

Felix Friedrich
Data Structures and Algorithms
Course at D-MATH of ETH Zurich
Spring 2022

1. Introduction

Overview, Algorithms and Data Structures, Correctness, First Example

Goals of the course

■ Understand the design and analysis of fundamental algorithms and data structures.
■ An advanced insight into a modern programming model (with C++).
■ Knowledge about chances, problems and limits of the parallel and concurrent computing.

1.2 Algorithms

[Cormen et al, Kap. 1; Ottman/Widmayer, Kap. 1.1]

Algorithm

Algorithm

Well-defined procedure to compute output data from input data

Example Problem: Sorting

Input: A sequence of n numbers (comparable objects) $\left(a_{1}, a_{2}, \ldots, a_{n}\right)$

Example Problem: Sorting

Input: A sequence of n numbers (comparable objects) $\left(a_{1}, a_{2}, \ldots, a_{n}\right)$
Output: Permutation $\left(a_{1}^{\prime}, a_{2}^{\prime}, \ldots, a_{n}^{\prime}\right)$ of the sequence $\left(a_{i}\right)_{1 \leq i \leq n}$, such that $a_{1}^{\prime} \leq a_{2}^{\prime} \leq \cdots \leq a_{n}^{\prime}$

Example Problem: Sorting

Input: A sequence of n numbers (comparable objects) $\left(a_{1}, a_{2}, \ldots, a_{n}\right)$
Output: Permutation $\left(a_{1}^{\prime}, a_{2}^{\prime}, \ldots, a_{n}^{\prime}\right)$ of the sequence $\left(a_{i}\right)_{1 \leq i \leq n}$, such that

$$
a_{1}^{\prime} \leq a_{2}^{\prime} \leq \cdots \leq a_{n}^{\prime}
$$

Possible input

$(1,7,3),(15,13,12,-0.5),(999,998,997,996, \ldots, 2,1),(1),() \ldots$

Example Problem: Sorting

Input: A sequence of n numbers (comparable objects) $\left(a_{1}, a_{2}, \ldots, a_{n}\right)$
Output: Permutation $\left(a_{1}^{\prime}, a_{2}^{\prime}, \ldots, a_{n}^{\prime}\right)$ of the sequence $\left(a_{i}\right)_{1 \leq i \leq n}$, such that

$$
a_{1}^{\prime} \leq a_{2}^{\prime} \leq \cdots \leq a_{n}^{\prime}
$$

Possible input

$(1,7,3),(15,13,12,-0.5),(999,998,997,996, \ldots, 2,1),(1),() \ldots$

Every example represents a problem instance

The performance (speed) of an algorithm usually depends on the problem instance. Often there are "good" and "bad" instances.

Therefore we consider algorithms sometimes "in the average" and most often in the "worst case".

Possible solution

How many times are the lines executed each?

```
void sort(std::vector<int>& a){
    unsigned n = a.size()
    for (unsigned i = 0; i<n ; ++i){
        for (unsigned j = i+1; j<n; ++j){
            if (a[j] < a[i]){
                std::swap(a[i],a[j])
            }
        }
    }
}
```


Data Structures

- A data structure is a particular way of organizing data in a computer so that they can be used efficiently (in the algorithms operating on them).
■ Programs = algorithms + data structures.
lucid, systematic, and penetrating treatment of basic and dynamic data structures, sorting, recursive algorithms, language structures, and compiling

Aloriithns + Data Structures = Procirams

Typical Algorithm Design Steps: Example

Route planning

Typical Design Steps

1. Specification of the problem: find best (shortest time) path from A to B
2. Abstraction: graph with nodes, edges and egde-weights
3. Idea (heureka!): Dijkstra
4. Data-structures and algorithms: e.g. adjacency matrix / adjacency list, min-heap, hash-table ...
5. Runtime analysis: $\mathcal{O}((n+m) \cdot \log n)$
6. Implementation: Representation choice (e.g. adjacency matrix/ adjacency list/ objects)

Difficult Problem: Travelling Salesman

Given: graph (map) with nodes (cities) and weighted edges (roads with length)
Wanted: Loop road through all cities such that each city is visited once (Hamilton-cycle) with minimal overall length.

The best known algorithm has a running time that increase exponentially with the number of nodes (cities).

Already finding a Hamilton cycle is a difficult problem in general. In contrast, the problem to find an Eulerian cycle, a cycle that uses each edge once, is a problem with polynomial running time.

Hard problems.

■ NP-complete problems: no known efficient solution (the existence of such a solution is very improbable - but it has not yet been proven that there is none!)
■ Example: travelling salesman problem

This course is mostly about problems that can be solved efficiently (in polynomial time).

Efficiency

Resources are bounded and do not come for free:
■ Computing time \rightarrow Efficiency

- Storage space \rightarrow Efficiency

Actually, this course is nearly only about efficiency.

2. Efficiency of algorithms

Efficiency of Algorithms, Random Access Machine Model, Function Growth, Asymptotics [Cormen et al, Kap. 2.2,3,4.2-4.4 | Ottman/Widmayer, Kap. 1.1]

Efficiency of Algorithms

Goals

■ Quantify the runtime behavior of an algorithm independent of the machine.

- Compare efficiency of algorithms.

■ Understand dependece on the input size.

Programs and Algorithms

Technology
program

programming language
specified for
computer

Abstraction

Technology Model

Random Access Machine (RAM) Model

- Execution model: instructions are executed one after the other (on one processor core).

Technology Model

Random Access Machine (RAM) Model

- Execution model: instructions are executed one after the other (on one processor core).
■ Memory model: constant access time (big array)

Technology Model

Random Access Machine (RAM) Model

- Execution model: instructions are executed one after the other (on one processor core).
■ Memory model: constant access time (big array)
■ Fundamental operations: computations (+,--,,...) comparisons, assignment / copy on machine words (registers), flow control (jumps)

Technology Model

Random Access Machine (RAM) Model

■ Execution model: instructions are executed one after the other (on one processor core).
■ Memory model: constant access time (big array)
■ Fundamental operations: computations (+,--,,...) comparisons, assignment / copy on machine words (registers), flow control (jumps)

- Unit cost model: fundamental operations provide a cost of 1.

Technology Model

Random Access Machine (RAM) Model

- Execution model: instructions are executed one after the other (on one processor core).
■ Memory model: constant access time (big array)
■ Fundamental operations: computations (+,--,,...) comparisons, assignment / copy on machine words (registers), flow control (jumps)
■ Unit cost model: fundamental operations provide a cost of 1.
■ Data types: fundamental types like size-limited integer or floating point number.

Size of the Input Data

■ Typical: number of input objects (of fundamental type).
■ Sometimes: number bits for a reasonable / cost-effective representation of the data.
■ fundamental types fit into word of size : $w \geq \log ($ sizeof(mem)) bits.

For Dynamic Data Strcutures

Pointer Machine Model

- Objects bounded in size can be dynamically allocated in constant time
- Fields (with word-size) of the objects can be accessed in constant time 1.
top $\longrightarrow x_{n} \bullet \longrightarrow x_{n-1} \bullet---\rightarrow x_{1} \bullet \longrightarrow$ null

Asymptotic behavior

An exact running time of an algorithm can normally not be predicted even for small input data.
\square We consider the asymptotic behavior of the algorithm.
■ And ignore all constant factors.
An operation with cost 20 is no worse than one with cost 1 Linear growth with gradient 5 is as good as linear growth with gradient 1.

2.2 Function growth

$\mathcal{O}, \Theta, \Omega$ [Cormen et al, Kap. 3; Ottman/Widmayer, Kap. 1.1]

Superficially

Use the asymptotic notation to specify the execution time of algorithms. We write $\Theta\left(n^{2}\right)$ and mean that the algorithm behaves for large n like n^{2} : when the problem size is doubled, the execution time multiplies by four.

More precise: asymptotic upper bound

provided: a function $g: \mathbb{N} \rightarrow \mathbb{R}$.
Definition: ${ }^{1}$

$$
\begin{aligned}
\mathcal{O}(g)=\{ & f: \mathbb{N} \rightarrow \mathbb{R} \mid \\
& \exists c>0, \exists n_{0} \in \mathbb{N}: \\
& \left.\forall n \geq n_{0}: 0 \leq f(n) \leq c \cdot g(n)\right\}
\end{aligned}
$$

Notation:

$$
\mathcal{O}(g(n)):=\mathcal{O}(g(\cdot))=\mathcal{O}(g)
$$

[^0]Graphic

Graphic

Converse: asymptotic lower bound

Given: a function $g: \mathbb{N} \rightarrow \mathbb{R}$.
Definition:

$$
\begin{aligned}
\Omega(g)= & \{f: \mathbb{N} \rightarrow \mathbb{R} \mid \\
& \exists c>0, \exists n_{0} \in \mathbb{N}: \\
& \left.\forall n \geq n_{0}: 0 \leq c \cdot g(n) \leq f(n)\right\}
\end{aligned}
$$

Example

Example

Asymptotic tight bound

Given: function $g: \mathbb{N} \rightarrow \mathbb{R}$.
Definition:

$$
\Theta(g):=\Omega(g) \cap \mathcal{O}(g)
$$

Simple, closed form: exercise.

Example

Notions of Growth

$\mathcal{O}(1)$	bounded	array access
$\mathcal{O}(\log \log n)$	double logarithmic	interpolated binary sorted sort
$\mathcal{O}(\log n)$	logarithmic	binary sorted search
$\mathcal{O}(\sqrt{n})$	like the square root	naive prime number test
$\mathcal{O}(n)$	linear	unsorted naive search
$\mathcal{O}(n \log n)$	superlinear / loglinear	good sorting algorithms
$\mathcal{O}\left(n^{2}\right)$	quadratic	simple sort algorithms
$\mathcal{O}\left(n^{c}\right)$	polynomial	matrix multiply
$\mathcal{O}\left(c^{n}\right)$	exponential	Travelling Salesman Dynamic Programming
$\mathcal{O}(n!)$	factorial	Travelling Salesman naively

Small n

Larger n

"Large" n

Logarithms

Time Consumption

Assumption 1 Operation $=1 \mu s$.

problem size	1	100	10000	10^{6}	10^{9}
$\log _{2} n$	$1 \mu s$				
n	$1 \mu s$				
$n \log _{2} n$	$1 \mu s$				
n^{2}	$1 \mu s$				
2^{n}	$1 \mu s$				

Time Consumption

Assumption 1 Operation $=1 \mu s$.

problem size	1	100	10000	10^{6}	10^{9}
$\log _{2} n$	$1 \mu s$				
n	$1 \mu s$	$100 \mu s$	$1 / 100 s$	$1 s$	17 minutes
$n \log _{2} n$	$1 \mu s$				
n^{2}	$1 \mu s$				
2^{n}	$1 \mu s$				

Time Consumption

Assumption 1 Operation $=1 \mu s$.

problem size	1	100	10000	10^{6}	10^{9}
$\log _{2} n$	$1 \mu s$				
n	$1 \mu s$	$100 \mu s$	$1 / 100 s$	$1 s$	17 minutes
$n \log _{2} n$	$1 \mu s$				
n^{2}	$1 \mu s$	$1 / 100 s$	1.7 minutes	11.5 days	317 centuries
2^{n}	$1 \mu s$				

Time Consumption

Assumption 1 Operation $=1 \mu s$.

problem size	1	100	10000	10^{6}	10^{9}
$\log _{2} n$	$1 \mu s$	$7 \mu s$	$13 \mu s$	$20 \mu s$	$30 \mu s$
n	$1 \mu s$	$100 \mu s$	$1 / 100 s$	$1 s$	17 minutes
$n \log _{2} n$	$1 \mu s$				
n^{2}	$1 \mu s$	$1 / 100 s$	1.7 minutes	11.5 days	317 centuries
2^{n}	$1 \mu s$				

Time Consumption

Assumption 1 Operation $=1 \mu s$.

problem size	1	100	10000	10^{6}	10^{9}
$\log _{2} n$	$1 \mu s$	$7 \mu s$	$13 \mu s$	$20 \mu s$	$30 \mu s$
n	$1 \mu s$	$100 \mu s$	$1 / 100 s$	$1 s$	17 minutes
$n \log _{2} n$	$1 \mu s$	$700 \mu s$	$13 / 100 \mu s$	$20 s$	8.5 hours
n^{2}	$1 \mu s$	$1 / 100 s$	1.7 minutes	11.5 days	317 centuries
2^{n}	$1 \mu s$				

Time Consumption

Assumption 1 Operation $=1 \mu s$.

problem size	1	100	10000	10^{6}	10^{9}
$\log _{2} n$	$1 \mu s$	$7 \mu s$	$13 \mu s$	$20 \mu s$	$30 \mu s$
n	$1 \mu s$	$100 \mu s$	$1 / 100 s$	$1 s$	17 minutes
$n \log _{2} n$	$1 \mu s$	$700 \mu s$	$13 / 100 \mu s$	$20 s$	8.5 hours
n^{2}	$1 \mu s$	$1 / 100 s$	1.7 minutes	11.5 days	317 centuries
2^{n}	$1 \mu s$	10^{14} centuries	$\approx \infty$	$\approx \infty$	$\approx \infty$

About the Notation

Common casual notation

$$
f=\mathcal{O}(g)
$$

should be read as $f \in \mathcal{O}(g)$.
Clearly it holds that

$$
f_{1}=\mathcal{O}(g), f_{2}=\mathcal{O}(g) \nRightarrow f_{1}=f_{2}!
$$

$$
n=\mathcal{O}\left(n^{2}\right), n^{2}=\mathcal{O}\left(n^{2}\right) \text { but naturally } n \neq n^{2} .
$$

We avoid this notation where it could lead to ambiguities.

Reminder: Efficiency: Arrays vs. Linked Lists

■ Memory: our avec requires roughly n ints (vector size n), our llvec roughly $3 n$ ints (a pointer typically requires 8 byte)

■ Runtime (with avec = std: : vector, llvec = std::list):

```
```

<0% prepending (insert at front) [100,000x]:

```
```

<0% prepending (insert at front) [100,000x]:
D avec: 675 mS
D avec: 675 mS
- llvec: }10\mathrm{ ms
- llvec: }10\mathrm{ ms
appending (insert at back) [100,000x]:
appending (insert at back) [100,000x]:
- avec: 2 ms
- avec: 2 ms
- llvec: }9\mathrm{ ms
- llvec: }9\mathrm{ ms
removing first [100,000x]:
removing first [100,000x]:
D avec: 675 ms
D avec: 675 ms
- llvec: 4 ms
- llvec: 4 ms
removing last [100,000x]:
removing last [100,000x]:
D avec: 0 ms
D avec: 0 ms
v llvec: 4 ms

```
```

 v llvec: 4 ms
    ```
```

removing randomly [10,000x]:

- avec: 3 ms
> llvec: 113 ms
inserting randomly [10,000x]
 - avec: 16 ms
D llvec: 117 ms
fully iterate sequentially (5000 elements) [5,000x]
 - avec: 354 ms
 - llvec: 525 ms

Asymptotic Runtimes

With our new language $(\Omega, \mathcal{O}, \Theta)$, we can now state the behavior of the data structures and their algorithms more precisely

Typical asymptotic running times (Anticipation!)

| Data structure | Random
 Access | Insert | Next | Insert
 After
 Element | Search |
| :--- | :--- | :--- | :--- | :--- | :--- |
| std: : vector | $\Theta(1)$ | $\Theta(1) A$ | $\Theta(1)$ | $\Theta(n)$ | $\Theta(n)$ |
| std: :list | $\Theta(n)$ | $\Theta(1)$ | $\Theta(1)$ | $\Theta(1)$ | $\Theta(n)$ |
| std: : set | - | $\Theta(\log n)$ | $\Theta(\log n)$ | - | $\Theta(\log n)$ |
| std: : unordered_set | - | $\Theta(1) P$ | - | - | $\Theta(1) P$ |

[^1]
Complexity

Complexity of a problem P
Minimal (asymptotic) costs over all algorithms A that solve P.

Complexity

Complexity of a problem P
Minimal (asymptotic) costs over all algorithms A that solve P.

Complexity of the single-digit multiplication of two numbers with n digits is $\Omega(n)$ and $\mathcal{O}\left(n^{\log _{3} 2}\right)$ (Karatsuba Ofman).

Complexity

| Problem | Complexity | $\mathcal{O}(n)$ | $\mathcal{O}(n)$ | $\mathcal{O}\left(n^{2}\right)$ | $\Omega(n \log n)$ |
| :--- | :--- | :---: | :---: | :---: | :---: |
| Algorithm | Costs 2 | \Uparrow | \Uparrow | \Uparrow | \Downarrow |
| | $3 n-4$ | $\mathcal{O}(n)$ | $\Theta\left(n^{2}\right)$ | $\Omega(n \log n)$ | |
| Program | Execution time | \Downarrow | $\widehat{\Downarrow}$ | $\hat{\Downarrow}$ | \Downarrow |
| | $\Theta(n)$ | $\mathcal{O}(n)$ | $\Theta\left(n^{2}\right)$ | $\Omega(n \log n)$ | |

[^2]
[^0]: ${ }^{1}$ Ausgesprochen: Set of all functions $f: \mathbb{N} \rightarrow \mathbb{R}$ that satisfy: there is some (real valued) $c>0$ and some $n_{0} \in \mathbb{N}$ such that $0 \leq f(n) \leq n \cdot g(n)$ for all $n \geq n_{0}$.

[^1]: $A=$ amortized, $P=$ expected, otherwise worst case

[^2]: ${ }^{2}$ Number fundamental operations

