus number of comparisons and movements: v(n) € O(nlogn).
But mean length of the sift-down paths is much smaller:

We use that h(n) = [logan + 1] = [logon| + 1 furn >0

llog,) [logy n]
v(n)= Y 9! (|loggn|+1—1 —1) Z gllogzn]—k 1
—~ —_— ——
I=0 number heaps on level | height heaps on level |
L] J LlOgQ nj k e’}
= 2lce2ml. F<n-2€0

with s(z) := Y32 ka* = 2 (0 <z <1)ands(3) =2

492

Disadvantages

Heapsort: O(nlogn) Comparisons and movements.

Disadvantages of heapsort?

493

Disadvantages

Heapsort: O(nlogn) Comparisons and movements.

Disadvantages of heapsort?

O) Missing locality: heapsort jumps around in the sorted array
(negative cache effect).

493

Disadvantages

Heapsort: O(nlogn) Comparisons and movements.

Disadvantages of heapsort?

O) Missing locality: heapsort jumps around in the sorted array
(negative cache effect).

® Two comparisons required before each necessary memory
movement.

493

	Binary Search Trees
	Trees
	Search Trees
	Key Insertion
	Remove Key
	Tree Traversal

	Heaps

