16. Binary Search Trees

[Ottman/Widmayer, Kap. 51, Cormen et al, Kap. 121 - 12.3]
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Dictionary implementation

Hashing: implementation of dictionaries with expected very fast access
times.
Disadvantages of hashing: linear access time in worst case. Some
operations not supported at all:

m enumerate keys in increasing order

m next smallest key to given key

m Key k in given interval k € [l,r]
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Trees

Trees are

m Generalized lists: nodes can have more than one successor

m Special graphs: graphs consist of nodes and edges. A tree is a fully
connected, directed, acyclic graph.
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Trees

Use

Decision trees: hierarchic representation of
decision rules

syntax trees: parsing and traversing of
expressions, e.g. in a compiler

Code tress: representation of a code, e.g. morse
alphabet, huffman code

Search trees: allow efficient searching for an
element by value
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Nomenclature

Wurzel

{

SIS I T I

ll\/l;\\ll\ ll\/l\ll\ & &(b///l\/l\

leaves\_)

m Order of the tree: maximum number of child nodes (here: 3)
m Height of the tree: maximum path length root to leaf (here: 4)
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Binary Trees

A binary tree is

m either a leaf, i.e. an empty tree,

m or an inner leaf with two trees T; (left subtree) and T, (right subtree) as
left and right successor.

In each inner node v we store key

m a key v.key and left right
m two nodes v.left and v.right to the roots of the left and right subtree.

a leaf is represented by the null-pointer



Recap: Linked-list Node in C++

struct llnode

1 5 @&—&— §{ nullptr

/N

key next

struct llnode {

int key;

llnode* next;

llnode(int k, llnode* n): key(k), next(n) {} // Constructor
};
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Recap: Tree Nodes in C++

tnode
key —— 5

struct tnode {
int key;
tnode* left;

3 8
tnode* right;
tnode(int k, tnode* 1, tnode* r):
key(k), left(l), right(r) {}
}; 5 nullptr
A N

left right
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Binary search tree

A binary search tree is a binary tree that fulfils the search tree property:

m Every node v stores a key
m Keys in left subtree v.1left are smaller than v.key

m Keys in right subtree v.right are greater than v.key

/ \18
VANVAN
/ /\ \

2 99
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Searching

Input: Binary search tree with root r, key k
Output: Node v with v.key = k or null
VT
while v # null do
if k = v.key then
| return v
else if k < v.key then
I v+ v.left
else
| v < v.right

return null

4 / 8 \13
10/ \19
J\

Search (12) — null
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Searching in C++

bool contains(const llnode* root, int search_key) {
while (root != nullptr) {
if (search_key == root->key) return true;
else if (search_key < root->key) root = root->left;
else root = root->right;

}

return false;

}

Remarks (pot. also for subsequent code):

B contains would typically be a member of function of struct tnode or
class bin_search_tree (— slightly different signature)
m Recursive implementation also possible
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Height of a tree

The height h(T') of a binary tree T with root r is given by

M) {0 if + = null

1 + max{h(rleft), h(r.right)} otherwise.

The (worst case) run time of the search is thus O(h(T))
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Insertion of a key

Insertion of the key &
m Search for k

m |f successful search: e.g. output
error

m If no success: insert the key at the
leaf reached

4 / 8 \1
\5 10/

/

9
Insert (5)

3

\

19
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Remove node

Three cases possible:
m Node has no children
m Node has one child
m Node has two children

[Leaves do not count here]

3/8
\5
/

9

\1
10/

/

\

3
19
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Remove node

Node has no children
Simple case: replace node by leaf.

13
renlve>(4)
N

19

/

9

3/8
\5
®
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Remove node

Node has one child

Also simple: replace node by single child.

8 \
/13\ remove(3)
-
10 19
/[

4 9
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Remove node

Node v has two children

(8)
/‘\ Requirements for replacement node w:

3 13 1. w.key is larger than all keys in v.left
\5 10/ \19 2. w.key is smaller than all keys in v.right
/ 3. ideally has not children
- @é Observation: the smallest key in the right subtree

v.right (here: 9) meets requirements 1, 2; and has
at most one (right) child.

Solution: replace v by exactly this symmetric succes-
sor.
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By symmetry ...

Node v has two children

Also possible: replace v by its symmetric pre- \g) 10/ \19

decessor.
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Algorithm SymmetricSuccessor(v)

Input: Node v of a binary search tree.
Output: Symmetric successor of v
w 4— v.right
T < w.left
while x # null do
w4 x
T + x.left

return w
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Analysis

Deletion of an element v from a tree T requires O(h(T')) fundamental
steps:

m Finding v has costs O(h(T))

m If v has maximal one child unequal to nullthen removal takes O(1) steps

m Finding the symmetric successor n of v takes O(h(T")) steps. Removal
and insertion of n takes O(1) steps.
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Traversal possibilities

m preorder:
v, then Tieg (v), then Tiign (v).
8, 3,5, 4,13,10, 9,19

m postorder:
Tiefe (v), then Tiigne(v), then v.
4,5,3,9 10,19, 13, 8

m inorder:
Tiete (v), then v, then Tiigne (v).
3,4,5,8,9 10, 13, 19

3/8
\5
/

\13
10/

/

9

\

19
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Further supported operations

m Min/Max(T): Query minimal/maximal
value in O(R(T))

m ExtractMin/Max(T): Query and remove
remove min/max in O(h(T))

m List(T): Output the sorted list of elements

m Join(Ty, T,): Merge two trees with Max(T}) <
Min(Ty) in O(h(Ty, T))

3/8
\5
/

\13
10/

/

9

\

19
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Search Trees: Balanced vs. Degenerated

/%
9 / \8
7 Ng /)
4/ \8 10/ \19 \10

. /\

Insert 9,513,4,8,10.19: 13

ideally balanced \19
insert 4,5,8,9,101319:

linear list

insert 19,13,10,9,8,5,4:
linear list
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Probabilistically

A search tree constructed from a random sequence of numbers provides
an an expected path length of O(logn).

Attention: this only holds for insertions. If the tree is constructed by
random insertions and deletions, the expected path length is O(y/n).

Balanced trees make sure (e.g. with rotations) during insertion or deletion
that the tree stays balanced and provide a O(logn) Worst-case guarantee.
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1/. Heaps

Data structure optimized for fast extraction of minimum or maximum and
for sorting. [Ottman/Widmayer, Kap. 2.3, Cormen et al, Kap. 6]
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[Max-]Heap*

Binary tree with the following proper- root
ties 2‘15

1. complete up to the lowest level /

2. Gaps (if any) of the tree in the 20 18 +—parent
last level to the right /' \l / \

3. Heap-Condition: 16 12 17 <—child
Max-(Min-)Heap: key of a child /\ \ / \
smaller (greater) than that of the 3 2
parent node leaves

*Heap(data structure), not as in “heap and stack” (memory allocation)
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Heap as Array

Tree — Array:

m children(z) = {2i,2i + 1} /[212]
m parent(s) = [i/2] ” -
parent /[2]\ /[3}\
16 12 15

£ N
[22]20[18]6]12[15[17] 3] 2 [ 8 [11]14] 3/H\z /M\ }\ /17}\

12 N&s AT 8 90mn

Children
Depends on the starting index™

8] [9] [10} [11] [

“For arrays that start at 0: {2i,2i + 1} — {2i +1,2i + 2}, |i/2] — [(i — 1)/2]
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Height of a Heap

What is the height H(n) of Heap with n nodes? On the i-th level of a
binary tree there are at most 2¢ nodes. Modulo the last level of a heap, all
levels are filled with values.

h—1
H(n) =min{h € N: > 2" >n}
i=0
with 21 2i = 20 — 1.
H(n) =min{h € N:2" >n+1},

thus
H(n) = [logy(n 4+ 1)].
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Heap in C++

class MaxHeap {
int* keys; // Pointer to first key

unsigned int capacity; // Length of key array
unsigned int count; // Keys in use <= capacity
// Or even better: build on top of std::vector

public:
MaxHeap(unsigned int initial_capacity):

keys(new int[initial_capacity]l),
capacity(initial_capacity),

count (0)
{3
void insert(unsigned int key) { ...}
int remove max() { ...}
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Insert

m Insert new kez at the first free position.

Potentially violates the heap property.
m Reestablish heap property: ascend
successively
m Worst-case number of operations:
O(logn)

16

/\

3

20
/ \12

/\

/\
3

2

11

18
/ \17

A
N

SN
/\
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Algorithm Sift-Up(A, m)

Input:  Array A with at least m keys and heap structure on A[l, ...

Output: Array A with heap structure on A[l,...,m]

v < A[m] // new key

¢ < m // index current node (child)

p < |¢/2] // index parent node

while ¢ > 1 and v > A[p] do
Alc] < Alp] // key parent node — key current node
c < p // parent node — current node

P [e/2]
Alc] « v // place new key

,m —1]
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Remove the Maximum

N
20 18

m Replace the maximum by the lower right 1 / \12 15/ \17

6
element. | / \ / \ / \ / \

m Reestablish heap property: sink
successively (in the direction of the

greater child) / \

m Worst case number of operations: O(logn)
/ \ / \

@
a AN

w
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Why this is correct: Recursive heap structure

A heap consists of two heaps:

22

20

/ N\ /\

16 12

[oad\ /\
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Algorithm SiftDown(A4, i, m)

Input:  Array A with heap structure for the children of i. Last element m.
Output: Array A with heap structure for 7 with last element m.
while 2 < m do
j < 2i; // j left child
if j <m and A[j] < A[j + 1] then
L j < j+1;,// jright child with greater key
if Afi] < A[j] then
Swap(A[i], A[5])
i < ji // keep sinking down
else
| i« m; // sift down finished
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Sorting Heaps

Let A[1,...,n] be a heap.

While n > 1:
1. Swap(A[1], A[n])
2. Siftbown(A,1,n — 1)
3. n+—n—1

swap
siftDown
swap
siftDown
swap
siftDown
swap
siftDown
swap

R S A A T

N NN 2 02O N
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Heap creation

Observation: Every leaf of a heap is trivially a correct heap.

Consequence: Induction from below!
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Algorithm HeapSort(A,n)

Input:  Array A with length n.

Output: A sorted.

// Build the heap

for i < n/2 downto 1 do

. SiftDown(A,i,n)

// Now A is a heap

for i < n downto 2 do
Swap(A[1], A[1]
SiftDown(A4, 1,7 — 1)

// Now A is sorted.
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Analysis: sorting a heap

SiftDown traverses at most log n nodes. For each node, 2 key comparisons.
= sorting a heap costs 2logn comparisons in the worst case.

Number of memory movements while sorting a heap also O(nlogn).
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Analysis: creating a heap

Calls to Siftbown: n/2.

Thus number of comparisons and movements: v(n) € O(nlogn).
But mean length of the sift-down paths is much smaller:

We use that h(n) = [logan + 1] = [logon| + 1 furn >0

|logy n | [logy n]
v(n) = Y 2! ( |loggn|+1—1 —1) Z gllogzn]—k 1
—~ —_— ——
=0 number heaps on level | height heaps on level |
\_1 J |_10g2 nj k' e’}
= gloe2nl . <n-2e0(n
kz:%) Qk < z_: n (n)

with s(z) := Y32 ka* = 2 (0 <z <1)ands(3) =2
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Disadvantages

Heapsort: O(nlogn) Comparisons and movements.
Disadvantages of heapsort?

Missing locality: heapsort jumps around in the sorted array
(negative cache effect).

Two comparisons required before each necessary memory
movement.
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