ETH zürich

Felix Friedrich **Data Structures and Algorithms** Course at D-MATH of ETH Zurich Spring 2022

1. Introduction

Overview, Algorithms and Data Structures, Correctness, First Example

- Understand the design and analysis of fundamental algorithms and data structures.
- An advanced insight into a modern programming model (with C++).
- Knowledge about chances, problems and limits of the parallel and concurrent computing.

1.2 Algorithms

[Cormen et al, Kap. 1; Ottman/Widmayer, Kap. 1.1]

Algorithm

Algorithm

Well-defined procedure to compute **output** data from **input** data

Input: A sequence of n numbers (comparable objects) (a_1, a_2, \ldots, a_n)

Input: A sequence of *n* numbers (comparable objects) (a_1, a_2, \ldots, a_n) **Output**: Permutation $(a'_1, a'_2, \ldots, a'_n)$ of the sequence $(a_i)_{1 \le i \le n}$, such that $a'_1 \le a'_2 \le \cdots \le a'_n$

Input: A sequence of *n* numbers (comparable objects) (a_1, a_2, \ldots, a_n) **Output**: Permutation $(a'_1, a'_2, \ldots, a'_n)$ of the sequence $(a_i)_{1 \le i \le n}$, such that $a'_1 \le a'_2 \le \cdots \le a'_n$

Possible input

(1, 7, 3), (15, 13, 12, -0.5), $(999, 998, 997, 996, \dots, 2, 1)$, (1), ()...

Input: A sequence of *n* numbers (comparable objects) (a_1, a_2, \ldots, a_n) **Output**: Permutation $(a'_1, a'_2, \ldots, a'_n)$ of the sequence $(a_i)_{1 \le i \le n}$, such that $a'_1 \le a'_2 \le \cdots \le a'_n$

Possible input

(1, 7, 3), (15, 13, 12, -0.5), $(999, 998, 997, 996, \dots, 2, 1)$, (1), ()...

Every example represents a **problem instance**

The performance (speed) of an algorithm usually depends on the problem instance. Often there are "good" and "bad" instances.

Therefore we consider algorithms sometimes **"in the average"** and most often in the **"worst case"**.

Possible solution

How many times are the lines executed each?

```
void sort(std::vector<int>& a){
 unsigned n = a.size()
 for (unsigned i = 0; i < n; ++i){
   for (unsigned j = i+1; j < n; ++j){
     if (a[i] < a[i]){</pre>
       std::swap(a[i],a[j])
}
```

Data Structures

- A data structure is a particular way of organizing data in a computer so that they can be used efficiently (in the algorithms operating on them).
- Programs = algorithms + data structures.

Typical Algorithm Design Steps: Example

Route planning

Typical Design Steps

- 1. Specification of the problem: find best (shortest time) path from A to B
- 2. Abstraction: graph with nodes, edges and egde-weights
- 3. Idea (heureka!): Dijkstra
- 4. Data-structures and algorithms: e.g. adjacency matrix / adjacency list, min-heap, hash-table ...
- 5. Runtime analysis: $\mathcal{O}((n+m) \cdot \log n)$
- 6. Implementation: Representation choice (e.g. adjacency matrix/ adjacency list/ objects)

Difficult Problem: Travelling Salesman

Given: graph (map) with nodes (cities) and weighted edges (roads with length)

Wanted: Loop road through all cities such that each city is visited once (Hamilton-cycle) with minimal overall length.

The best known algorithm has a running time that increase exponentially with the number of nodes (cities).

Already finding a Hamilton cycle is a difficult problem in general. In contrast, the problem to find an Eulerian cycle, a cycle that uses each *edge* once, is a problem with polynomial running time.

- NP-complete problems: no known efficient solution (the existence of such a solution is very improbable – but it has not yet been proven that there is none!)
- Example: travelling salesman problem

This course is *mostly* about problems that can be solved efficiently (in polynomial time).

Resources are bounded and do not come for free:

- \blacksquare Computing time \rightarrow Efficiency
- Storage space \rightarrow Efficiency

Actually, this course is nearly only about efficiency.

2. Efficiency of algorithms

Efficiency of Algorithms, Random Access Machine Model, Function Growth, Asymptotics [Cormen et al, Kap. 2.2,3,4.2-4.4 | Ottman/Widmayer, Kap. 1.1]

Goals

- Quantify the runtime behavior of an algorithm independent of the machine.
- Compare efficiency of algorithms.
- Understand dependece on the input size.

Programs and Algorithms

Random Access Machine (RAM) Model

Execution model: instructions are executed one after the other (on one processor core).

- Execution model: instructions are executed one after the other (on one processor core).
- Memory model: constant access time (big array)

- Execution model: instructions are executed one after the other (on one processor core).
- Memory model: constant access time (big array)
- Fundamental operations: computations (+,-,·,...) comparisons, assignment / copy on machine words (registers), flow control (jumps)

- Execution model: instructions are executed one after the other (on one processor core).
- Memory model: constant access time (big array)
- Fundamental operations: computations (+,-,·,...) comparisons, assignment / copy on machine words (registers), flow control (jumps)
- Unit cost model: fundamental operations provide a cost of 1.

- Execution model: instructions are executed one after the other (on one processor core).
- Memory model: constant access time (big array)
- Fundamental operations: computations (+,-,·,...) comparisons, assignment / copy on machine words (registers), flow control (jumps)
- Unit cost model: fundamental operations provide a cost of 1.
- Data types: fundamental types like size-limited integer or floating point number.

- Typical: number of input objects (of fundamental type).
- Sometimes: number bits for a *reasonable / cost-effective* representation of the data.
- fundamental types fit into word of size : $w \ge \log(sizeof(mem))$ bits.

Pointer Machine Model

- Objects bounded in size can be dynamically allocated in constant time
- Fields (with word-size) of the objects can be accessed in constant time 1.

An exact running time of an algorithm can normally not be predicted even for small input data.

- We consider the asymptotic behavior of the algorithm.
- And ignore all constant factors.

An operation with cost 20 is no worse than one with cost 1 Linear growth with gradient 5 is as good as linear growth with gradient 1.

2.2 Function growth

 \mathcal{O} , Θ , Ω [Cormen et al, Kap. 3; Ottman/Widmayer, Kap. 1.1]

Use the asymptotic notation to specify the execution time of algorithms. We write $\Theta(n^2)$ and mean that the algorithm behaves for large n like n^2 : when the problem size is doubled, the execution time multiplies by four.

More precise: asymptotic upper bound

provided: a function $g : \mathbb{N} \to \mathbb{R}$. Definition:¹

$$\mathcal{O}(g) = \{ f : \mathbb{N} \to \mathbb{R} | \\ \exists c > 0, \exists n_0 \in \mathbb{N} : \\ \forall n \ge n_0 : 0 \le f(n) \le c \cdot g(n) \}$$

Notation:

$$\mathcal{O}(g(n)) := \mathcal{O}(g(\cdot)) = \mathcal{O}(g).$$

¹Ausgesprochen: Set of all functions $f : \mathbb{N} \to \mathbb{R}$ that satisfy: there is some (real valued) c > 0 and some $n_0 \in \mathbb{N}$ such that $0 \le f(n) \le n \cdot g(n)$ for all $n \ge n_0$.

Graphic

Graphic

Given: a function $g: \mathbb{N} \to \mathbb{R}$. Definition:

$$\Omega(g) = \{ f : \mathbb{N} \to \mathbb{R} | \\ \exists c > 0, \exists n_0 \in \mathbb{N} : \\ \forall n \ge n_0 : 0 \le c \cdot g(n) \le f(n) \}$$

Example

Example

Given: function $g: \mathbb{N} \to \mathbb{R}$. Definition:

$$\Theta(g) := \Omega(g) \cap \mathcal{O}(g).$$

Simple, closed form: exercise.

Example

$\mathcal{O}(1)$	bounded	array access
$\mathcal{O}(\log \log n)$	double logarithmic	interpolated binary sorted sort
$\mathcal{O}(\log n)$	logarithmic	binary sorted search
$\mathcal{O}(\sqrt{n})$	like the square root	naive prime number test
$\mathcal{O}(n)$	linear	unsorted naive search
$\mathcal{O}(n\log n)$	superlinear / loglinear	good sorting algorithms
$\mathcal{O}(n^2)$	quadratic	simple sort algorithms
$\mathcal{O}(n^c)$	polynomial	matrix multiply
$\mathcal{O}(c^n)$	exponential	Travelling Salesman Dynamic Programming
$\mathcal{O}(n!)$	factorial	Travelling Salesman naively

Small n

Larger *n*

"Large" n

Logarithms

problem size	1
$\log_2 n$	$1 \mu s$
n	$1 \mu s$
$n\log_2 n$	$1 \mu s$
n^2	$1 \mu s$
10	$^{1}\mu s$
2^n	$1 \mu s$

problem size	1	100	10000	10^{6}	10^{9}
$\log_2 n$	$1 \mu s$				
n	$1 \mu s$	$100 \mu s$	1/100s	1s	17 minutes
$n\log_2 n$	$1 \mu s$				
n^2	$1 \mu s$				
2^n	$1 \mu s$				

problem size	problem size 1		10000	10^{6}	10^{9}
$\log_2 n$	$1 \mu s$				
n	$1\mu s$ $100\mu s$		1/100s	1s	17 minutes
$n\log_2 n$	$1 \mu s$				
n^2	$1 \mu s$	1/100s	1.7 minutes	11.5 days	317 centuries
2^n	$1 \mu s$				

problem size	problem size 1		10000	10^{6}	10^{9}
$\log_2 n$	$1 \mu s$	$7 \mu s$	$13 \mu s$	$20 \mu s$	$30 \mu s$
n	$1 \mu s$	$100 \mu s$	1/100s	1s	17 minutes
$n\log_2 n$	$1 \mu s$				
n^2	$1 \mu s$	1/100s	1.7 minutes	11.5 days	317 centuries
2^n	$1 \mu s$				

problem size 1		100	10000	10^{6}	10^{9}
$\log_2 n$	$n = 1 \mu s = 7 \mu s$		$13 \mu s$	$20 \mu s$	$30 \mu s$
n	$1\mu s$ $100\mu s$		1/100s	1s	17 minutes
$n\log_2 n$	$1 \mu s$	$700 \mu s$	$13/100 \mu s$	20s	8.5 hours
n^2	$1 \mu s$	1/100s	1.7 minutes	11.5 days	317 centuries
2^n	$1 \mu s$				

problem size 1		100	10000	10^{6}	10^{9}
$\log_2 n$	$1 \mu s$	$7 \mu s$	$13 \mu s$	$20 \mu s$	$30 \mu s$
n	$1 \mu s$	$100 \mu s$	1/100s	1s	17 minutes
$n\log_2 n$	$1 \mu s$	$700 \mu s$	$13/100 \mu s$	20s	8.5 hours
n^2	$1 \mu s$	1/100s	1.7 minutes	11.5 days	317 centuries
2^n	$1 \mu s$	10^{14} centuries	$pprox \infty$	$pprox \infty$	$pprox\infty$

Common casual notation

$$f = \mathcal{O}(g)$$

should be read as $f \in \mathcal{O}(g)$. Clearly it holds that

$$f_1 = \mathcal{O}(g), f_2 = \mathcal{O}(g) \not\Rightarrow f_1 = f_2!$$

 $n = \mathcal{O}(n^2), n^2 = \mathcal{O}(n^2)$ but naturally $n \neq n^2$.

We avoid this notation where it could lead to ambiguities.

Reminder: Efficiency: Arrays vs. Linked Lists

- Memory: our avec requires roughly n ints (vector size n), our llvec roughly 3n ints (a pointer typically requires 8 byte)
- Runtime (with avec = std::vector, llvec = std::list):

Asymptotic Runtimes

With our new language $(\Omega, \mathcal{O}, \Theta)$, we can now state the behavior of the data structures and their algorithms more precisely

Typical asymptotic running times (Anticipation!)

Data structure	Random Access	Insert	Next	Insert After Element	Search
std::vector	$\Theta(1)$	$\Theta(1) A$	$\Theta(1)$	$\Theta(n)$	$\Theta(n)$
std::list	$\Theta(n)$	$\Theta(1)$	$\Theta(1)$	$\Theta(1)$	$\Theta(n)$
std::set	-	$\Theta(\log n)$	$\Theta(\log n)$	-	$\Theta(\log n)$
<pre>std::unordered_set</pre>	-	$\Theta(1) P$	-	-	$\Theta(1) P$

A = amortized, P=expected, otherwise worst case

Complexity of a problem P

Minimal (asymptotic) costs over all algorithms A that solve P.

Complexity of a problem P

Minimal (asymptotic) costs over all algorithms A that solve P.

Complexity of the single-digit multiplication of two numbers with n digits is $\Omega(n)$ and $\mathcal{O}(n^{\log_3 2})$ (Karatsuba Ofman).

²Number fundamental operations