16. Binary Search Trees

[Ottman/Widmayer, Kap. 51, Cormen et al, Kap. 121 - 12.3]

452

Dictionary implementation

Hashing: implementation of dictionaries with expected very fast access
times.
Disadvantages of hashing: linear access time in worst case. Some
operations not supported at all:

m enumerate keys in increasing order

m next smallest key to given key

m Key k in given interval k € [l,r]

453

Trees

Trees are

m Generalized lists: nodes can have more than one successor

m Special graphs: graphs consist of nodes and edges. A tree is a fully
connected, directed, acyclic graph.

454

Trees

Use

Decision trees: hierarchic representation of
decision rules

syntax trees: parsing and traversing of
expressions, e.g. in a compiler

Code tress: representation of a code, e.g. morse
alphabet, huffman code

Search trees: allow efficient searching for an
element by value

455

Examples

sho g

E rt E/Sta”\T lon
N, N

/ N\ / N\ / N\ / N\
S v R W D K G 0
I\ N /N SN N N SN T

H 'V F 0 L AP J B X C'Y 'z Q' 0O CcH

AVAVAVAVAVAVAVAVAVAVAVAVAVAVAVA

Morsealphabet

Examples

3/5+7.0
+
/ / \7.0
/\
3 5

Expression tree

457

Nomenclature

Wurzel

{

SIS I T I

ll\/l;\\ll\ ll\/l\ll\ & &(b///l\/l\

leaves_)

m Order of the tree: maximum number of child nodes (here: 3)
m Height of the tree: maximum path length root to leaf (here: 4)

458

Binary Trees

A binary tree is

m either a leaf, i.e. an empty tree,

m or an inner leaf with two trees T; (left subtree) and T, (right subtree) as
left and right successor.

In each inner node v we store key

m a key v.key and left right
m two nodes v.left and v.right to the roots of the left and right subtree.

a leaf is represented by the null-pointer

Recap: Linked-list Node in C++

struct llnode

1 5 @&—&— §{ nullptr

/N

key next

struct llnode {

int key;

llnode* next;

llnode(int k, llnode* n): key(k), next(n) {} // Constructor
};

460

Recap: Tree Nodes in C++

tnode
key —— 5

struct tnode {
int key;
tnode* left;

3 8
tnode* right;
tnode(int k, tnode* 1, tnode* r):
key(k), left(l), right(r) {}
}; 5 nullptr
A N

left right

461

Binary search tree

A binary search tree is a binary tree that fulfils the search tree property:

m Every node v stores a key
m Keys in left subtree v.1left are smaller than v.key

m Keys in right subtree v.right are greater than v.key

/ \18
VANVAN
/ /\ \

2 99

462

Searching

Input: Binary search tree with root r, key k
Output: Node v with v.key = k or null
VT
while v # null do
if k = v.key then
| return v
else if k < v.key then
I v+ v.left
else
| v < v.right

return null

4 / 8 \13
10/ \19
J\

Search (12) — null

463

Searching in C++

bool contains(const llnode* root, int search_key) {
while (root != nullptr) {
if (search_key == root->key) return true;
else if (search_key < root->key) root = root->left;
else root = root->right;

}

return false;

}

Remarks (pot. also for subsequent code):

B contains would typically be a member of function of struct tnode or
class bin_search_tree (— slightly different signature)
m Recursive implementation also possible

464

Height of a tree

The height h(T') of a binary tree T with root r is given by

M) {0 if + = null

1 + max{h(rleft), h(r.right)} otherwise.

The (worst case) run time of the search is thus O(h(T))

465

Insertion of a key

Insertion of the key &
m Search for k

m |f successful search: e.g. output
error

m If no success: insert the key at the
leaf reached

4 / 8 \1
\5 10/

/

9
Insert (5)

3

\

19

466

Remove node

Three cases possible:
m Node has no children
m Node has one child
m Node has two children

[Leaves do not count here]

3/8
\5
/

9

\1
10/

/

\

3
19

467

Remove node

Node has no children
Simple case: replace node by leaf.

13
renlve>(4)
N

19

/

9

3/8
\5
®

468

Remove node

Node has one child

Also simple: replace node by single child.

8 \
/13\ remove(3)
-
10 19
/[

4 9

469

Remove node

Node v has two children

(8)
/‘\ Requirements for replacement node w:

3 13 1. w.key is larger than all keys in v.left
\5 10/ \19 2. w.key is smaller than all keys in v.right
/ 3. ideally has not children
- @é Observation: the smallest key in the right subtree

v.right (here: 9) meets requirements 1, 2; and has
at most one (right) child.

Solution: replace v by exactly this symmetric succes-
sor.

470

By symmetry ...

Node v has two children

Also possible: replace v by its symmetric pre- \g) 10/ \19

decessor.

47

Algorithm SymmetricSuccessor(v)

Input: Node v of a binary search tree.
Output: Symmetric successor of v
w 4— v.right
T < w.left
while x # null do
w4 x
T + x.left

return w

472

Analysis

Deletion of an element v from a tree T requires O(h(T')) fundamental
steps:

m Finding v has costs O(h(T))

m If v has maximal one child unequal to nullthen removal takes O(1) steps

m Finding the symmetric successor n of v takes O(h(T")) steps. Removal
and insertion of n takes O(1) steps.

473

Traversal possibilities

m preorder:
v, then Tieg (v), then Tiign (v).
8, 3,5, 4,13,10, 9,19

m postorder:
Tiefe (v), then Tiigne(v), then v.
4,5,3,9 10,19, 13, 8

m inorder:
Tiete (v), then v, then Tiigne (v).
3,4,5,8,9 10, 13, 19

3/8
\5
/

\13
10/

/

9

\

19

474

Further supported operations

m Min/Max(T): Query minimal/maximal
value in O(R(T))

m ExtractMin/Max(T): Query and remove
remove min/max in O(h(T))

m List(T): Output the sorted list of elements

m Join(Ty, T,): Merge two trees with Max(T}) <
Min(Ty) in O(h(Ty, T))

3/8
\5
/

\13
10/

/

9

\

19

475

Search Trees: Balanced vs. Degenerated

/%
9 / \8
7 Ng /)
4/ \8 10/ \19 \10

. /\

Insert 9,513,4,8,10.19: 13

ideally balanced \19
insert 4,5,8,9,101319:

linear list

insert 19,13,10,9,8,5,4:
linear list

476

Probabilistically

A search tree constructed from a random sequence of numbers provides
an an expected path length of O(logn).

Attention: this only holds for insertions. If the tree is constructed by
random insertions and deletions, the expected path length is O(y/n).

Balanced trees make sure (e.g. with rotations) during insertion or deletion
that the tree stays balanced and provide a O(logn) Worst-case guarantee.

477

1/. Heaps

Data structure optimized for fast extraction of minimum or maximum and
for sorting. [Ottman/Widmayer, Kap. 2.3, Cormen et al, Kap. 6]

478

[Max-]Heap*

Binary tree with the following proper- root
ties 2‘15

1. complete up to the lowest level /

2. Gaps (if any) of the tree in the 20 18 +—parent
last level to the right /' \l / \

3. Heap-Condition: 16 12 17 <—child
Max-(Min-)Heap: key of a child /\ \ / \
smaller (greater) than that of the 3 2
parent node leaves

*Heap(data structure), not as in “heap and stack” (memory allocation)

479

Heap as Array

Tree — Array:

m children(z) = {2i,2i + 1} /[212]
m parent(s) = [i/2] ” -
parent /[2]\ /[3}\
16 12 15

£ N
[22]20[18]6]12[15[17] 3] 2 [8 [11]14] 3/H\z /M\ }\ /17}\

12 N&s AT 8 90mn

Children
Depends on the starting index™

8] [9] [10} [11] [

“For arrays that start at 0: {2i,2i + 1} — {2i +1,2i + 2}, |i/2] — [(i — 1)/2]

480

Height of a Heap

What is the height H(n) of Heap with n nodes? On the i-th level of a
binary tree there are at most 2¢ nodes. Modulo the last level of a heap, all
levels are filled with values.

h—1
H(n) =min{h € N: > 2" >n}
i=0
with 21 2i = 20 — 1.
H(n) =min{h € N:2" >n+1},

thus
H(n) = [logy(n 4+ 1)].

481

Heap in C++

class MaxHeap {
int* keys; // Pointer to first key

unsigned int capacity; // Length of key array
unsigned int count; // Keys in use <= capacity
// Or even better: build on top of std::vector

public:
MaxHeap(unsigned int initial_capacity):

keys(new int[initial_capacity]l),
capacity(initial_capacity),

count (0)
{3
void insert(unsigned int key) { ...}
int remove max() { ...}

482

Insert

m Insert new kez at the first free position.

Potentially violates the heap property.
m Reestablish heap property: ascend
successively
m Worst-case number of operations:
O(logn)

16

/\

3

20
/ \12

/\

/\
3

2

11

18
/ \17

A
N

SN
/\

483

Algorithm Sift-Up(A, m)

Input: Array A with at least m keys and heap structure on A[l, ...

Output: Array A with heap structure on A[l,...,m]

v < A[m] // new key

¢ < m // index current node (child)

p < |¢/2] // index parent node

while ¢ > 1 and v > A[p] do
Alc] < Alp] // key parent node — key current node
c < p // parent node — current node

P [e/2]
Alc] « v // place new key

,m —1]

484

Remove the Maximum

N
20 18

m Replace the maximum by the lower right 1 / \12 15/ \17

6
element. | / \ / \ / \ / \

m Reestablish heap property: sink
successively (in the direction of the

greater child) / \

m Worst case number of operations: O(logn)
/ \ / \

@
a AN

w

485

Why this is correct: Recursive heap structure

A heap consists of two heaps:

22

20

/ N\ /\

16 12

[oad\ /\

486

Algorithm SiftDown(A4, i, m)

Input: Array A with heap structure for the children of i. Last element m.
Output: Array A with heap structure for 7 with last element m.
while 2 < m do
j < 2i; // j left child
if j <m and A[j] < A[j + 1] then
L j < j+1;,// jright child with greater key
if Afi] < A[j] then
Swap(A[i], A[5])
i < ji // keep sinking down
else
| i« m; // sift down finished

487

Sorting Heaps

Let A[1,...,n] be a heap.

While n > 1:
1. Swap(A[1], A[n])
2. Siftbown(A,1,n — 1)
3. n+—n—1

swap
siftDown
swap
siftDown
swap
siftDown
swap
siftDown
swap

R S A A T

N NN 2 02O N

488

Heap creation

Observation: Every leaf of a heap is trivially a correct heap.

Consequence: Induction from below!

489

Algorithm HeapSort(A,n)

Input: Array A with length n.

Output: A sorted.

// Build the heap

for i < n/2 downto 1 do

. SiftDown(A,i,n)

// Now A is a heap

for i < n downto 2 do
Swap(A[1], A[1]
SiftDown(A4, 1,7 — 1)

// Now A is sorted.

490

Analysis: sorting a heap

SiftDown traverses at most log n nodes. For each node, 2 key comparisons.
= sorting a heap costs 2logn comparisons in the worst case.

Number of memory movements while sorting a heap also O(nlogn).

491

Analysis: creating a heap

Calls to Siftbown: n/2.

Thus number of comparisons and movements: v(n) € O(nlogn).
But mean length of the sift-down paths is much smaller:

We use that h(n) = [logan + 1] = [logon| + 1 furn >0

|logy n | [logy n]
v(n) = Y 2! (|loggn|+1—1 —1) Z gllogzn]—k 1
—~ —_— ——
=0 number heaps on level | height heaps on level |
_1 J |_10g2 nj k' e’}
= gloe2nl . <n-2e0(n
kz:%) Qk < z_: n (n)

with s(z) := Y32 ka* = 2 (0 <z <1)ands(3) =2

492

Disadvantages

Heapsort: O(nlogn) Comparisons and movements.
Disadvantages of heapsort?

Missing locality: heapsort jumps around in the sorted array
(negative cache effect).

Two comparisons required before each necessary memory
movement.

493

	Binary Search Trees
	Trees
	Search Trees
	Key Insertion
	Remove Key
	Tree Traversal

	Heaps

