16. Binary Search Trees

[Ottman/Widmayer, Kap. 5.1, Cormen et al, Kap. 12.1-12.3]

Dictionary implementation

Hashing: implementation of dictionaries with expected very fast access times.
Disadvantages of hashing: linear access time in worst case. Some operations not supported at all:

■ enumerate keys in increasing order

- next smallest key to given key

■ Key k in given interval $k \in[l, r]$

Trees

Trees are

■ Generalized lists: nodes can have more than one successor
■ Special graphs: graphs consist of nodes and edges. A tree is a fully connected, directed, acyclic graph.

Trees

Use

■ Decision trees: hierarchic representation of decision rules

- syntax trees: parsing and traversing of expressions, e.g. in a compiler
- Code tress: representation of a code, e.g. morse alphabet, huffman code
- Search trees: allow efficient searching for an element by value

Examples

Examples

Expression tree

Nomenclature

■ Order of the tree: maximum number of child nodes (here: 3)

- Height of the tree: maximum path length root to leaf (here: 4)

Binary Trees

A binary tree is
■ either a leaf, i.e. an empty tree,
■ or an inner leaf with two trees T_{l} (left subtree) and T_{r} (right subtree) as left and right successor.
In each inner node v we store
■ a key v.key and

key	
left	right

■ two nodes v.left and v.right to the roots of the left and right subtree.
a leaf is represented by the null-pointer

Recap: Linked-list Node in C++


```
struct llnode {
    int key;
    llnode* next;
    llnode(int k, llnode* n): key(k), next(n) {} // Constructor
};
```


Recap: Tree Nodes in C++

Binary search tree

A binary search tree is a binary tree that fulfils the search tree property:
■ Every node v stores a key

- Keys in left subtree v.left are smaller than v.key

■ Keys in right subtree v.right are greater than v.key

Searching

Input: Binary search tree with root r, key k Output: Node v with v.key $=k$ or null
$v \leftarrow r$
while $v \neq$ null do
if $k=v$.key then return v
else if $k<v$.key then

return null

Searching in C++

```
bool contains(const llnode* root, int search_key) {
    while (root != nullptr) {
        if (search_key == root->key) return true;
        else if (search_key < root->key) root = root->left;
        else root = root->right;
    }
    return false;
}
Remarks (pot. also for subsequent code):
■ contains would typically be a member of function of struct tnode or class bin_search_tree ( \(\rightarrow\) slightly different signature)
- Recursive implementation also possible
```


Height of a tree

The height $h(T)$ of a binary tree T with root r is given by

$$
h(r)= \begin{cases}0 & \text { if } r=\text { null } \\ 1+\max \{h(r . \text { left }), h(r . \text { right })\} & \text { otherwise }\end{cases}
$$

The (worst case) run time of the search is thus $\mathcal{O}(h(T))$

Insertion of a key

Insertion of the key k

- Search for k

■ If successful search: e.g. output error
■ If no success: insert the key at the leaf reached

Remove node

Three cases possible:
■ Node has no children
■ Node has one child
■ Node has two children
[Leaves do not count here]

Remove node

Node has no children

Simple case: replace node by leaf.

$\xrightarrow{\text { remove }(4)}$

Remove node

Node has one child

Also simple: replace node by single child.

Remove node

Node v has two children

Requirements for replacement node w:

1. w. key is larger than all keys in v.left
2. w.key is smaller than all keys in v.right
3. ideally has not children

Observation: the smallest key in the right subtree v.right (here: 9) meets requirements 1, 2; and has at most one (right) child.

Solution: replace v by exactly this symmetric successor.

By symmetry ...

Node v has two children

Also possible: replace v by its symmetric predecessor.

Algorithm SymmetricSuccessor(v)

Input: Node v of a binary search tree.
Output: Symmetric successor of v
$w \leftarrow v$.right
$x \leftarrow w$.left
while $x \neq$ null do
$w \leftarrow x$
$x \leftarrow x$.left
return w

Analysis

Deletion of an element v from a tree T requires $\mathcal{O}(h(T))$ fundamental steps:
■ Finding v has costs $\mathcal{O}(h(T))$

- If v has maximal one child unequal to nullthen removal takes $\mathcal{O}(1)$ steps

■ Finding the symmetric successor n of v takes $\mathcal{O}(h(T))$ steps. Removal and insertion of n takes $\mathcal{O}(1)$ steps.

Traversal possibilities

- preorder:
v, then $T_{\text {left }}(v)$, then $T_{\text {right }}(v)$.
$8,3,5,4,13,10,9,19$
- postorder:
$T_{\text {left }}(v)$, then $T_{\text {right }}(v)$, then v.
$4,5,3,9,10,19,13,8$
■ inorder:
$T_{\text {left }}(v)$, then v, then $T_{\text {right }}(v)$.
$3,4,5,8,9,10,13,19$

Further supported operations

■ Min/Max(T): Query minimal/maximal value in $\mathcal{O}(h(T))$
■ ExtractMin/Max(T): Query and remove remove min/max in $\mathcal{O}(h(T))$
■ List(T): Output the sorted list of elements
■ Join $\left(T_{1}, T_{2}\right)$: Merge two trees with $\operatorname{Max}\left(T_{1}\right)<$ $\operatorname{Min}\left(T_{2}\right)$ in $\mathcal{O}\left(h\left(T_{1}, T_{2}\right)\right)$

Search Trees: Balanced vs. Degenerated

insert 4,5,8,9,10,13,19:
linear list

insert 19,13,10,9,8,5,4:
linear list

Probabilistically

A search tree constructed from a random sequence of numbers provides an an expected path length of $\mathcal{O}(\log n)$.
Attention: this only holds for insertions. If the tree is constructed by random insertions and deletions, the expected path length is $\mathcal{O}(\sqrt{n})$. Balanced trees make sure (e.g. with rotations) during insertion or deletion that the tree stays balanced and provide a $\mathcal{O}(\log n)$ Worst-case guarantee.

17. Heaps

Data structure optimized for fast extraction of minimum or maximum and for sorting. [Ottman/Widmayer, Kap. 2.3, Cormen et al, Kap. 6]

[Max-]Heap*

Binary tree with the following properties

1. complete up to the lowest level
2. Gaps (if any) of the tree in the last level to the right
3. Heap-Condition:

Max-(Min-)Heap: key of a child smaller (greater) than that of the

*Heap(data structure), not as in "heap and stack" (memory allocation)

Heap as Array

Tree \rightarrow Array:
■ children $(i)=\{2 i, 2 i+1\}$
■ parent $(i)=\lfloor i / 2\rfloor$

Children

Depends on the starting index ${ }^{19}$

[^0]
Height of a Heap

What is the height $H(n)$ of Heap with n nodes? On the i-th level of a binary tree there are at most 2^{i} nodes. Modulo the last level of a heap, all levels are filled with values.

$$
H(n)=\min \left\{h \in \mathbb{N}: \sum_{i=0}^{h-1} 2^{i} \geq n\right\}
$$

with $\sum_{i=0}^{h-1} 2^{i}=2^{h}-1$:

$$
H(n)=\min \left\{h \in \mathbb{N}: 2^{h} \geq n+1\right\}
$$

thus

$$
H(n)=\left\lceil\log _{2}(n+1)\right\rceil
$$

Heap in C++

```
class MaxHeap {
    int* keys; // Pointer to first key
    unsigned int capacity; // Length of key array
    unsigned int count; // Keys in use <= capacity
    // Or even better: build on top of std::vector
public:
    MaxHeap(unsigned int initial_capacity):
        keys(new int[initial_capacity]),
    capacity(initial_capacity),
    count(0)
    {}
    void insert(unsigned int key) { ...}
    int remove_max() { ...}
}
```


Insert

- Insert new kez at the first free position. Potentially violates the heap property.
■ Reestablish heap property: ascend successively
■ Worst-case number of operations:
$\mathcal{O}(\log n)$

Algorithm $\operatorname{Sift}-U p(A, m)$

Input: Array A with at least m keys and heap structure on $A[1, \ldots, m-1]$ Output: Array A with heap structure on $A[1, \ldots, m]$
$v \leftarrow A[m] / /$ new key
$c \leftarrow m / /$ index current node (child)
$p \leftarrow\lfloor c / 2\rfloor / /$ index parent node
while $c>1$ and $v>A[p]$ do
$A[c] \leftarrow A[p] / /$ key parent node \rightarrow key current node
$c \leftarrow p / /$ parent node \rightarrow current node
$p \leftarrow\lfloor c / 2\rfloor$
$A[c] \leftarrow v / /$ place new key

Remove the Maximum

■ Replace the maximum by the lower right element

- Reestablish heap property: sink successively (in the direction of the greater child)
■ Worst case number of operations: $\mathcal{O}(\log n)$

Why this is correct: Recursive heap structure

A heap consists of two heaps:

Algorithm $\operatorname{SiftDown}(A, i, m)$

Input: Array A with heap structure for the children of i. Last element m. Output: Array A with heap structure for i with last element m. while $2 i \leq m$ do
$j \leftarrow 2 i$; // j left child
if $j<m$ and $A[j]<A[j+1]$ then
$j \leftarrow j+1$; // j right child with greater key
if $A[i]<A[j]$ then
Swap $(A[i], A[j])$
$i \leftarrow j$; // keep sinking down
else
$i \leftarrow m$; // sift down finished

Sorting Heaps

Let $A[1, \ldots, n]$ be a heap.
While $n>1$:

1. $\operatorname{Swap}(A[1], A[n])$
2. $\operatorname{SiftDown}(A, 1, n-1)$
3. $n \leftarrow n-1$

		7	6	4	5	1	2
swap	\Rightarrow	2	6	4	5	1	7
siftDown	\Rightarrow	6	5	4	2	1	7
swap	\Rightarrow	1	5	4	2	6	7
siftDown	\Rightarrow	5	4	2	1	6	7
swap	\Rightarrow	1	4	2	5	6	7
siftDown	\Rightarrow	4	1	2	5	6	7
swap	\Rightarrow	2	1	4	5	6	7
siftDown	\Rightarrow	2	1	4	5	6	7
swap	\Rightarrow	1	2	4	5	6	7

Heap creation

Observation: Every leaf of a heap is trivially a correct heap.

Consequence: Induction from below!

Algorithm HeapSort (A, n)

Input: Array A with length n.
Output: A sorted.
// Build the heap
for $i \leftarrow n / 2$ downto 1 do
SiftDown (A, i, n)
// Now A is a heap
for $i \leftarrow n$ downto 2 do
Swap $(A[1], A[i])$
$\operatorname{SiftDown}(A, 1, i-1)$
// Now A is sorted.

Analysis: sorting a heap

SiftDown traverses at most $\log n$ nodes. For each node, 2 key comparisons. \Rightarrow sorting a heap costs $2 \log n$ comparisons in the worst case. Number of memory movements while sorting a heap also $\mathcal{O}(n \log n)$.

Analysis: creating a heap

Calls to SiftDown: $n / 2$.
Thus number of comparisons and movements: $v(n) \in \mathcal{O}(n \log n)$.
But mean length of the sift-down paths is much smaller:
We use that $h(n)=\left\lceil\log _{2} n+1\right\rceil=\left\lfloor\log _{2} n\right\rfloor+1$ für $n>0$

$$
\begin{aligned}
v(n) & =\sum_{l=0}^{\left\lfloor\log _{2} n\right\rfloor} \underbrace{2^{l}}_{\text {number heaps on level l }} \cdot(\underbrace{\left\lfloor\log _{2} n\right\rfloor+1-l}_{\text {height heaps on level l }}-1)=\sum_{k=0}^{\left\lfloor\log _{2} n\right\rfloor} 2^{\left\lfloor\log _{2} n\right\rfloor-k} \cdot k \\
& =2^{\left\lfloor\log _{2} n\right\rfloor} \cdot \sum_{k=0}^{\left\lfloor\log _{2} n\right\rfloor} \frac{k}{2^{k}} \leq n \cdot \sum_{k=0}^{\infty} \frac{k}{2^{k}} \leq n \cdot 2 \in \mathcal{O}(n)
\end{aligned}
$$

with $s(x):=\sum_{k=0}^{\infty} k x^{k}=\frac{x}{(1-x)^{2}} \quad(0<x<1)$ and $s\left(\frac{1}{2}\right)=2$

Disadvantages

Heapsort: $\mathcal{O}(n \log n)$ Comparisons and movements.

Disadvantages of heapsort?

(1) Missing locality: heapsort jumps around in the sorted array (negative cache effect).
(1) Two comparisons required before each necessary memory movement.

[^0]: ${ }^{19}$ For arrays that start at $0:\{2 i, 2 i+1\} \rightarrow\{2 i+1,2 i+2\},\lfloor i / 2\rfloor \rightarrow\lfloor(i-1) / 2\rfloor$

