
16. Binary Search Trees

[Ottman/Widmayer, Kap. 5.1, Cormen et al, Kap. 12.1 - 12.3]

452



Dictionary implementation

Hashing: implementation of dictionaries with expected very fast access
times.
Disadvantages of hashing:

linear access time in worst case. Some
operations not supported at all:

enumerate keys in increasing order
next smallest key to given key
Key k in given interval k ∈ [l, r]

453



Dictionary implementation

Hashing: implementation of dictionaries with expected very fast access
times.
Disadvantages of hashing: linear access time in worst case. Some
operations not supported at all:

enumerate keys in increasing order

next smallest key to given key
Key k in given interval k ∈ [l, r]

453



Dictionary implementation

Hashing: implementation of dictionaries with expected very fast access
times.
Disadvantages of hashing: linear access time in worst case. Some
operations not supported at all:

enumerate keys in increasing order
next smallest key to given key

Key k in given interval k ∈ [l, r]

453



Dictionary implementation

Hashing: implementation of dictionaries with expected very fast access
times.
Disadvantages of hashing: linear access time in worst case. Some
operations not supported at all:

enumerate keys in increasing order
next smallest key to given key
Key k in given interval k ∈ [l, r]

453



Trees

Trees are
Generalized lists: nodes can have more than one successor
Special graphs: graphs consist of nodes and edges. A tree is a fully
connected, directed, acyclic graph.

454



Trees

Use
Decision trees: hierarchic representation of
decision rules
syntax trees: parsing and traversing of
expressions, e.g. in a compiler
Code tress: representation of a code, e.g. morse
alphabet, hu�man code
Search trees: allow e�cient searching for an
element by value

455



Examples

start

E

I

S

H V

U

F Ü

A

R

L Ä

W

P J

T

N

D

B X

K

C Y

M

G

Z Q

O

Ö CH

longshort

Morsealphabet

456



Examples

3/5 + 7.0

+

/

3 5

7.0

Expression tree

457



Nomenclature

Wurzel

W

I E

K

parent

child

inner node

leaves

Order of the tree: maximum number of child nodes (here: 3)
Height of the tree: maximum path length root to leaf (here: 4)

458



Binary Trees

A binary tree is
either a leaf, i.e. an empty tree,
or an inner leaf with two trees Tl (left subtree) and Tr (right subtree) as
left and right successor.

In each inner node v we store
a key v.key and
two nodes v.left and v.right to the roots of the left and right subtree.

a leaf is represented by the null-pointer

key

left right

459



Recap: Linked-list Node in C++

1 5 6 nullptr
struct llnode

key next

struct llnode {
int key;
llnode* next;
llnode(int k, llnode* n): key(k), next(n) {} // Constructor

};

460



Recap: Tree Nodes in C++

struct tnode {
int key;
tnode* left;
tnode* right;
tnode(int k, tnode* l, tnode* r):

key(k), left(l), right(r) {}
};

5

3 8

2 nullptr

tnode
key

left right

461



Binary search tree
A binary search tree is a binary tree that ful�ls the search tree property:
Every node v stores a key
Keys in left subtree v.left are smaller than v.key
Keys in right subtree v.right are greater than v.key

16

7

5

2

10

9 15

18

17 30

99

462



Searching

Input: Binary search tree with root r, key k
Output: Node v with v.key = k or null
v ← r
while v 6= null do

if k = v.key then
return v

else if k < v.key then
v ← v.left

else
v ← v.right

return null

8

4 13

10

9

19

Search (12)

→ null

463



Searching

Input: Binary search tree with root r, key k
Output: Node v with v.key = k or null
v ← r
while v 6= null do

if k = v.key then
return v

else if k < v.key then
v ← v.left

else
v ← v.right

return null

8

4 13

10

9

19

Search (12)

→ null

463



Searching

Input: Binary search tree with root r, key k
Output: Node v with v.key = k or null
v ← r
while v 6= null do

if k = v.key then
return v

else if k < v.key then
v ← v.left

else
v ← v.right

return null

8

4 13

10

9

19

Search (12)

→ null

463



Searching

Input: Binary search tree with root r, key k
Output: Node v with v.key = k or null
v ← r
while v 6= null do

if k = v.key then
return v

else if k < v.key then
v ← v.left

else
v ← v.right

return null

8

4 13

10

9

19

Search (12)→ null

463



Searching in C++

bool contains(const llnode* root, int search_key) {
while (root != nullptr) {

if (search_key == root->key) return true;
else if (search_key < root->key) root = root->left;
else root = root->right;

}

return false;
}

Remarks (pot. also for subsequent code):
contains would typically be a member of function of struct tnode or
class bin_search_tree (→ slightly di�erent signature)
Recursive implementation also possible

464



Searching in C++

bool contains(const llnode* root, int search_key) {
while (root != nullptr) {

if (search_key == root->key) return true;
else if (search_key < root->key) root = root->left;
else root = root->right;

}

return false;
}

Remarks (pot. also for subsequent code):
contains would typically be a member of function of struct tnode or
class bin_search_tree (→ slightly di�erent signature)
Recursive implementation also possible

464



Height of a tree

The height h(T ) of a binary tree T with root r is given by

h(r) =

0 if r = null
1 + max{h(r.left), h(r.right)} otherwise.

The (worst case) run time of the search is thus O(h(T ))

465



Height of a tree

The height h(T ) of a binary tree T with root r is given by

h(r) =

0 if r = null
1 + max{h(r.left), h(r.right)} otherwise.

The (worst case) run time of the search is thus O(h(T ))

465



Insertion of a key

Insertion of the key k

Search for k

If successful search: e.g. output
error
If no success: insert the key at the
leaf reached

8

4

5

13

10

9

19

Insert (5)

466



Remove node

Three cases possible:

8

3

5

4

13

10

9

19

467



Remove node

Three cases possible:
Node has no children
Node has one child
Node has two children

[Leaves do not count here]

8

3

5

4

13

10

9

19

467



Remove node

Node has no children
Simple case: replace node by leaf.

8

3

5

4

13

10

9

19

remove(4)−→

8

3

5

13

10

9

19

468



Remove node

Node has one child
Also simple: replace node by single child.

8

3

5

4

13

10

9

19

remove(3)−→

8

5

4

13

10

9

19

469



Remove node

8

3

5

4

13

10

9

19

Node v has two children

Requirements for replacement node w:
1. w.key is larger than all keys in v.left
2. w.key is smaller than all keys in v.right
3. ideally has not children

Observation: the smallest key in the right subtree
v.right (here: 9) meets requirements 1, 2; and has
at most one (right) child.

Solution: replace v by exactly this symmetric succes-
sor.

470



Remove node

8

3

5

4

13

10

9

19

Node v has two children

Requirements for replacement node w:
1. w.key is larger than all keys in v.left
2. w.key is smaller than all keys in v.right
3. ideally has not children

Observation: the smallest key in the right subtree
v.right (here: 9) meets requirements 1, 2; and has
at most one (right) child.

Solution: replace v by exactly this symmetric succes-
sor.

470



Remove node

8

3

5

4

13

10

9

19

Node v has two children

Requirements for replacement node w:
1. w.key is larger than all keys in v.left
2. w.key is smaller than all keys in v.right
3. ideally has not children

Observation: the smallest key in the right subtree
v.right (here: 9) meets requirements 1, 2; and has
at most one (right) child.

Solution: replace v by exactly this symmetric succes-
sor.

470



By symmetry . . .

Node v has two children

Also possible: replace v by its symmetric pre-
decessor.

8

3

5

4

13

10

9

19

471



Algorithm SymmetricSuccessor(v)

Input: Node v of a binary search tree.
Output: Symmetric successor of v
w ← v.right
x← w.left
while x 6= null do

w ← x
x← x.left

return w

472



Analysis

Deletion of an element v from a tree T requires O(h(T )) fundamental
steps:
Finding v has costs O(h(T ))
If v has maximal one child unequal to nullthen removal takes O(1) steps
Finding the symmetric successor n of v takes O(h(T )) steps. Removal
and insertion of n takes O(1) steps.

473



Traversal possibilities

preorder:
v, then Tleft(v), then Tright(v).

8, 3, 5, 4, 13, 10, 9, 19
postorder:
Tleft(v), then Tright(v), then v.

4, 5, 3, 9, 10, 19, 13, 8

inorder:
Tleft(v), then v, then Tright(v).

3, 4, 5, 8, 9, 10, 13, 19

8

3

5

4

13

10

9

19

474



Traversal possibilities

preorder:
v, then Tleft(v), then Tright(v).
8, 3, 5, 4, 13, 10, 9, 19

postorder:
Tleft(v), then Tright(v), then v.

4, 5, 3, 9, 10, 19, 13, 8

inorder:
Tleft(v), then v, then Tright(v).

3, 4, 5, 8, 9, 10, 13, 19

8

3

5

4

13

10

9

19

474



Traversal possibilities

preorder:
v, then Tleft(v), then Tright(v).
8, 3, 5, 4, 13, 10, 9, 19
postorder:
Tleft(v), then Tright(v), then v.

4, 5, 3, 9, 10, 19, 13, 8
inorder:
Tleft(v), then v, then Tright(v).

3, 4, 5, 8, 9, 10, 13, 19

8

3

5

4

13

10

9

19

474



Traversal possibilities

preorder:
v, then Tleft(v), then Tright(v).
8, 3, 5, 4, 13, 10, 9, 19
postorder:
Tleft(v), then Tright(v), then v.
4, 5, 3, 9, 10, 19, 13, 8

inorder:
Tleft(v), then v, then Tright(v).

3, 4, 5, 8, 9, 10, 13, 19

8

3

5

4

13

10

9

19

474



Traversal possibilities

preorder:
v, then Tleft(v), then Tright(v).
8, 3, 5, 4, 13, 10, 9, 19
postorder:
Tleft(v), then Tright(v), then v.
4, 5, 3, 9, 10, 19, 13, 8
inorder:
Tleft(v), then v, then Tright(v).

3, 4, 5, 8, 9, 10, 13, 19

8

3

5

4

13

10

9

19

474



Traversal possibilities

preorder:
v, then Tleft(v), then Tright(v).
8, 3, 5, 4, 13, 10, 9, 19
postorder:
Tleft(v), then Tright(v), then v.
4, 5, 3, 9, 10, 19, 13, 8
inorder:
Tleft(v), then v, then Tright(v).
3, 4, 5, 8, 9, 10, 13, 19

8

3

5

4

13

10

9

19

474



Further supported operations

Min/Max(T ): Query minimal/maximal
value in O(h(T ))
ExtractMin/Max(T ): Query and remove
remove min/max in O(h(T ))
List(T ): Output the sorted list of elements
Join(T1, T2): Merge two trees with Max(T1) <
Min(T2) in O(h(T1, T2))

8

3

5

4

13

10

9

19

475



Search Trees: Balanced vs. Degenerated

9

5

4 8

13

10 19

insert 9,5,13,4,8,10,19:
ideally balanced

4

5

8

9

10

13

19

insert 4,5,8,9,10,13,19:
linear list

19

13

10

9

8

5

4

insert 19,13,10,9,8,5,4:
linear list

476



Probabilistically

A search tree constructed from a random sequence of numbers provides
an an expected path length of O(log n).
Attention: this only holds for insertions. If the tree is constructed by
random insertions and deletions, the expected path length is O(

√
n).

Balanced trees make sure (e.g. with rotations) during insertion or deletion
that the tree stays balanced and provide a O(log n) Worst-case guarantee.

477



17. Heaps

Data structure optimized for fast extraction of minimum or maximum and
for sorting. [Ottman/Widmayer, Kap. 2.3, Cormen et al, Kap. 6]

478



[Max-]Heap*

Binary tree with the following proper-
ties

1. complete up to the lowest level
2. Gaps (if any) of the tree in the
last level to the right

3. Heap-Condition:
Max-(Min-)Heap: key of a child
smaller (greater) than that of the
parent node

root

22

20

16

3 2

12

8 11

18

15

14

17

parent

child

leaves

*Heap(data structure), not as in “heap and stack” (memory allocation)

479



[Max-]Heap*

Binary tree with the following proper-
ties
1. complete up to the lowest level

2. Gaps (if any) of the tree in the
last level to the right

3. Heap-Condition:
Max-(Min-)Heap: key of a child
smaller (greater) than that of the
parent node

root

22

20

16

3 2

12

8 11

18

15

14

17

parent

child

leaves

*Heap(data structure), not as in “heap and stack” (memory allocation)

479



[Max-]Heap*

Binary tree with the following proper-
ties
1. complete up to the lowest level
2. Gaps (if any) of the tree in the
last level to the right

3. Heap-Condition:
Max-(Min-)Heap: key of a child
smaller (greater) than that of the
parent node

root

22

20

16

3 2

12

8 11

18

15

14

17

parent

child

leaves

*Heap(data structure), not as in “heap and stack” (memory allocation)

479



[Max-]Heap*

Binary tree with the following proper-
ties
1. complete up to the lowest level
2. Gaps (if any) of the tree in the
last level to the right

3. Heap-Condition:
Max-(Min-)Heap: key of a child
smaller (greater) than that of the
parent node

root

22

20

16

3 2

12

8 11

18

15

14

17

parent

child

leaves

*Heap(data structure), not as in “heap and stack” (memory allocation)

479



Heap as Array

Tree→ Array:
children(i) = {2i, 2i + 1}
parent(i) = bi/2c

22
1
20
2
18
3
16
4
12
5
15
6
17
7

3
8

2
9

8
10

11
11

14
12

parent

Children

22

20

16

3 2

12

8 11

18

15

14

17

[1]

[2] [3]

[4] [5] [6] [7]

[8] [9] [10] [11] [12]

Depends on the starting index19

19For arrays that start at 0: {2i, 2i + 1} → {2i + 1, 2i + 2}, bi/2c → b(i− 1)/2c
480



Height of a Heap

What is the height H(n) of Heap with n nodes? On the i-th level of a
binary tree there are at most 2i nodes. Modulo the last level of a heap, all
levels are �lled with values.

H(n) = min{h ∈ N :
h−1∑
i=0

2i ≥ n}

with ∑h−1
i=0 2i = 2h − 1:

H(n) = min{h ∈ N : 2h ≥ n + 1},

thus
H(n) = dlog2(n + 1)e.

481



Heap in C++

class MaxHeap {
int* keys; // Pointer to first key
unsigned int capacity; // Length of key array
unsigned int count; // Keys in use <= capacity
// Or even better: build on top of std::vector

public:
MaxHeap(unsigned int initial_capacity):

keys(new int[initial_capacity]),
capacity(initial_capacity),
count(0)

{}

void insert(unsigned int key) { ...}
int remove_max() { ...}
...

} 482



Insert

Insert new kez at the �rst free position.
Potentially violates the heap property.
Reestablish heap property: ascend
successively
Worst-case number of operations:
O(log n)

22

20

16

3 2

12

8 11

18

15

14

17

483



Insert

Insert new kez at the �rst free position.
Potentially violates the heap property.

Reestablish heap property: ascend
successively
Worst-case number of operations:
O(log n)

22

20

16

3 2

12

8 11

18

15

14 21

17

483



Insert

Insert new kez at the �rst free position.
Potentially violates the heap property.
Reestablish heap property: ascend
successively

Worst-case number of operations:
O(log n)

22

20

16

3 2

12

8 11

18

21

14 15

17

483



Insert

Insert new kez at the �rst free position.
Potentially violates the heap property.
Reestablish heap property: ascend
successively

Worst-case number of operations:
O(log n)

22

20

16

3 2

12

8 11

21

18

14 15

17

483



Insert

Insert new kez at the �rst free position.
Potentially violates the heap property.
Reestablish heap property: ascend
successively
Worst-case number of operations:
O(log n)

22

20

16

3 2

12

8 11

21

18

14 15

17

483



Algorithm Sift-Up(A, m)

Input: Array A with at least m keys and heap structure on A[1, . . . , m− 1]
Output: Array A with heap structure on A[1, . . . , m]
v ← A[m] // new key
c← m // index current node (child)
p← bc/2c // index parent node
while c > 1 and v > A[p] do

A[c]← A[p] // key parent node → key current node
c← p // parent node → current node
p← bc/2c

A[c]← v // place new key

484



Remove the Maximum

Replace the maximum by the lower right
element
Reestablish heap property: sink
successively (in the direction of the
greater child)
Worst case number of operations: O(log n)

21

20

16

3 2

12

8 11

18

15

14

17

485



Remove the Maximum

Replace the maximum by the lower right
element

Reestablish heap property: sink
successively (in the direction of the
greater child)
Worst case number of operations: O(log n)

14

20

16

3 2

12

8 11

18

15 17

485



Remove the Maximum

Replace the maximum by the lower right
element
Reestablish heap property: sink
successively (in the direction of the
greater child)

Worst case number of operations: O(log n)

20

14

16

3 2

12

8 11

18

15 17

485



Remove the Maximum

Replace the maximum by the lower right
element
Reestablish heap property: sink
successively (in the direction of the
greater child)

Worst case number of operations: O(log n)

20

16

14

3 2

12

8 11

18

15 17

485



Remove the Maximum

Replace the maximum by the lower right
element
Reestablish heap property: sink
successively (in the direction of the
greater child)
Worst case number of operations: O(log n)

20

16

14

3 2

12

8 11

18

15 17

485



Why this is correct: Recursive heap structure

A heap consists of two heaps:

22

20

16

3 2

12

8 11

18

15

14

17

486



Why this is correct: Recursive heap structure

A heap consists of two heaps:

22

20

16

3 2

12

8 11

18

15

14

17

486



Algorithm SiftDown(A, i, m)

Input: Array A with heap structure for the children of i. Last element m.
Output: Array A with heap structure for i with last element m.
while 2i ≤ m do

j ← 2i; // j left child
if j < m and A[j] < A[j + 1] then

j ← j + 1; // j right child with greater key

if A[i] < A[j] then
Swap(A[i], A[j])
i← j; // keep sinking down

else
i← m; // sift down finished

487



Sorting Heaps

Let A[1, ..., n] be a heap.

While n > 1:
1. Swap(A[1], A[n])
2. SiftDown(A, 1, n− 1)
3. n← n− 1

7 6 4 5 1 2

swap ⇒ 2 6 4 5 1 7

siftDown ⇒ 6 5 4 2 1 7

swap ⇒ 1 5 4 2 6 7

siftDown ⇒ 5 4 2 1 6 7

swap ⇒ 1 4 2 5 6 7

siftDown ⇒ 4 1 2 5 6 7

swap ⇒ 2 1 4 5 6 7

siftDown ⇒ 2 1 4 5 6 7

swap ⇒ 1 2 4 5 6 7

488



Sorting Heaps

Let A[1, ..., n] be a heap.

While n > 1:
1. Swap(A[1], A[n])
2. SiftDown(A, 1, n− 1)
3. n← n− 1

7 6 4 5 1 2

swap ⇒ 2 6 4 5 1 7

siftDown ⇒ 6 5 4 2 1 7

swap ⇒ 1 5 4 2 6 7

siftDown ⇒ 5 4 2 1 6 7

swap ⇒ 1 4 2 5 6 7

siftDown ⇒ 4 1 2 5 6 7

swap ⇒ 2 1 4 5 6 7

siftDown ⇒ 2 1 4 5 6 7

swap ⇒ 1 2 4 5 6 7

488



Sorting Heaps

Let A[1, ..., n] be a heap.

While n > 1:
1. Swap(A[1], A[n])
2. SiftDown(A, 1, n− 1)
3. n← n− 1

7 6 4 5 1 2

swap ⇒ 2 6 4 5 1 7

siftDown ⇒ 6 5 4 2 1 7

swap ⇒ 1 5 4 2 6 7

siftDown ⇒ 5 4 2 1 6 7

swap ⇒ 1 4 2 5 6 7

siftDown ⇒ 4 1 2 5 6 7

swap ⇒ 2 1 4 5 6 7

siftDown ⇒ 2 1 4 5 6 7

swap ⇒ 1 2 4 5 6 7

488



Sorting Heaps

Let A[1, ..., n] be a heap.

While n > 1:
1. Swap(A[1], A[n])
2. SiftDown(A, 1, n− 1)
3. n← n− 1

7 6 4 5 1 2

swap ⇒ 2 6 4 5 1 7

siftDown ⇒ 6 5 4 2 1 7

swap ⇒ 1 5 4 2 6 7

siftDown ⇒ 5 4 2 1 6 7

swap ⇒ 1 4 2 5 6 7

siftDown ⇒ 4 1 2 5 6 7

swap ⇒ 2 1 4 5 6 7

siftDown ⇒ 2 1 4 5 6 7

swap ⇒ 1 2 4 5 6 7

488



Sorting Heaps

Let A[1, ..., n] be a heap.

While n > 1:
1. Swap(A[1], A[n])
2. SiftDown(A, 1, n− 1)
3. n← n− 1

7 6 4 5 1 2

swap ⇒ 2 6 4 5 1 7

siftDown ⇒ 6 5 4 2 1 7

swap ⇒ 1 5 4 2 6 7

siftDown ⇒ 5 4 2 1 6 7

swap ⇒ 1 4 2 5 6 7

siftDown ⇒ 4 1 2 5 6 7

swap ⇒ 2 1 4 5 6 7

siftDown ⇒ 2 1 4 5 6 7

swap ⇒ 1 2 4 5 6 7

488



Heap creation

Observation: Every leaf of a heap is trivially a correct heap.

Consequence:

Induction from below!

489



Heap creation

Observation: Every leaf of a heap is trivially a correct heap.

Consequence: Induction from below!

489



Algorithm HeapSort(A, n)

Input: Array A with length n.
Output: A sorted.
// Build the heap
for i← n/2 downto 1 do

SiftDown(A, i, n)

// Now A is a heap
for i← n downto 2 do

Swap(A[1], A[i])
SiftDown(A, 1, i− 1)

// Now A is sorted.

490



Analysis: sorting a heap

SiftDown traverses at most log n nodes. For each node, 2 key comparisons.
⇒ sorting a heap costs 2 log n comparisons in the worst case.
Number of memory movements while sorting a heap also O(n log n).

491



Analysis: creating a heap
Calls to SiftDown: n/2.
Thus number of comparisons and movements: v(n) ∈ O(n log n).
But mean length of the sift-down paths is much smaller:
We use that h(n) = dlog2 n + 1e = blog2 nc+ 1 für n > 0

v(n) =
blog2 nc∑

l=0
2l︸︷︷︸

number heaps on level l

·( blog2 nc+ 1− l︸ ︷︷ ︸
height heaps on level l

−1) =
blog2 nc∑

k=0
2blog2 nc−k · k

= 2blog2 nc ·
blog2 nc∑

k=0

k

2k
≤ n ·

∞∑
k=0

k

2k
≤ n · 2 ∈ O(n)

with s(x) :=
∑∞

k=0 kxk = x
(1−x)2 (0 < x < 1) and s(1

2) = 2

492



Disadvantages

Heapsort: O(n log n) Comparisons and movements.

Disadvantages of heapsort?

! Missing locality: heapsort jumps around in the sorted array
(negative cache e�ect).

! Two comparisons required before each necessary memory
movement.

493



Disadvantages

Heapsort: O(n log n) Comparisons and movements.

Disadvantages of heapsort?

! Missing locality: heapsort jumps around in the sorted array
(negative cache e�ect).

! Two comparisons required before each necessary memory
movement.

493



Disadvantages

Heapsort: O(n log n) Comparisons and movements.

Disadvantages of heapsort?

! Missing locality: heapsort jumps around in the sorted array
(negative cache e�ect).

! Two comparisons required before each necessary memory
movement.

493


	Binary Search Trees
	Trees
	Search Trees
	Key Insertion
	Remove Key
	Tree Traversal

	Heaps

