

Felix Friedrich
Data Structures and Algorithms
Course at D-MATH of ETH Zurich
Spring 2022

Welcome!

Course homepage

> http://lec.inf.ethz.ch/DA

The team:

Assistants	Ciril Humbel Ivana Klasovita	Kamelia Ivanova Leonhard Knirsch
	Vedran Mihal	Harun Mustafa
	Bastian Seifert	Felix Vittori
Backoffice	Ulysse Schaller	
Head-Assistant	Julia Chatain	
Lecturer	Felix Friedrich	

Exercises

■ Exercises availabe at lectures.

- Preliminary discussion in the following recitation session

■ Solution of the exercise until the day before the next recitation session.
■ Dicussion of the exercise in the next recitation session.

Exercises

■ The solution of the weekly exercises is voluntary but stronly recommended.

It is so simple!

For the exercises we use an online development environment that requires only a browser, internet connection and your ETH login.

If you do not have access to a computer: there are a a lot of computers publicly accessible at ETH.

Literature

Algorithmen und Datenstrukturen, T. Ottmann, P. Widmayer, Spektrum-Verlag, 5. Auflage, 2011
Algorithmen - Eine Einführung, T. Cormen, C. Leiserson, R. Rivest, C. Stein, Oldenbourg, 2010
Introduction to Algorithms, T. Cormen, C. Leiserson, R. Rivest, C. Stein , 3rd ed., MIT Press, 2009
The C++ Programming Language, B. Stroustrup, 4th ed., Addison-Wesley, 2013.

The Art of Multiprocessor Programming, M. Herlihy, N. Shavit, Elsevier, 2012.

Relevant for the exam

Material for the exam comprises
■ Course content (lectures, handout)
■ Exercises content (exercise sheets, recitation hours)

Relevant for the exam

Written exam (150 min). Examination aids: four a4 pages. No constraints regarding content and layout (text, images, single/double page, margins, font size, etc.).
The exam will most likely be performed in hybrid form (on paper and at the computer).

Offer

■ Doing the weekly exercise series \rightarrow bonus of maximally 0.25 of a grade point for the exam.

- The bonus is proportional to the achieved points of specially marked bonus-task. The full number of points corresponds to a bonus of 0.25 of a grade point.
- The admission to the specially marked bonus tasks can depend on the successul completion of other exercise tasks. The achieved grade bonus expires as soon as the course has been given again.

Offer (Concretely)

■ 3 bonus exercises in total; 2/3 of the points suffice for the exam bonus of 0.25 marks

- You can, e.g. fully solve 2 bonus exercises, or solve 3 bonus exercises to 66\% each, or ...
- Bonus exercises must be unlocked (\rightarrow experience points) by successfully completing the weekly exercises
■ It is again not necessary to solve all weekly exercises completely in order to unlock a bonus exercise
■ Details: exercise sessions, online exercise system (Code Expert)

Academic integrity

We encourage you explicitly to discuss solution ideas and approaches with your colleagues. Teamwork is important, also in computer science. It is, however, also important that you learn actively and do not only reproduce. Therefore:
Rules for Bonus Tasks
You submit only solutions that you have written yourself and that you have understood. Copy-paste is not permitted, neither are team implementations.

Should there be any Problems ...

■ with the course content
■ definitely attend all recitation sessions

- ask questions there

■ and/or contact the assistant
■ further problems
■ Email to chef assistant (Julia Chatain) or lecturer (Felix Friedrich)

- We are definitely willing to help (!)

1. Introduction

Overview, Algorithms and Data Structures, Correctness, First Example

Goals of the course

■ Understand the design and analysis of fundamental algorithms and data structures.
■ An advanced insight into a modern programming model (with C++).
■ Knowledge about chances, problems and limits of the parallel and concurrent computing.

1.2 Algorithms

[Cormen et al, Kap. 1; Ottman/Widmayer, Kap. 1.1]

Algorithm

Algorithm

Well-defined procedure to compute output data from input data

Example Problem: Sorting

Input: A sequence of n numbers (comparable objects) $\left(a_{1}, a_{2}, \ldots, a_{n}\right)$

Example Problem: Sorting

Input: A sequence of n numbers (comparable objects) $\left(a_{1}, a_{2}, \ldots, a_{n}\right)$
Output: Permutation $\left(a_{1}^{\prime}, a_{2}^{\prime}, \ldots, a_{n}^{\prime}\right)$ of the sequence $\left(a_{i}\right)_{1 \leq i \leq n}$, such that $a_{1}^{\prime} \leq a_{2}^{\prime} \leq \cdots \leq a_{n}^{\prime}$

Example Problem: Sorting

Input: A sequence of n numbers (comparable objects) $\left(a_{1}, a_{2}, \ldots, a_{n}\right)$
Output: Permutation $\left(a_{1}^{\prime}, a_{2}^{\prime}, \ldots, a_{n}^{\prime}\right)$ of the sequence $\left(a_{i}\right)_{1 \leq i \leq n}$, such that

$$
a_{1}^{\prime} \leq a_{2}^{\prime} \leq \cdots \leq a_{n}^{\prime}
$$

Possible input

$(1,7,3),(15,13,12,-0.5),(999,998,997,996, \ldots, 2,1),(1),() \ldots$

Example Problem: Sorting

Input: A sequence of n numbers (comparable objects) $\left(a_{1}, a_{2}, \ldots, a_{n}\right)$
Output: Permutation $\left(a_{1}^{\prime}, a_{2}^{\prime}, \ldots, a_{n}^{\prime}\right)$ of the sequence $\left(a_{i}\right)_{1 \leq i \leq n}$, such that

$$
a_{1}^{\prime} \leq a_{2}^{\prime} \leq \cdots \leq a_{n}^{\prime}
$$

Possible input

$(1,7,3),(15,13,12,-0.5),(999,998,997,996, \ldots, 2,1),(1),() \ldots$

Every example represents a problem instance

The performance (speed) of an algorithm usually depends on the problem instance. Often there are "good" and "bad" instances.

Therefore we consider algorithms sometimes "in the average" and most often in the "worst case".

Possible solution

How many times are the lines executed each?

```
void sort(std::vector<int>& a){
    unsigned n = a.size()
    for (unsigned i = 0; i<n ; ++i){
        for (unsigned j = i+1; j<n; ++j){
            if (a[j] < a[i]){
                std::swap(a[i],a[j])
            }
        }
    }
}
```


Data Structures

- A data structure is a particular way of organizing data in a computer so that they can be used efficiently (in the algorithms operating on them).
■ Programs = algorithms + data structures.
lucid, systematic, and penetrating treatment of basic and dynamic data structures, sorting, recursive algorithms, language structures, and compiling

Aloriithns + Data Structures = Procirams

Typical Algorithm Design Steps: Example

Route planning

Typical Design Steps

1. Specification of the problem: find best (shortest time) path from A to B
2. Abstraction: graph with nodes, edges and egde-weights
3. Idea (heureka!): Dijkstra
4. Data-structures and algorithms: e.g. adjacency matrix / adjacency list, min-heap, hash-table ...
5. Runtime analysis: $\mathcal{O}((n+m) \cdot \log n)$
6. Implementation: Representation choice (e.g. adjacency matrix/ adjacency list/ objects)

Difficult Problem: Travelling Salesman

Given: graph (map) with nodes (cities) and weighted edges (roads with length)
Wanted: Loop road through all cities such that each city is visited once (Hamilton-cycle) with minimal overall length.

The best known algorithm has a running time that increase exponentially with the number of nodes (cities).

Already finding a Hamilton cycle is a difficult problem in general. In contrast, the problem to find an Eulerian cycle, a cycle that uses each edge once, is a problem with polynomial running time.

Hard problems.

■ NP-complete problems: no known efficient solution (the existence of such a solution is very improbable - but it has not yet been proven that there is none!)
■ Example: travelling salesman problem

This course is mostly about problems that can be solved efficiently (in polynomial time).

Efficiency

Resources are bounded and do not come for free:
■ Computing time \rightarrow Efficiency

- Storage space \rightarrow Efficiency

Actually, this course is nearly only about efficiency.

2. Efficiency of algorithms

Efficiency of Algorithms, Random Access Machine Model, Function Growth, Asymptotics [Cormen et al, Kap. 2.2,3,4.2-4.4 | Ottman/Widmayer, Kap. 1.1]

Efficiency of Algorithms

Goals

■ Quantify the runtime behavior of an algorithm independent of the machine.

- Compare efficiency of algorithms.

■ Understand dependece on the input size.

Programs and Algorithms

Technology
program

programming language
specified for
computer

Abstraction

Technology Model

Random Access Machine (RAM) Model

- Execution model: instructions are executed one after the other (on one processor core).

Technology Model

Random Access Machine (RAM) Model

- Execution model: instructions are executed one after the other (on one processor core).
■ Memory model: constant access time (big array)

Technology Model

Random Access Machine (RAM) Model

- Execution model: instructions are executed one after the other (on one processor core).
■ Memory model: constant access time (big array)
■ Fundamental operations: computations (+,--,,...) comparisons, assignment / copy on machine words (registers), flow control (jumps)

Technology Model

Random Access Machine (RAM) Model

■ Execution model: instructions are executed one after the other (on one processor core).
■ Memory model: constant access time (big array)
■ Fundamental operations: computations (+,--,,...) comparisons, assignment / copy on machine words (registers), flow control (jumps)

- Unit cost model: fundamental operations provide a cost of 1.

Technology Model

Random Access Machine (RAM) Model

- Execution model: instructions are executed one after the other (on one processor core).
■ Memory model: constant access time (big array)
■ Fundamental operations: computations (+,--,,...) comparisons, assignment / copy on machine words (registers), flow control (jumps)
■ Unit cost model: fundamental operations provide a cost of 1.
■ Data types: fundamental types like size-limited integer or floating point number.

Size of the Input Data

■ Typical: number of input objects (of fundamental type).
■ Sometimes: number bits for a reasonable / cost-effective representation of the data.
■ fundamental types fit into word of size : $w \geq \log ($ sizeof(mem)) bits.

For Dynamic Data Strcutures

Pointer Machine Model

- Objects bounded in size can be dynamically allocated in constant time
- Fields (with word-size) of the objects can be accessed in constant time 1.
top $\longrightarrow x_{n} \bullet \longrightarrow x_{n-1} \bullet---\rightarrow x_{1} \bullet \longrightarrow$ null

Asymptotic behavior

An exact running time of an algorithm can normally not be predicted even for small input data.
\square We consider the asymptotic behavior of the algorithm.
■ And ignore all constant factors.
An operation with cost 20 is no worse than one with cost 1 Linear growth with gradient 5 is as good as linear growth with gradient 1.

2.2 Function growth

$\mathcal{O}, \Theta, \Omega$ [Cormen et al, Kap. 3; Ottman/Widmayer, Kap. 1.1]

Superficially

Use the asymptotic notation to specify the execution time of algorithms. We write $\Theta\left(n^{2}\right)$ and mean that the algorithm behaves for large n like n^{2} : when the problem size is doubled, the execution time multiplies by four.

More precise: asymptotic upper bound

provided: a function $g: \mathbb{N} \rightarrow \mathbb{R}$.
Definition: ${ }^{1}$

$$
\begin{aligned}
\mathcal{O}(g)=\{ & f: \mathbb{N} \rightarrow \mathbb{R} \mid \\
& \exists c>0, \exists n_{0} \in \mathbb{N}: \\
& \left.\forall n \geq n_{0}: 0 \leq f(n) \leq c \cdot g(n)\right\}
\end{aligned}
$$

Notation:

$$
\mathcal{O}(g(n)):=\mathcal{O}(g(\cdot))=\mathcal{O}(g)
$$

[^0]Graphic

Graphic

Converse: asymptotic lower bound

Given: a function $g: \mathbb{N} \rightarrow \mathbb{R}$.
Definition:

$$
\begin{aligned}
\Omega(g)= & \{f: \mathbb{N} \rightarrow \mathbb{R} \mid \\
& \exists c>0, \exists n_{0} \in \mathbb{N}: \\
& \left.\forall n \geq n_{0}: 0 \leq c \cdot g(n) \leq f(n)\right\}
\end{aligned}
$$

Example

Example

Asymptotic tight bound

Given: function $g: \mathbb{N} \rightarrow \mathbb{R}$.
Definition:

$$
\Theta(g):=\Omega(g) \cap \mathcal{O}(g)
$$

Simple, closed form: exercise.

Example

Notions of Growth

$\mathcal{O}(1)$	bounded	array access
$\mathcal{O}(\log \log n)$	double logarithmic	interpolated binary sorted sort
$\mathcal{O}(\log n)$	logarithmic	binary sorted search
$\mathcal{O}(\sqrt{n})$	like the square root	naive prime number test
$\mathcal{O}(n)$	linear	unsorted naive search
$\mathcal{O}(n \log n)$	superlinear / loglinear	good sorting algorithms
$\mathcal{O}\left(n^{2}\right)$	quadratic	simple sort algorithms
$\mathcal{O}\left(n^{c}\right)$	polynomial	matrix multiply
$\mathcal{O}\left(c^{n}\right)$	exponential	Travelling Salesman Dynamic Programming
$\mathcal{O}(n!)$	factorial	Travelling Salesman naively

Small n

Larger n

"Large" n

Logarithms

Time Consumption

Assumption 1 Operation $=1 \mu s$.

problem size	1	100	10000	10^{6}	10^{9}
$\log _{2} n$	$1 \mu s$				
n	$1 \mu s$				
$n \log _{2} n$	$1 \mu s$				
n^{2}	$1 \mu s$				
2^{n}	$1 \mu s$				

Time Consumption

Assumption 1 Operation $=1 \mu s$.

problem size	1	100	10000	10^{6}	10^{9}
$\log _{2} n$	$1 \mu s$				
n	$1 \mu s$	$100 \mu s$	$1 / 100 s$	$1 s$	17 minutes
$n \log _{2} n$	$1 \mu s$				
n^{2}	$1 \mu s$				
2^{n}	$1 \mu s$				

Time Consumption

Assumption 1 Operation $=1 \mu s$.

problem size	1	100	10000	10^{6}	10^{9}
$\log _{2} n$	$1 \mu s$				
n	$1 \mu s$	$100 \mu s$	$1 / 100 s$	$1 s$	17 minutes
$n \log _{2} n$	$1 \mu s$				
n^{2}	$1 \mu s$	$1 / 100 s$	1.7 minutes	11.5 days	317 centuries
2^{n}	$1 \mu s$				

Time Consumption

Assumption 1 Operation $=1 \mu s$.

problem size	1	100	10000	10^{6}	10^{9}
$\log _{2} n$	$1 \mu s$	$7 \mu s$	$13 \mu s$	$20 \mu s$	$30 \mu s$
n	$1 \mu s$	$100 \mu s$	$1 / 100 s$	$1 s$	17 minutes
$n \log _{2} n$	$1 \mu s$				
n^{2}	$1 \mu s$	$1 / 100 s$	1.7 minutes	11.5 days	317 centuries
2^{n}	$1 \mu s$				

Time Consumption

Assumption 1 Operation $=1 \mu s$.

problem size	1	100	10000	10^{6}	10^{9}
$\log _{2} n$	$1 \mu s$	$7 \mu s$	$13 \mu s$	$20 \mu s$	$30 \mu s$
n	$1 \mu s$	$100 \mu s$	$1 / 100 s$	$1 s$	17 minutes
$n \log _{2} n$	$1 \mu s$	$700 \mu s$	$13 / 100 \mu s$	$20 s$	8.5 hours
n^{2}	$1 \mu s$	$1 / 100 s$	1.7 minutes	11.5 days	317 centuries
2^{n}	$1 \mu s$				

Time Consumption

Assumption 1 Operation $=1 \mu s$.

problem size	1	100	10000	10^{6}	10^{9}
$\log _{2} n$	$1 \mu s$	$7 \mu s$	$13 \mu s$	$20 \mu s$	$30 \mu s$
n	$1 \mu s$	$100 \mu s$	$1 / 100 s$	$1 s$	17 minutes
$n \log _{2} n$	$1 \mu s$	$700 \mu s$	$13 / 100 \mu s$	$20 s$	8.5 hours
n^{2}	$1 \mu s$	$1 / 100 s$	1.7 minutes	11.5 days	317 centuries
2^{n}	$1 \mu s$	10^{14} centuries	$\approx \infty$	$\approx \infty$	$\approx \infty$

About the Notation

Common casual notation

$$
f=\mathcal{O}(g)
$$

should be read as $f \in \mathcal{O}(g)$.
Clearly it holds that

$$
f_{1}=\mathcal{O}(g), f_{2}=\mathcal{O}(g) \nRightarrow f_{1}=f_{2}!
$$

$$
n=\mathcal{O}\left(n^{2}\right), n^{2}=\mathcal{O}\left(n^{2}\right) \text { but naturally } n \neq n^{2} .
$$

We avoid this notation where it could lead to ambiguities.

Reminder: Efficiency: Arrays vs. Linked Lists

■ Memory: our avec requires roughly n ints (vector size n), our llvec roughly $3 n$ ints (a pointer typically requires 8 byte)

■ Runtime (with avec = std: : vector, llvec = std::list):

```
```

<0% prepending (insert at front) [100,000x]:

```
```

<0% prepending (insert at front) [100,000x]:
D avec: 675 mS
D avec: 675 mS
- llvec: }10\mathrm{ ms
- llvec: }10\mathrm{ ms
appending (insert at back) [100,000x]:
appending (insert at back) [100,000x]:
- avec: 2 ms
- avec: 2 ms
- llvec: }9\mathrm{ ms
- llvec: }9\mathrm{ ms
removing first [100,000x]:
removing first [100,000x]:
D avec: 675 ms
D avec: 675 ms
- llvec: 4 ms
- llvec: 4 ms
removing last [100,000x]:
removing last [100,000x]:
D avec: 0 ms
D avec: 0 ms
v llvec: 4 ms

```
```

 v llvec: 4 ms
    ```
```

removing randomly [10,000x]:

- avec: 3 ms
> llvec: 113 ms
inserting randomly [10,000x]
 - avec: 16 ms
D llvec: 117 ms
fully iterate sequentially (5000 elements) [5,000x]
 - avec: 354 ms
 - llvec: 525 ms

Asymptotic Runtimes

With our new language $(\Omega, \mathcal{O}, \Theta)$, we can now state the behavior of the data structures and their algorithms more precisely

Typical asymptotic running times (Anticipation!)

| Data structure | Random
 Access | Insert | Next | Insert
 After
 Element | Search |
| :--- | :--- | :--- | :--- | :--- | :--- |
| std: : vector | $\Theta(1)$ | $\Theta(1) A$ | $\Theta(1)$ | $\Theta(n)$ | $\Theta(n)$ |
| std: :list | $\Theta(n)$ | $\Theta(1)$ | $\Theta(1)$ | $\Theta(1)$ | $\Theta(n)$ |
| std: : set | - | $\Theta(\log n)$ | $\Theta(\log n)$ | - | $\Theta(\log n)$ |
| std: : unordered_set | - | $\Theta(1) P$ | - | - | $\Theta(1) P$ |

[^1]
Complexity

Complexity of a problem P
Minimal (asymptotic) costs over all algorithms A that solve P.

Complexity

Complexity of a problem P
Minimal (asymptotic) costs over all algorithms A that solve P.

Complexity of the single-digit multiplication of two numbers with n digits is $\Omega(n)$ and $\mathcal{O}\left(n^{\log _{3} 2}\right)$ (Karatsuba Ofman).

Complexity

| Problem | Complexity | $\mathcal{O}(n)$ | $\mathcal{O}(n)$ | $\mathcal{O}\left(n^{2}\right)$ | $\Omega(n \log n)$ |
| :--- | :--- | :---: | :---: | :---: | :---: |
| Algorithm | Costs 2 | \Uparrow | \Uparrow | \Uparrow | \Downarrow |
| | $3 n-4$ | $\mathcal{O}(n)$ | $\Theta\left(n^{2}\right)$ | $\Omega(n \log n)$ | |
| Program | Execution time | \Downarrow | $\widehat{\Downarrow}$ | $\hat{\Downarrow}$ | \Downarrow |
| | $\Theta(n)$ | $\mathcal{O}(n)$ | $\Theta\left(n^{2}\right)$ | $\Omega(n \log n)$ | |

[^2]
3. Examples

Show Correctnes of an Algorithm or its Implementation, Recursion and Recurrences
[References to literatur at the examples]

3.1 Ancient Egyptian Multiplication

Ancient Egyptian Multiplication- Example on how to show correctness of algorithms.

Ancient Egyptian Multiplication

3
Compute 11 .9
$11|9 \quad 9| 11$
${ }^{3}$ Also known as russian multiplication

Ancient Egyptian Multiplication

3
Compute 11 .9
$11 \mid 9$
$9 \mid 11$

1. Double left, integer division by 2 on the right
[^3]
Ancient Egyptian Multiplication

3
Compute 11 • 9

| 11 | 9 | 9 | 11 |
| :--- | :--- | ---: | ---: |
| 22 | 4 | 18 | 5 |

1. Double left, integer division by 2 on the right
[^4]
Ancient Egyptian Multiplication

3
Compute 11 • 9

| 11 | 9 | 9 | 11 |
| :--- | :--- | ---: | ---: |
| 22 | 4 | 18 | 5 |
| 44 | 2 | 36 | 2 |

1. Double left, integer division by 2 on the right
[^5]
Ancient Egyptian Multiplication

3
Compute 11 • 9

| 11 | 9 | 9 | 11 |
| :--- | :--- | ---: | ---: |
| 22 | 4 | 18 | 5 |
| 44 | 2 | 36 | 2 |
| 88 | 1 | 72 | 1 |

1. Double left, integer division by 2 on the right
2. Even number on the right \Rightarrow eliminate row.
[^6]
Ancient Egyptian Multiplication

3
Compute 11 • 9

1. Double left, integer division by 2 on the right
2. Even number on the right \Rightarrow eliminate row.
[^7]
Ancient Egyptian Multiplication

3
Compute 11 • 9

| 9 | 11 |
| ---: | ---: |
| 18 | 5 |
| 26 | 2 |
| 72 | 1 |

1. Double left, integer division by 2 on the right
2. Even number on the right \Rightarrow eliminate row.
3. Add remaining rows on the left.
[^8]
Ancient Egyptian Multiplication

3
Compute 11 • 9

| 11 | 9 |
| :--- | :---: |
| 22 | 4 |
| 44 | 2 |
| 88 | 1 |
| 99 | - |

| 9 | 11 |
| ---: | ---: |
| 18 | 5 |
| 36 | 2 |
| 72 | 1 |
| 99 | |

1. Double left, integer division by 2 on the right
2. Even number on the right \Rightarrow eliminate row.
3. Add remaining rows on the left.
[^9]
Advantages

■ Short description, easy to grasp
■ Efficient to implement on a computer: double = left shift, divide by $2=$ right shift

$$
\begin{array}{ll}
\text { left shift } & 9=01001_{2} \rightarrow 10010_{2}=18 \\
\text { right shift } & 9=01001_{2} \rightarrow 00100_{2}=4
\end{array}
$$

Questions

- For which kind of inputs does the algorithm deliver a correct result (in finite time)?
- How do you prove its correctness?
- What is a good measure for its efficiency?

The Essentials

If $b>1, a \in \mathbb{Z}$, then:

$$
a \cdot b= \begin{cases}2 a \cdot \frac{b}{2} & \text { if } b \text { even, } \\ a+2 a \cdot \frac{b-1}{2} & \text { if } b \text { odd. }\end{cases}
$$

$$
a \cdot b= \begin{cases}a & \text { falls } b=1 \\ 2 a \cdot \frac{b}{2} & \text { if } b \text { even } \\ a+2 a \cdot \frac{b-1}{2} & \text { if } b \text { odd }\end{cases}
$$

$$
f(a, b)= \begin{cases}a & \text { if } b=1, \\ f\left(2 a, \frac{b}{2}\right) & \text { if } b \text { even }, \\ a+f\left(2 a, \frac{b-1}{2}\right) & \text { if } b \text { odd }\end{cases}
$$

Implemented as a function

```
// pre: b>0
// post: return a*b
int f(int a, int b){
    if(b==1)
        return a;
    else if (b%2 == 0)
        return f(2*a, b/2);
    else
        return a + f(2*a, (b-1)/2);
}
```


Correctnes: Mathematical Proof

$$
f(a, b)= \begin{cases}a & \text { if } b=1 \\ f\left(2 a, \frac{b}{2}\right) & \text { if } b \text { even } \\ a+f\left(2 a \cdot \frac{b-1}{2}\right) & \text { if } b \text { odd }\end{cases}
$$

Remaining to show: $f(a, b)=a \cdot b$ for $a \in \mathbb{Z}, b \in \mathbb{N}^{+}$.

Correctnes: Mathematical Proof by Induction

Let $a \in \mathbb{Z}$, to show $f(a, b)=a \cdot b \quad \forall b \in \mathbb{N}^{+}$.
Base clause: $f(a, 1)=a=a \cdot 1$
Hypothesis: $f\left(a, b^{\prime}\right)=a \cdot b^{\prime} \quad \forall 0<b^{\prime} \leq b$
Step: $f\left(a, b^{\prime}\right)=a \cdot b^{\prime} \quad \forall 0<b^{\prime} \leq b \stackrel{!}{\Rightarrow} f(a, b+1)=a \cdot(b+1)$

$$
f(a, b+1)= \begin{cases}f(2 a, \overbrace{\frac{b+1}{2}}^{0<\cdot b} & \stackrel{i . H}{=} a \cdot(b+1) \\ a+f(2 a, \underbrace{\frac{b}{2}}_{0<\cdot<b}) & \text { if } b>0 \text { odd } \\ = & i . H . \\ = & \text { if } b>0 \text { even. }\end{cases}
$$

[Code Transformations: End Recursion]

The recursion can be writen as end recursion

```
// pre: b>0
// post: return a*b
int f(int a, int b){
    if(b==1)
        return a;
    else if (b%2 == 0)
        return f(2*a, b/2);
    else
        return a + f(2*a, (b-1)/2);
}
```

```
// pre: b>0
// post: return a*b
int f(int a, int b){
    if(b==1)
        return a;
    int z=0;
    if (b%2 != 0){
        --b;
        z=a;
    }
    return z + f(2*a, b/2);
}
```


[Code-Transformation: End-Recursion \Rightarrow Iteration]

```
// pre: b>0
// post: return a*b
int f(int a, int b){
    if(b==1)
            return a;
    int z=0;
    if (b%2 != 0){
        --b;
        z=a;
    }
    return z + f(2*a, b/2);
}
```

```
int \(f(i n t a, i n t b)\) \{
    int res \(=0\);
    while (b ! = 1) \{
        int \(z=0 ;\)
        if (b \% 2 != 0) \{
            --b;
            \(z=a ;\)
        \}
        res \(+=\) z;
        a *= 2; // new a
        b /= 2; // new b
    \}
    res += a; // base case b=1'
    return res;

\section*{[Code-Transformation: Simplify]}
```

int f(int a, int b) {
int res = 0;
while (b != 1) {
int z = 0;
if (b % 2 != 0){
--b; \longrightarrow part of the division
z = a; }\longrightarrow\mathrm{ directly in res
}
res += z;
a *= 2;
b /= 2;
}
res += a; \longrightarrow into the loop
return res;

```

\section*{Correctness: Reasoning using Invariants!}
```

// pre: b>0
// post: return a*b
int f(int a, int b) {
let }x:=a\cdotb
int res = 0;
while (b > 0) {
if (b % 2 != 0){
res += a;
--b;
}
a *= 2;
b /= 2;
}
return res;
}

```

\section*{Correctness: Reasoning using Invariants!}
```

// pre: b>0
// post: return a*b
int f(int a, int b) {
int res = 0;
while (b > 0) {
if (b % 2 != 0){
res += a;
--b;
}
a *= 2;
b /= 2;
}
return res;
}

```
let \(x:=a \cdot b\).
here: \(x=a \cdot b+\) res

\section*{Correctness: Reasoning using Invariants!}
```

// pre: b>0
// post: return a*b
int f(int a, int b) {
int res = 0;
while (b > 0) {
if (b % 2 != 0){
res += a;
--b;
}
a *= 2;
b /= 2;
}
return res;
}

```
let \(x:=a \cdot b\).
here: \(x=a \cdot b+r e s\)
if here \(x=a \cdot b+\) res ...

\section*{Correctness: Reasoning using Invariants!}
```

// pre: b>0
// post: return a*b
int f(int a, int b) {
int res = 0;
while (b > 0) {
if (b % 2 != 0){
res += a;
--b;
}
a *= 2;
b /= 2;
}
return res;
}

```
let \(x:=a \cdot b\).
here: \(x=a \cdot b+r e s\)
if here \(x=a \cdot b+\) res ...
... then also here \(x=a \cdot b+\) res

\section*{Correctness: Reasoning using Invariants!}
```

// pre: b>0
// post: return a*b
int f(int a, int b) {
int res = 0;
while (b > 0) {
if (b % 2 != 0){
res += a;
--b;
}
a *= 2;
b /= 2;
}
return res;
}

```
let \(x:=a \cdot b\).
here: \(x=a \cdot b+\) res
if here \(x=a \cdot b+\) res ...
... then also here \(x=a \cdot b+\) res
\(b\) even

\section*{Correctness: Reasoning using Invariants!}
```

// pre: b>0
// post: return a*b
int f(int a, int b) {
int res = 0;
while (b > 0) {
if (b % 2 != 0){
res += a;
--b;
}
a *= 2;
b /= 2;
let }x:=a\cdotb\mathrm{ .
here: }x=a\cdotb+re
if here }x=a\cdotb+res ..
... then also here }x=a\cdotb+\mathrm{ res
b even
here: }x=a\cdotb+re

```

\section*{Correctness: Reasoning using Invariants!}
```

// pre: b>0
// post: return a*b
int f(int a, int b) {
int res = 0;
while (b > 0) {
if (b % 2 != 0){
res += a;
--b;
}
a *= 2;
l
}

```
let \(x:=a \cdot b\).
here: \(x=a \cdot b+r e s\)
if here \(x=a \cdot b+\) res ...
... then also here \(x=a \cdot b+\) res
\(b\) even
here: \(x=a \cdot b+\) res
here: \(x=a \cdot b+\) res and \(b=0\)

\section*{Correctness: Reasoning using Invariants!}
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{// pre: b>0} \\
\hline // post: return \(\mathrm{a} * \mathrm{~b}\) & \\
\hline int f (int a , int b) \{ & let \(x:=a \cdot b\). \\
\hline int res = 0; & here. \(x=-b+r e s\) \\
\hline \multicolumn{2}{|l|}{while (b > 0) \{} \\
\hline if (b \% 2 ! = 0) \{ & \\
\hline \multicolumn{2}{|l|}{res += a;} \\
\hline --b; & \multirow[t]{3}{*}{... then also here \(x=a \cdot b+\) res \(b\) even} \\
\hline \} & \\
\hline a *= 2; & \\
\hline b \(/=2\); & \\
\hline \} &  \\
\hline return res; &  \\
\hline \} & \\
\hline
\end{tabular}

\section*{Conclusion}

The expression \(a \cdot b+\) res is an invariant
■ Values of \(a, b\), res change but the invariant remains basically unchanged: The invariant is only temporarily discarded by some statement but then re-established. If such short statement sequences are considered atomic, the value remains indeed invariant
■ In particular the loop contains an invariant, called loop invariant and it operates there like the induction step in induction proofs.
■ Invariants are obviously powerful tools for proofs!
3.2 Fast Integer Multiplication
[Ottman/Widmayer, Kap. 1.2.3]

\section*{Example 2: Multiplication of large Numbers}

Primary school:
\begin{tabular}{ccccc|l}
\(a\) & \(b\) & & \(c\) & \(d\) & \\
6 & 2 & \(\cdot\) & 3 & 7 & \\
\hline & & & 4 & 4 & \(d \cdot b\)
\end{tabular}

\section*{Example 2: Multiplication of large Numbers}

Primary school:
\begin{tabular}{ccccc|l}
\(a\) & \(b\) & & \(c\) & \(d\) & \\
6 & 2 & \(\cdot\) & 3 & 7 & \\
\hline & & & 1 & 4 & \(d \cdot b\) \\
& & 4 & 2 & & \(d \cdot a\)
\end{tabular}

\section*{Example 2: Multiplication of large Numbers}

Primary school:
\begin{tabular}{ccccc|l}
\(a\) & \(b\) & & \(c\) & \(d\) & \\
6 & 2 & \(\cdot\) & 3 & 7 & \\
\hline & & & 1 & 4 & \(d \cdot b\) \\
& & 4 & 2 & & \(d \cdot a\) \\
& & & 6 & & \(c \cdot b\)
\end{tabular}

\section*{Example 2: Multiplication of large Numbers}

Primary school:
\begin{tabular}{llllll|l}
\(a\) & \(b\) & & \(c\) & \(d\) & \\
6 & 2 & \(\cdot\) & 3 & 7 & \\
\hline & & & 1 & 4 & \(d \cdot b\) \\
& & 4 & 2 & & \(d \cdot a\) \\
& & & 6 & & \(c \cdot b\) \\
& 1 & 8 & & & \(c \cdot a\) \\
\hline
\end{tabular}

\section*{Example 2: Multiplication of large Numbers}

Primary school:
\begin{tabular}{cccccc|l}
\(a\) & \(b\) & & \(c\) & \(d\) & \\
6 & 2 & \(\cdot\) & 3 & 7 & \\
\hline & & & 1 & 4 & \(d \cdot b\) \\
& & 4 & 2 & & \(d \cdot a\) \\
& & & 6 & & \(c \cdot b\) \\
& 1 & 8 & & & \(c \cdot a\) \\
\hline\(=\) & 2 & 2 & 9 & 4 &
\end{tabular}

\section*{Example 2: Multiplication of large Numbers}

Primary school:
\begin{tabular}{cccccc|l}
\(a\) & \(b\) & & \(c\) & \(d\) & \\
6 & 2 & \(\cdot\) & 3 & 7 & \\
\hline & & & 1 & 4 & \(d \cdot b\) \\
& & & 4 & 2 & & \(d \cdot a\) \\
& & & 6 & & \(c \cdot b\) \\
& 1 & 8 & & & \(c \cdot a\) \\
\hline\(=\) & 2 & 2 & 9 & 4 &
\end{tabular}
\(2 \cdot 2=4\) single-digit multiplications.

\section*{Example 2: Multiplication of large Numbers}

Primary school:
\begin{tabular}{cccccc|l}
\(a\) & \(b\) & & \(c\) & \(d\) & \\
6 & 2 & \(\cdot\) & 3 & 7 & \\
\hline & & & 1 & 4 & \(d \cdot b\) \\
& & & 4 & 2 & & \(d \cdot a\) \\
& & & 6 & & \(c \cdot b\) \\
& 1 & 8 & & & \(c \cdot a\) \\
\hline\(=\) & 2 & 2 & 9 & 4 &
\end{tabular}
\(2 \cdot 2=4\) single-digit multiplications. \(\Rightarrow\) multiplication of two \(n\)-digit numbers: \(n^{2}\) single-digit multiplications

Observation
\[
a b \cdot c d=(10 \cdot a+b) \cdot(10 \cdot c+d)
\]

\section*{Observation}
\[
\begin{aligned}
a b \cdot c d= & (10 \cdot a+b) \cdot(10 \cdot c+d) \\
= & 100 \cdot a \cdot c+10 \cdot a \cdot c \\
& +10 \cdot b \cdot d+b \cdot d \\
& +10 \cdot(a-b) \cdot(d-c)
\end{aligned}
\]

Improvement?
\begin{tabular}{lllll|l}
\(a\) & \(b\) & & \(c\) & \(d\) & \\
6 & 2 & \(\cdot\) & 3 & 7 & \\
\hline & & 1 & 4 & \(d \cdot b\)
\end{tabular}

Improvement?
\begin{tabular}{ccccc|l}
\(a\) & \(b\) & & \(c\) & \(d\) & \\
6 & 2 & \(\cdot\) & 3 & 7 & \\
\hline & & & 1 & 4 & \(d \cdot b\) \\
& & 1 & 4 & & \(d \cdot b\)
\end{tabular}

Improvement?
\begin{tabular}{lllll|l}
\(a\) & \(b\) & & \(c\) & \(d\) & \\
6 & 2 & \(\cdot\) & 3 & 7 & \\
\hline & & & 1 & 4 & \(d \cdot b\) \\
& & 1 & 4 & & \(d \cdot b\) \\
& & 1 & 6 & & \((a-b) \cdot(d-c)\)
\end{tabular}

Improvement?
\begin{tabular}{lllll|l}
\(a\) & \(b\) & & \(c\) & \(d\) & \\
6 & 2 & \(\cdot\) & 3 & 7 & \\
\hline & & 1 & 4 & \(d \cdot b\) \\
& & 1 & 4 & & \(d \cdot b\) \\
& & 1 & 6 & & \((a-b) \cdot(d-c)\) \\
& 1 & 8 & & \(c \cdot a\)
\end{tabular}

Improvement?
\begin{tabular}{lllll|l}
\(a\) & \(b\) & & \(c\) & \(d\) & \\
6 & 2 & \(\cdot\) & 3 & 7 & \\
\hline & & & 1 & 4 & \(d \cdot b\) \\
& & 1 & 4 & & \(d \cdot b\) \\
& & 1 & 6 & & \((a-b) \cdot(d-c)\) \\
& & 1 & 8 & & \(c \cdot a\) \\
& 1 & 8 & & & \(c \cdot a\) \\
\hline
\end{tabular}

Improvement?
\[
\begin{array}{lllll|l}
a & b & & c & d & \\
6 & 2 & \cdot & 3 & 7 & \\
\hline & & & 1 & 4 & d \cdot b \\
& & 1 & 4 & & d \cdot b \\
& & & 1 & 6 & \\
& & 1 & 8 & & (a-b) \cdot(d-c) \\
& 1 & 8 & & & c \cdot a \\
\hline= & 2 & 2 & 9 & 4 &
\end{array}
\]

\section*{Improvement?}
\begin{tabular}{llllll}
\(a\) & \(b\) & & \(c\) & \(d\) & \\
6 & 2 & \(\cdot\) & 3 & 7 & \\
\hline & & & 1 & 4 & \(d \cdot b\) \\
& & 1 & 4 & & \(d \cdot b\) \\
& & 1 & 6 & & \((a-b) \cdot(d-c)\) \\
& & 1 & 8 & & \(c \cdot a\) \\
& 1 & 8 & & & \(c \cdot a\) \\
\hline\(=\) & 2 & 2 & 9 & 4 &
\end{tabular}
\(\rightarrow 3\) single-digit multiplications.

\section*{Large Numbers}
\[
6237 \cdot 5898=\underbrace{62}_{a^{\prime}} \underbrace{37}_{b^{\prime}} \cdot \underbrace{58}_{c^{\prime}} \underbrace{98}_{d^{\prime}}
\]

\section*{Large Numbers}
\[
6237 \cdot 5898=\underbrace{62}_{a^{\prime}} \underbrace{37}_{b^{\prime}} \cdot \underbrace{58}_{c^{\prime}} \underbrace{98}_{d^{\prime}}
\]

Recursive / inductive application: compute \(a^{\prime} \cdot c^{\prime}, a^{\prime} \cdot d^{\prime}, b^{\prime} \cdot c^{\prime}\) and \(c^{\prime} \cdot d^{\prime}\) as shown above.

\section*{Large Numbers}
\[
6237 \cdot 5898=\underbrace{62}_{a^{\prime}} \underbrace{37}_{b^{\prime}} \cdot \underbrace{58}_{c^{\prime}} \underbrace{98}_{d^{\prime}}
\]

Recursive / inductive application: compute \(a^{\prime} \cdot c^{\prime}, a^{\prime} \cdot d^{\prime}, b^{\prime} \cdot c^{\prime}\) and \(c^{\prime} \cdot d^{\prime}\) as shown above.
\(\rightarrow 3 \cdot 3=9\) instead of 16 single-digit multiplications.

\section*{Generalization}

Assumption: two numbers with \(n\) digits each, \(n=2^{k}\) for some \(k\).
\[
\begin{aligned}
\left(10^{n / 2} a+b\right) \cdot\left(10^{n / 2} c+d\right) & =10^{n} \cdot a \cdot c+10^{n / 2} \cdot a \cdot c \\
& +10^{n / 2} \cdot b \cdot d+b \cdot d \\
& +10^{n / 2} \cdot(a-b) \cdot(d-c)
\end{aligned}
\]

Recursive application of this formula: algorithm by Karatsuba and Ofman (1962).

\section*{Algorithm Karatsuba Ofman}

Input: Two positive integers \(x\) and \(y\) with \(n\) decimal digits each: \(\left(x_{i}\right)_{1 \leq i \leq n}\), \(\left(y_{i}\right)_{1 \leq i \leq n}\)
Output: Product \(x \cdot y\)
if \(n=1\) then
return \(x_{1} \cdot y_{1}\)
else
Let \(m:=\left\lfloor\frac{n}{2}\right\rfloor\)
Divide \(a:=\left(x_{1}, \ldots, x_{m}\right), b:=\left(x_{m+1}, \ldots, x_{n}\right), c:=\left(y_{1}, \ldots, y_{m}\right)\), \(d:=\left(y_{m+1}, \ldots, y_{n}\right)\)
Compute recursively \(A:=a \cdot c, B:=b \cdot d, C:=(a-b) \cdot(d-c)\)
Compute \(R:=10^{n} \cdot A+10^{m} \cdot A+10^{m} \cdot B+B+10^{m} \cdot C\) return \(R\)

\section*{Analysis}
\(M(n)\) : Number of single-digit multiplications.
Recursive application of the algorithm from above \(\Rightarrow\) recursion equality:
\[
M\left(2^{k}\right)= \begin{cases}1 & \text { if } k=0  \tag{R}\\ 3 \cdot M\left(2^{k-1}\right) & \text { if } k>0\end{cases}
\]

\section*{Iterative Substition}

Iterative substition of the recursion formula in order to guess a solution of the recursion formula:
\[
M\left(2^{k}\right)=3 \cdot M\left(2^{k-1}\right)
\]

\section*{Iterative Substition}

Iterative substition of the recursion formula in order to guess a solution of the recursion formula:
\[
M\left(2^{k}\right)=3 \cdot M\left(2^{k-1}\right)=3 \cdot 3 \cdot M\left(2^{k-2}\right)=3^{2} \cdot M\left(2^{k-2}\right)
\]

\section*{Iterative Substition}

Iterative substition of the recursion formula in order to guess a solution of the recursion formula:
\[
\begin{aligned}
M\left(2^{k}\right) & =3 \cdot M\left(2^{k-1}\right)=3 \cdot 3 \cdot M\left(2^{k-2}\right)=3^{2} \cdot M\left(2^{k-2}\right) \\
& =\ldots \\
& \stackrel{!}{=} 3^{k} \cdot M\left(2^{0}\right)=3^{k}
\end{aligned}
\]

\section*{Proof: induction}

Hypothesis \(H(k)\) :
\[
\begin{equation*}
M\left(2^{k}\right)=F(k):=3^{k} . \tag{H}
\end{equation*}
\]

\section*{Proof: induction}

Hypothesis \(H(k)\) :
\[
\begin{equation*}
M\left(2^{k}\right)=F(k):=3^{k} . \tag{H}
\end{equation*}
\]

Claim:
\[
H(k) \text { holds for all } k \in \mathbb{N}_{0} .
\]

\section*{Proof: induction}

Hypothesis \(H(k)\) :
\[
\begin{equation*}
M\left(2^{k}\right)=F(k):=3^{k} . \tag{H}
\end{equation*}
\]

Claim:
\[
H(k) \text { holds for all } k \in \mathbb{N}_{0} .
\]

Base clause \(k=0\) :
\[
M\left(2^{0}\right) \stackrel{R}{=} 1=F(0) . \quad \checkmark
\]

\section*{Proof: induction}

Hypothesis \(H(k)\) :
\[
\begin{equation*}
M\left(2^{k}\right)=F(k):=3^{k} \tag{H}
\end{equation*}
\]

Claim:
\[
H(k) \text { holds for all } k \in \mathbb{N}_{0}
\]

Base clause \(k=0\) :
\[
M\left(2^{0}\right) \stackrel{R}{=} 1=F(0)
\]

Induction step \(H(k) \Rightarrow H(k+1)\) :
\[
M\left(2^{k+1}\right) \stackrel{R}{=} 3 \cdot M\left(2^{k}\right) \stackrel{H(k)}{=} 3 \cdot F(k)=3^{k+1}=F(k+1)
\]

\section*{Comparison}

Traditionally \(n^{2}\) single-digit multiplications.

\section*{Comparison}

Traditionally \(n^{2}\) single-digit multiplications.
Karatsuba/Ofman:
\[
M(n)=3^{\log _{2} n}=\left(2^{\log _{2} 3}\right)^{\log _{2} n}=2^{\left(\log _{2} 3\right) \cdot\left(\log _{2} n\right)}=n^{\log _{2} 3} \approx n^{1.58}
\]

\section*{Comparison}

Traditionally \(n^{2}\) single-digit multiplications.
Karatsuba/Ofman:
\[
M(n)=3^{\log _{2} n}=\left(2^{\log _{2} 3}\right)^{\log _{2} n}=2^{\left(\log _{2} 3\right) \cdot\left(\log _{2} n\right)}=n^{\log _{2} 3} \approx n^{1.58}
\]

Example: number with 1000 digits: \(1000^{2} / 1000^{1.58} \approx 18\).

\section*{Best possible algorithm?}

We only know the upper bound \(n^{\log _{2} 3}\).
There are (for large \(n\) ) practically relevant algorithms that are faster.
Example: Schönhage-Strassen algorithm (1971) based on fast
Fouriertransformation with running time \(\mathcal{O}(n \log n \cdot \log \log n)\). The best upper bound is not known. \({ }^{4}\)
Lower bound: \(n\). Each digit has to be considered at least once.

\footnotetext{
\({ }^{4}\) In March 2019, David Harvey and Joris van der Hoeven have shown an \(\mathcal{O}(n \log n)\) algorithm that is practically irrelevent yet. It is conjectured, but yet unproven that this is the best lower bound we can get.
}

\section*{Appendix: Asymptotics with Addition and Shifts}

Assumption: \(n=2^{k}, k>0\)
\[
\begin{aligned}
T\left(2^{k}\right) & =3 \cdot T\left(2^{k-1}\right)+c \cdot 2^{k} \\
& =3 \cdot\left(3 \cdot T\left(2^{k-2}\right)+c \cdot 2^{k-1}\right)+c \cdot 2^{k} \\
& =3 \cdot\left(3 \cdot\left(3 \cdot T\left(2^{k-3}\right)+c \cdot 2^{k-2}\right)+c \cdot 2^{k-1}\right)+c \cdot 2^{k} \\
& =3 \cdot\left(3 \cdot\left(\ldots\left(3 \cdot T\left(2^{k-k}\right)+c \cdot 2^{1}\right) \ldots\right)+c \cdot 2^{k-1}\right)+c \cdot 2^{k} \\
& =3^{k} \cdot d+c \cdot 2^{k} \sum_{i=0}^{k-1} \frac{3^{i}}{2^{i}}=3^{k} \cdot d+c \cdot 2^{k} \frac{\frac{3^{k}}{2^{k}}-1}{\frac{3}{2}-1} \\
& =3^{k}(d+2 c)-2 c \cdot 2^{k}
\end{aligned}
\]

Thus \(T\left(2^{k}\right)=3^{k}(d+2 c)-2 c \cdot 2^{k} \in \Theta\left(3^{k}\right)=\Theta\left(3^{\log _{2} n}\right)=\Theta\left(n^{\log _{2} 3}\right)\).

\subsection*{3.3 Maximum Subarray Problem}

Algorithm Design - Maximum Subarray Problem [Ottman/Widmayer, Kap. 1.3]
Divide and Conquer [Ottman/Widmayer, Kap. 1.2.2. S.9; Cormen et al, Kap. 4-4.1]

\section*{Algorithm Design}

Development of an algorithm: partition into subproblems, use solutions for the subproblems to find the overal solution.
Goal: development of the asymptotically most efficient (correct) algorithm. Efficiency towards run time costs (\# fundamental operations) or /and memory consumption.

\section*{Maximum Subarray Problem}

Given: an array of \(n\) real numbers \(\left(a_{1}, \ldots, a_{n}\right)\).
Wanted: interval \([i, j], 1 \leq i \leq j \leq n\) with maximal positive sum \(\sum_{k=i}^{j} a_{k}\).
\[
a=(7,-11,15,110,-23,-3,127,-12,1)
\]


\section*{Naive Maximum Subarray Algorithm}

Input: A sequence of \(n\) numbers \(\left(a_{1}, a_{2}, \ldots, a_{n}\right)\)
Output: \(I, J\) such that \(\sum_{k=I}^{J} a_{k}\) maximal.
\[
\begin{aligned}
& M \leftarrow 0 ; I \leftarrow 1 ; J \leftarrow 0 \\
& \text { for } i \in\{1, \ldots, n\} \text { do } \\
& \qquad \begin{aligned}
\text { for } j \in\{i, \ldots, n\} \text { do } \\
\quad m=\sum_{k=i}^{j} a_{k} \\
\quad \text { if } m>M \text { then } \\
\quad M \leftarrow m ; I \leftarrow i ; J \leftarrow j
\end{aligned}
\end{aligned}
\]
return \(I, J\)

\section*{Analysis}

\section*{Theorem 3}

The naive algorithm for the Maximum Subarray problem executes \(\Theta\left(n^{3}\right)\) additions.

\section*{Analysis}

\section*{Theorem 3}

The naive algorithm for the Maximum Subarray problem executes \(\Theta\left(n^{3}\right)\) additions.

Proof:
\[
\begin{aligned}
\sum_{i=1}^{n} \sum_{j=i}^{n}(j-i+1) & =\sum_{i=1}^{n} \sum_{j=0}^{n-i}(j+1)=\sum_{i=1}^{n} \sum_{j=1}^{n-i+1} j=\sum_{i=1}^{n} \frac{(n-i+1)(n-i+2)}{2} \\
& =\sum_{i=0}^{n} \frac{i \cdot(i+1)}{2}=\frac{1}{2}\left(\sum_{i=1}^{n} i^{2}+\sum_{i=1}^{n} i\right) \\
& =\frac{1}{2}\left(\frac{n(2 n+1)(n+1)}{6}+\frac{n(n+1)}{2}\right)=\frac{n^{3}+3 n^{2}+2 n}{6}=\Theta\left(n^{3}\right)
\end{aligned}
\]

Observation
\[
\sum_{k=i}^{j} a_{k}=\underbrace{\left(\sum_{k=1}^{j} a_{k}\right)}_{S_{j}}-\underbrace{\left(\sum_{k=1}^{i-1} a_{k}\right)}_{S_{i-1}}
\]

\section*{Observation}
\[
\sum_{k=i}^{j} a_{k}=\underbrace{\left(\sum_{k=1}^{j} a_{k}\right)}_{S_{j}}-\underbrace{\left(\sum_{k=1}^{i-1} a_{k}\right)}_{S_{i-1}}
\]

Prefix sums
\[
S_{i}:=\sum_{k=1}^{i} a_{k}
\]

\section*{Maximum Subarray Algorithm with Prefix Sums}

Input: A sequence of \(n\) numbers \(\left(a_{1}, a_{2}, \ldots, a_{n}\right)\)
Output: \(I, J\) such that \(\sum_{k=J}^{J} a_{k}\) maximal.
```

$\mathcal{S}_{0} \leftarrow 0$
for $i \in\{1, \ldots, n\}$ do // prefix sum
$\mathcal{S}_{i} \leftarrow \mathcal{S}_{i-1}+a_{i}$
$M \leftarrow 0 ; I \leftarrow 1 ; J \leftarrow 0$
for $i \in\{1, \ldots, n\}$ do
for $j \in\{i, \ldots, n\}$ do
$m=\mathcal{S}_{j}-\mathcal{S}_{i-1}$
if $m>M$ then
$\llcorner M \leftarrow m ; I \leftarrow i ; J \leftarrow j$

```

\section*{Analysis}

\section*{Theorem 4}

The prefix sum algorithm for the Maximum Subarray problem conducts \(\Theta\left(n^{2}\right)\) additions and subtractions.

\section*{Analysis}

\section*{Theorem 4}

The prefix sum algorithm for the Maximum Subarray problem conducts \(\Theta\left(n^{2}\right)\) additions and subtractions.

Proof:
\[
\sum_{i=1}^{n} 1+\sum_{i=1}^{n} \sum_{j=i}^{n} 1=n+\sum_{i=1}^{n}(n-i+1)=n+\sum_{i=1}^{n} i=\Theta\left(n^{2}\right)
\]

\section*{divide et impera}

Divide and Conquer
Divide the problem into subproblems that contribute to the simplified computation of the overal problem.

\section*{divide et impera}


\section*{Maximum Subarray - Divide}

■ Divide: Divide the problem into two (roughly) equally sized halves: \(\left(a_{1}, \ldots, a_{n}\right)=\left(a_{1}, \ldots, a_{\lfloor n / 2\rfloor}, \quad a_{\lfloor n / 2\rfloor+1}, \ldots, a_{1}\right)\)

\section*{Maximum Subarray - Divide}

■ Divide: Divide the problem into two (roughly) equally sized halves: \(\left(a_{1}, \ldots, a_{n}\right)=\left(a_{1}, \ldots, a_{\lfloor n / 2\rfloor}, \quad a_{\lfloor n / 2\rfloor+1}, \ldots, a_{1}\right)\)
■ Simplifying assumption: \(n=2^{k}\) for some \(k \in \mathbb{N}\).

\section*{Maximum Subarray - Conquer}

If \(i\) and \(j\) are indices of a solution \(\Rightarrow\) case by case analysis:


\section*{Maximum Subarray - Conquer}

If \(i\) and \(j\) are indices of a solution \(\Rightarrow\) case by case analysis:
1. Solution in left half \(1 \leq i \leq j \leq n / 2\)


\section*{Maximum Subarray - Conquer}

If \(i\) and \(j\) are indices of a solution \(\Rightarrow\) case by case analysis:
1. Solution in left half \(1 \leq i \leq j \leq n / 2\)
2. Solution in right half \(n / 2<i \leq j \leq n\)


\section*{Maximum Subarray - Conquer}

If \(i\) and \(j\) are indices of a solution \(\Rightarrow\) case by case analysis:
1. Solution in left half \(1 \leq i \leq j \leq n / 2\)
2. Solution in right half \(n / 2<i \leq j \leq n\)
3. Solution in the middle \(1 \leq i \leq n / 2<j \leq n\)


\section*{Maximum Subarray - Conquer}

If \(i\) and \(j\) are indices of a solution \(\Rightarrow\) case by case analysis:
1. Solution in left half \(1 \leq i \leq j \leq n / 2 \Rightarrow\) Recursion (left half)
2. Solution in right half \(n / 2<i \leq j \leq n\)
3. Solution in the middle \(1 \leq i \leq n / 2<j \leq n\)


\section*{Maximum Subarray - Conquer}

If \(i\) and \(j\) are indices of a solution \(\Rightarrow\) case by case analysis:
1. Solution in left half \(1 \leq i \leq j \leq n / 2 \Rightarrow\) Recursion (left half)
2. Solution in right half \(n / 2<i \leq j \leq n \Rightarrow\) Recursion (right half)
3. Solution in the middle \(1 \leq i \leq n / 2<j \leq n\)


\section*{Maximum Subarray - Conquer}

If \(i\) and \(j\) are indices of a solution \(\Rightarrow\) case by case analysis:
1. Solution in left half \(1 \leq i \leq j \leq n / 2 \Rightarrow\) Recursion (left half)
2. Solution in right half \(n / 2<i \leq j \leq n \Rightarrow\) Recursion (right half)
3. Solution in the middle \(1 \leq i \leq n / 2<j \leq n \Rightarrow\) Subsequent observation


\section*{Maximum Subarray - Observation}

Assumption: solution in the middle \(1 \leq i \leq n / 2<j \leq n\)
\[
S_{\max }=\max _{\substack{1 \leq i \leq n / 2 \\ n / 2<j \leq n}} \sum_{k=i}^{j} a_{k}
\]

\section*{Maximum Subarray - Observation}

Assumption: solution in the middle \(1 \leq i \leq n / 2<j \leq n\)
\[
S_{\max }=\max _{\substack{1 \leq i \leq n / 2 \\ n / 2<j \leq n}} \sum_{k=i}^{j} a_{k}=\max _{\substack{1 \leq i \leq n / 2 \\ n / 2<j \leq n}}\left(\sum_{k=i}^{n / 2} a_{k}+\sum_{k=n / 2+1}^{j} a_{k}\right)
\]

\section*{Maximum Subarray - Observation}

Assumption: solution in the middle \(1 \leq i \leq n / 2<j \leq n\)
\[
\begin{aligned}
S_{\max } & =\max _{\substack{1 \leq i \leq n / 2 \\
n / 2<j \leq n}} \sum_{k=i}^{j} a_{k}=\max _{\substack{1 \leq i \leq n / 2 \\
n / 2<j \leq n}}\left(\sum_{k=i}^{n / 2} a_{k}+\sum_{k=n / 2+1}^{j} a_{k}\right) \\
& =\max _{1 \leq i \leq n / 2} \sum_{k=i}^{n / 2} a_{k}+\max _{n / 2<j \leq n} \sum_{k=n / 2+1}^{j} a_{k}
\end{aligned}
\]

\section*{Maximum Subarray - Observation}

Assumption: solution in the middle \(1 \leq i \leq n / 2<j \leq n\)
\[
\begin{aligned}
S_{\max } & =\max _{\substack{1 \leq i \leq n / 2 \\
n / 2<j \leq n}} \sum_{k=i}^{j} a_{k}=\max _{\substack{1 \leq i \leq n / 2 \\
n / 2<j \leq n}}\left(\sum_{k=i}^{n / 2} a_{k}+\sum_{k=n / 2+1}^{j} a_{k}\right) \\
& =\max _{1 \leq i \leq n / 2} \sum_{k=i}^{n / 2} a_{k}+\max _{n / 2<j \leq n} \sum_{k=n / 2+1}^{j} a_{k} \\
& =\max _{1 \leq i \leq n / 2} \underbrace{S_{n / 2}-S_{i-1}}_{\text {suffix sum }}+\max _{n / 2<j \leq n} \underbrace{S_{j}-S_{n / 2}}_{\text {prefix sum }}
\end{aligned}
\]

\section*{Maximum Subarray Divide and Conquer Algorithm}

Input: A sequence of \(n\) numbers \(\left(a_{1}, a_{2}, \ldots, a_{n}\right)\)
Output: Maximal \(\sum_{k=i^{\prime}}^{j^{\prime}} a_{k}\).
if \(n=1\) then
return \(\max \left\{a_{1}, 0\right\}\)
else
Divide \(a=\left(a_{1}, \ldots, a_{n}\right)\) in \(A_{1}=\left(a_{1}, \ldots, a_{n / 2}\right)\) und \(A_{2}=\left(a_{n / 2+1}, \ldots, a_{n}\right)\)
Recursively compute best solution \(W_{1}\) in \(A_{1}\)
Recursively compute best solution \(W_{2}\) in \(A_{2}\)
Compute greatest suffix sum \(S\) in \(A_{1}\)
Compute greatest prefix sum \(P\) in \(A_{2}\)
Let \(W_{3} \leftarrow S+P\)
return \(\max \left\{W_{1}, W_{2}, W_{3}\right\}\)

\section*{Analysis}

\section*{Theorem 5}

The divide and conquer algorithm for the maximum subarray sum problem conducts a number of \(\Theta(n \log n)\) additions and comparisons.

\section*{Analysis}

Input: A sequence of \(n\) numbers \(\left(a_{1}, a_{2}, \ldots, a_{n}\right)\)
Output: Maximal \(\sum_{k=i^{\prime}}^{j^{\prime}} a_{k}\).
if \(n=1\) then
return \(\max \left\{a_{1}, 0\right\}\)
else
Divide \(a=\left(a_{1}, \ldots, a_{n}\right)\) in \(A_{1}=\left(a_{1}, \ldots, a_{n / 2}\right)\) und \(A_{2}=\left(a_{n / 2+1}, \ldots, a_{n}\right)\)
Recursively compute best solution \(W_{1}\) in \(A_{1}\)
Recursively compute best solution \(W_{2}\) in \(A_{2}\)
Compute greatest suffix sum \(S\) in \(A_{1}\)
Compute greatest prefix sum \(P\) in \(A_{2}\)
Let \(W_{3} \leftarrow S+P\)
return \(\max \left\{W_{1}, W_{2}, W_{3}\right\}\)

\section*{Analysis}
\[
\text { Input: } \quad \text { A sequence of } n \text { numbers }\left(a_{1}, a_{2}, \ldots, a_{n}\right)
\]

Output: Maximal \(\sum_{k=i^{\prime}}^{j^{\prime}} a_{k}\).
if \(n=1\) then
\(\Theta(1)\) return \(\max \left\{a_{1}, 0\right\}\)

\section*{else}
\(\Theta(1)\) Divide \(a=\left(a_{1}, \ldots, a_{n}\right)\) in \(A_{1}=\left(a_{1}, \ldots, a_{n / 2}\right)\) und \(A_{2}=\left(a_{n / 2+1}, \ldots, a_{n}\right)\)
Recursively compute best solution \(W_{1}\) in \(A_{1}\)
Recursively compute best solution \(W_{2}\) in \(A_{2}\)
Compute greatest suffix sum \(S\) in \(A_{1}\)
Compute greatest prefix sum \(P\) in \(A_{2}\)
\(\Theta(1)\) Let \(W_{3} \leftarrow S+P\)
\(\Theta(1)\) return \(\max \left\{W_{1}, W_{2}, W_{3}\right\}\)

\section*{Analysis}
\[
\text { Input: } \quad \text { A sequence of } n \text { numbers }\left(a_{1}, a_{2}, \ldots, a_{n}\right)
\]

Output: Maximal \(\sum_{k=i^{\prime}}^{j^{\prime}} a_{k}\).
if \(n=1\) then
\(\Theta(\mathbb{1})\) return \(\max \left\{a_{1}, 0\right\}\)

\section*{else}
\(\Theta(1)\) Divide \(a=\left(a_{1}, \ldots, a_{n}\right)\) in \(A_{1}=\left(a_{1}, \ldots, a_{n / 2}\right)\) und \(A_{2}=\left(a_{n / 2+1}, \ldots, a_{n}\right)\)
Recursively compute best solution \(W_{1}\) in \(A_{1}\) Recursively compute best solution \(W_{2}\) in \(A_{2}\)
\(\Theta(n)\) Compute greatest suffix sum \(S\) in \(A_{1}\)
\(\Theta(n)\) Compute greatest prefix sum \(P\) in \(A_{2}\)
\(\Theta(1)\) Let \(W_{3} \leftarrow S+P\)
\(\Theta(\mathbb{1})\) return \(\max \left\{W_{1}, W_{2}, W_{3}\right\}\)

\section*{Analysis}
\[
\text { Input: } \quad \text { A sequence of } n \text { numbers }\left(a_{1}, a_{2}, \ldots, a_{n}\right)
\]

Output: Maximal \(\sum_{k=i^{\prime}}^{j^{\prime}} a_{k}\).
if \(n=1\) then
\(\Theta(\mathbb{1})\) return \(\max \left\{a_{1}, 0\right\}\)

\section*{else}
\(\Theta(1)\) Divide \(a=\left(a_{1}, \ldots, a_{n}\right)\) in \(A_{1}=\left(a_{1}, \ldots, a_{n / 2}\right)\) und \(A_{2}=\left(a_{n / 2+1}, \ldots, a_{n}\right)\)
\(T(n / 2)\) Recursively compute best solution \(W_{1}\) in \(A_{1}\)
\(T(n / 2)\) Recursively compute best solution \(W_{2}\) in \(A_{2}\)
\(\Theta(n)\) Compute greatest suffix sum \(S\) in \(A_{1}\)
\(\Theta(n)\) Compute greatest prefix sum \(P\) in \(A_{2}\)
\(\Theta(1)\) Let \(W_{3} \leftarrow S+P\)
\(\Theta(1)\) return \(\max \left\{W_{1}, W_{2}, W_{3}\right\}\)

\section*{Analysis}

Recursion equation
\[
T(n)= \begin{cases}c & \text { if } n=1 \\ 2 T\left(\frac{n}{2}\right)+a \cdot n & \text { if } n>1\end{cases}
\]

\section*{Analysis}

Mit \(n=2^{k}\) :
\[
\bar{T}(k):=T\left(2^{k}\right)= \begin{cases}c & \text { if } k=0 \\ 2 \bar{T}(k-1)+a \cdot 2^{k} & \text { if } k>0\end{cases}
\]

Solution:
\[
\bar{T}(k)=2^{k} \cdot c+\sum_{i=0}^{k-1} 2^{i} \cdot a \cdot 2^{k-i}=c \cdot 2^{k}+a \cdot k \cdot 2^{k}=\Theta\left(k \cdot 2^{k}\right)
\]
also
\[
T(n)=\Theta(n \log n)
\]

\section*{Maximum Subarray Sum Problem - Inductively}

Assumption: maximal value \(M_{i-1}\) of the subarray sum is known for \(\left(a_{1}, \ldots, a_{i-1}\right)(1<i \leq n)\).

\(a_{i}\) : generates at most a better interval at the right bound (prefix sum).
\(R_{i-1} \Rightarrow R_{i}=\max \left\{R_{i-1}+a_{i}, 0\right\}\)

\section*{Inductive Maximum Subarray Algorithm}
```

Input: A sequence of n numbers (}\mp@subsup{a}{1}{},\mp@subsup{a}{2}{},···,\mp@subsup{a}{n}{})\mathrm{ .

```

```

M\leftarrow0
R\leftarrow0
for i=1···n do
R\leftarrowR+\mp@subsup{a}{i}{}
if }R<0\mathrm{ then
R\leftarrow0
if R>M then
M\leftarrowR
return M;

```

\section*{Analysis}

\section*{Theorem 6}

The inductive algorithm for the Maximum Subarray problem conducts a number of \(\Theta(n)\) additions and comparisons.

\section*{Complexity of the problem?}

Can we improve over \(\Theta(n)\) ?

\section*{Complexity of the problem?}

Can we improve over \(\Theta(n)\) ?
Every correct algorithm for the Maximum Subarray Sum problem must consider each element in the algorithm.

\section*{Complexity of the problem?}

Can we improve over \(\Theta(n)\) ?
Every correct algorithm for the Maximum Subarray Sum problem must consider each element in the algorithm.
Assumption: the algorithm does not consider \(a_{i}\).

\section*{Complexity of the problem?}

Can we improve over \(\Theta(n)\) ?
Every correct algorithm for the Maximum Subarray Sum problem must consider each element in the algorithm.
Assumption: the algorithm does not consider \(a_{i}\).
1. The algorithm provides a solution including \(a_{i}\). Repeat the algorithm with \(a_{i}\) so small that the solution must not have contained the point in the first place.

\section*{Complexity of the problem?}

Can we improve over \(\Theta(n)\) ?
Every correct algorithm for the Maximum Subarray Sum problem must consider each element in the algorithm.
Assumption: the algorithm does not consider \(a_{i}\).
1. The algorithm provides a solution including \(a_{i}\). Repeat the algorithm with \(a_{i}\) so small that the solution must not have contained the point in the first place.
2. The algorithm provides a solution not including \(a_{i}\). Repeat the algorithm with \(a_{i}\) so large that the solution must have contained the point in the first place.

\section*{Complexity of the maximum Subarray Sum Problem}

\section*{Theorem 7}

The Maximum Subarray Sum Problem has Complexity \(\Theta(n)\).
Proof: Inductive algorithm with asymptotic execution time \(\mathcal{O}(n)\). Every algorithm has execution time \(\Omega(n)\).
Thus the complexity of the problem is \(\Omega(n) \cap \mathcal{O}(n)=\Theta(n)\).

\subsection*{3.4 Appendix}

Derivation and repetition of some mathematical formulas

\section*{Logarithms}
\[
\begin{array}{rlrl}
\log _{a} y=x \Leftrightarrow a^{x}=y & (a>0, y>0) \\
\log _{a}(x \cdot y) & =\log _{a} x+\log _{a} y & a^{x} \cdot a^{y} \\
\log _{a} \frac{x}{y} & =\log _{a} x-\log _{a} y & \frac{a^{x}}{a^{y}} \\
\log _{a} x^{y} & =y \log _{a} x & a^{x \cdot y} \\
\log _{a} n! & =\sum_{i=1}^{n} \log i &
\end{array}
\]
\[
\log _{b} x=\log _{b} a \cdot \log _{a} x
\]
\[
a^{\log _{b} x}=x^{\log _{b} a}
\]

To see the last line, replace \(x \rightarrow a^{\log _{a} x}\)

\section*{Sums}
\[
\sum_{i=0}^{n} i=\frac{n \cdot(n+1)}{2} \in \Theta\left(n^{2}\right)
\]

Trick
\[
\begin{aligned}
\sum_{i=0}^{n} i & =\frac{1}{2}\left(\sum_{i=0}^{n} i+\sum_{i=0}^{n} n-i\right)=\frac{1}{2} \sum_{i=0}^{n} i+n-i \\
& =\frac{1}{2} \sum_{i=0}^{n} n=\frac{1}{2}(n+1) \cdot n
\end{aligned}
\]

\section*{Sums}
\[
\sum_{i=0}^{n} i^{2}=\frac{n \cdot(n+1) \cdot(2 n+1)}{6}
\]

Trick:
\[
\begin{aligned}
& \sum_{i=1}^{n} i^{3}-(i-1)^{3}=\sum_{i=0}^{n} i^{3}-\sum_{i=0}^{n-1} i^{3}=n^{3} \\
& \sum_{i=1}^{n} i^{3}-(i-1)^{3}=\sum_{i=1}^{n} i^{3}-i^{3}+3 i^{2}-3 i+1=n-\frac{3}{2} n \cdot(n+1)+3 \sum_{i=0}^{n} i^{2} \\
& \Rightarrow \sum_{i=0}^{n} i^{2}=\frac{1}{6}\left(2 n^{3}+3 n^{2}+n\right) \in \Theta\left(n^{3}\right)
\end{aligned}
\]

Can easily be generalized: \(\sum_{i=1}^{n} i^{k} \in \Theta\left(n^{k+1}\right)\).

\section*{Geometric Series}
\[
\begin{gathered}
\sum_{i=0}^{n} \rho^{i} \stackrel{!}{=} \frac{1-\rho^{n+1}}{1-\rho} \\
\begin{aligned}
\sum_{i=0}^{n} \rho^{i} \cdot(1-\rho)= & \sum_{i=0}^{n} \rho^{i}-\sum_{i=0}^{n} \rho^{i+1}=\sum_{i=0}^{n} \rho^{i}-\sum_{i=1}^{n+1} \rho^{i} \\
= & \rho^{0}-\rho^{n+1}=1-\rho^{n+1}
\end{aligned}
\end{gathered}
\]

For \(0 \leq \rho<1\) :
\[
\sum_{i=0}^{\infty} \rho^{i}=\frac{1}{1-\rho}
\]

\section*{4. C++ advanced (I)}

Repetition: Vectors, Pointers and Iterators, Range for, Keyword auto, a Class for Vectors, Subscript-operator, Move-construction, Iterators

\section*{Learning objectives}
- Keyword auto
- Ranged for

■ Short recap of the Rule of Three
- Subscript operator

■ Move Semantics, X-Values and the Rule of Five
■ Custom Iterators

\section*{We look back...}
```

\#include <iostream>
\#include <vector>
using iterator = std::vector<int>::iterator;
int main(){
// Vector of length 10
std::vector<int> v(10);
// Input
for (int i = 0; i < v.size(); ++i)
std::cin >> v[i];
// Output
for (iterator it = v.begin(); it != v.end(); ++it)
std::cout << *it << " ";
}

```

\section*{We look back...}
```

\#include <iostream>
\#include <vector>
using iterator = std::vector<int>::iterator;
int main(){
// Vector of length 10
std::vector<int> v(10); We want to understand this in depth!
// Input
for (int i = 0; i < v.size(); ++i)
std::cin >> v[i];
// Output
for (iterator it = v.begin(); it != v.end(); ++it)
std::cout << *it << " ";
}

```

\section*{We look back...}
```

\#include <iostream>
\#include <vector>
using iterator = std::vector<int>::iterator;
int main(){
// Vector of length 10
std::vector<int> v(10); \& We want to understand this in depth!
// Input
for (int i = 0; i < v.size(); ++i)
std::cin >> v[i];
// Output
for (iterator it = v.begin(); it != v.end(); ++it)
std::cout << *it << " "; 个
Not as good as it could be!

```

\subsection*{4.1 Useful Tools}

On our way to elegant, less complicated code.

\section*{auto}

The keyword auto (from C++11):
The type of a variable is inferred from the initializer.

\section*{auto}

The keyword auto (from C++11):
The type of a variable is inferred from the initializer.
```

int x = 10;

```

\section*{auto}

The keyword auto (from C++11):
The type of a variable is inferred from the initializer.
```

int x = 10;
auto y = x; // int

```

\section*{auto}

The keyword auto (from C++11):
The type of a variable is inferred from the initializer.
```

int x = 10;
auto y = x; // int
auto z = 3; // int

```

\section*{auto}

The keyword auto (from C++11):
The type of a variable is inferred from the initializer.
```

int x = 10;
auto y = x; // int
auto z = 3; // int
std::vector<double> v(5);

```

\section*{auto}

The keyword auto (from C++11):
The type of a variable is inferred from the initializer.
```

int x = 10;
auto y = x; // int
auto z = 3; // int
std::vector<double> v(5);
auto i = v[3]; // double

```

\section*{Slightly better...}
```

\#include <iostream>
\#include <vector>
int main(){
std::vector<int> v(10); // Vector of length 10
for (int i = 0; i < v.size(); ++i)
std::cin >> v[i];
for (auto it = v.begin(); it != v.end(); ++it) {
std::cout << *it << " ";
}
}

```

\section*{Range for (C++11)}
```

for (range-declaration : range-expression)
statement;

```

■ range-declaration: named variable of element type specified via the sequence in range-expression
■ range-expression: Expression that represents a sequence of elements via iterator pair begin(), end(), or in the form of an intializer list.

\section*{Range for (C++11)}
```

for (range-declaration : range-expression)
statement;

```

■ range-declaration: named variable of element type specified via the sequence in range-expression
- range-expression: Expression that represents a sequence of elements via iterator pair begin(), end(), or in the form of an intializer list.

\section*{Range for (C++11)}
```

for (range-declaration : range-expression)
statement;

```

■ range-declaration: named variable of element type specified via the sequence in range-expression
■ range-expression: Expression that represents a sequence of elements via iterator pair begin(), end(), or in the form of an intializer list.
```

std::vector<double> v(5);

```

\section*{Range for (C++11)}
```

for (range-declaration : range-expression)
statement;

```

■ range-declaration: named variable of element type specified via the sequence in range-expression
■ range-expression: Expression that represents a sequence of elements via iterator pair begin(), end(), or in the form of an intializer list.
```

std::vector<double> v(5);
for (double x: v) std::cout << x; // 00000

```

\section*{Range for (C++11)}
```

for (range-declaration : range-expression)
statement;

```

■ range-declaration: named variable of element type specified via the sequence in range-expression
■ range-expression: Expression that represents a sequence of elements via iterator pair begin(), end(), or in the form of an intializer list.
```

std::vector<double> v(5);
for (double x: v) std::cout << x; // 00000
for (int x: {1,2,5}) std::cout << x; // 125

```

\section*{Range for (C++11)}
```

for (range-declaration : range-expression)
statement;

```

■ range-declaration: named variable of element type specified via the sequence in range-expression
■ range-expression: Expression that represents a sequence of elements via iterator pair begin(), end(), or in the form of an intializer list.
```

std::vector<double> v(5);
for (double x: v) std::cout << x; // 00000
for (int x: {1,2,5}) std::cout << x; // 125
for (double\& x: v) x=5;

```

\section*{Cool!}
```

\#include <iostream>
\#include <vector>
int main(){
std::vector<int> v(10); // Vector of length 10
for (auto\& x: v)
std::cin >> x;
for (const auto x: v)
std::cout << x << " ";
}

```

\subsection*{4.2 Memory Allocation}

Construction of a vector class

\section*{For our detailed understanding}

We build a vector class with the same capabilities ourselves!

\section*{For our detailed understanding}

We build a vector class with the same capabilities ourselves!

On the way we learn about
■ RAII (Resource Acquisition is Initialization) and move construction

\section*{For our detailed understanding}

We build a vector class with the same capabilities ourselves!

On the way we learn about
■ RAII (Resource Acquisition is Initialization) and move construction
■ Subscript operators and other utilities

\section*{For our detailed understanding}

We build a vector class with the same capabilities ourselves!

On the way we learn about
- RAII (Resource Acquisition is Initialization) and move construction

■ Subscript operators and other utilities
- Templates

\section*{For our detailed understanding}

We build a vector class with the same capabilities ourselves!

On the way we learn about
■ RAII (Resource Acquisition is Initialization) and move construction
■ Subscript operators and other utilities
- Templates

■ Exception Handling

\section*{For our detailed understanding}

We build a vector class with the same capabilities ourselves!

On the way we learn about
■ RAII (Resource Acquisition is Initialization) and move construction
■ Subscript operators and other utilities
■ Templates
■ Exception Handling
- Functors and lambda expressions

\section*{For our detailed understanding}

We build a vector class with the same capabilities ourselves!

On the way we learn about
■ RAII (Resource Acquisition is Initialization) and move construction
■ Subscript operators and other utilities
- Templates

■ Exception Handling
■ Functors and lambda expressions

\section*{A class for (double) vectors}
```

class Vector{
public:
// constructors
Vector(): sz{0}, elem{nullptr} {};
Vector(std::size_t s): sz{s}, elem{new double[s]} {}
// destructor
~Vector(){
delete[] elem;
}
// (something is missing here)
private:
std::size_t sz;
double* elem;
}

```

\section*{Element access}
```

class Vector{
// getter. pre: 0 <= i < sz;
double get(std::size_t i) const{
return elem[i];
}
// setter. pre: 0 <= i < sz;
void set(std::size_t i, double d){
elem[i] = d;
}
// size property
std::size_t size() const {
return sz;
}

What's the problem here?

```
int main(){
    Vector v(32);
    for (std::size_t i = 0; i!=v.size(); ++i)
        v.set(i, i);
    Vector w = v;
    for (std::size_t i = 0; i!=w.size(); ++i)
        w.set(i, i*i);
    return 0;
}
```

```
class Vector{
public:
    Vector();
    Vector(std::size_t s);
    ~Vector();
    double get(std::size_t i) const;
    void set(std::size_t i, double d);
    std::size_t size() const;
}
```

(Vector Interface)

What's the problem here?

```
int main(){
    Vector v(32);
    for (std::size_t i = 0; i!=v.size(); ++i)
        v.set(i, i);
    Vector w = v;
    for (std::size_t i = 0; i!=w.size(); ++i)
        w.set(i, i*i);
    return 0;
}
```

```
class Vector{
public:
    Vector();
    Vector(std::size_t s);
    ~Vector();
    double get(std::size_t i) const;
    void set(std::size_t i, double d);
    std::size_t size() const;
}
```

(Vector Interface)
*** Error in 'vector1': double free or corruption
(!prev): 0x0000000000d23c20 ***
======= Backtrace: =========
/lib/x86_64-linux-gnu/libc.so.6(+0x777e5)[0x7fe5a5ac97e5]

Rule of Three!

```
class Vector{
...
    public:
    // copy constructor
    Vector(const Vector &v)
        : sz{v.sz}, elem{new double[v.sz]} {
        std::copy(v.elem, v.elem + v.sz, elem);
    }
}
```

```
class Vector{
```

class Vector{
public:
public:
Vector();
Vector();
Vector(std::size_t s);
Vector(std::size_t s);
~Vector();
~Vector();
Vector(const Vector \&v);
Vector(const Vector \&v);
double get(std::size_t i) const;
double get(std::size_t i) const;
void set(std::size_t i, double d);
void set(std::size_t i, double d);
std::size_t size() const;
std::size_t size() const;
}

```
}
```

(Vector Interface)

Rule of Three!

```
class Vector{
    // assignment operator
    Vector& operator=(const Vector& v){
        if (v.elem == elem) return *this;
        if (elem != nullptr) delete[] elem;
        SZ = v.sZ;
        elem = new double[sz];
        std::copy(v.elem, v.elem+v.sz, elem);
        return *this;
    }
}
```


Rule of Three!

```
class Vector{
    // assignment operator
    Vector& operator=(const Vector& v){
        if (v.elem == elem) return *this;
        if (elem != nullptr) delete[] elem;
        SZ = v.sZ;
        elem = new double[sz];
        std::copy(v.elem, v.elem+v.sz, elem);
        return *this;
    }
}
```

Now it is correct, but cumbersome.

Constructor Delegation

```
public:
// copy constructor
// (with constructor delegation)
Vector(const Vector &v): Vector(v.sz)
{
    std::copy(v.elem, v.elem + v.sz, elem);
}
```


Copy-\&-Swap Idiom

```
class Vector{
    // Assignment operator
    Vector& operator= (const Vector&v){
        Vector cpy(v);
        swap(cpy);
        return *this;
    }
private:
    // helper function
    void swap(Vector& v){
        std::swap(sz, v.sz);
        std::swap(elem, v.elem);
    }
}
```


Copy-\&-Swap Idiom

```
class Vector{
    // Assignment operator
    Vector& operator= (const Vector&v){
        Vector cpy(v);
        swap(cpy);
        return *this;
    }
private:
    // helper function
    void swap(Vector& v){
        std::swap(sz, v.sz);
        std::swap(elem, v.elem);
    }
}

\section*{Clarification of Terms: Idioms and Patterns}

Idiom and (Design) Pattern are notions coming from software engineering

■ Design patterns are general, reusable solutions to commonly occurring design problems. They capture best practices and usually describe relationships and interactions among classes and objects, e.g. the visitor pattern.
■ Idioms are language-specific ways of implementing certain tasks/steps, e.g. the RAll idiom, or the Copy-\&-Swap Idiom in C++. Idioms usually require less code than patterns.

\section*{Syntactic sugar.}

Getters and setters are poor. We want a subscript (index) operator.

\section*{Syntactic sugar.}

Getters and setters are poor. We want a subscript (index) operator. Overloading!

\section*{Syntactic sugar.}

Getters and setters are poor. We want a subscript (index) operator. Overloading! So?
class Vector\{
```

 double operator[] (std::size_t pos) const{
 return elem[pos];
 }
 void operator[] (std::size_t pos, double value){
 elem[pos] = value;
 }
 }

```

\section*{Syntactic sugar.}

Getters and setters are poor. We want a subscript (index) operator. Overloading! So?
class Vector\{
...
```

 double operator[] (std::size_t pos) const{
 return elem[pos];
 }
    ```


\section*{Reference types!}
```

class Vector{
...
// for non-const objects
double\& operator[] (std::size_t pos){
return elem[pos]; // return by reference!
}
// for const objects
const double\& operator[] (std::size_t pos) const{
return elem[pos];
}
}

```

\section*{So far so good.}
```

int main(){
Vector v(32); // constructor
for (int i = 0; i<v.size(); ++i)
v[i] = i; // subscript operator
Vector w = v; // copy constructor
for (int i = 0; i<w.size(); ++i)
w[i] = i*i;
const auto u = w;
for (int i = 0; i<u.size(); ++i)
std::cout << v[i] << ":" << u[i] << " "; // 0:0 1:1 2:4 ...
return 0;
}

```

\subsection*{4.3 Iterators}

How to support the range for

\section*{Range for}

We wanted this:
```

Vector v = ...;
for (auto x: v)
std::cout << x << " ";

```

\section*{Range for}

We wanted this:
```

Vector v = ...;
for (auto x: v)
std::cout << x << " ";

```

In order to support this, an iterator must be provided via begin and end

\section*{Iterator for the vector}
```

class Vector{
// Iterator
double* begin(){
return elem;
}
double* end(){
return elem+sz;
}
}

```
(Pointers support iteration)

\section*{Const Iterator for the vector}
```

class Vector{
•••
// Const-Iterator
const double* begin() const{
return elem;
}
const double* end() const{
return elem+sz;
}
}

```

\section*{Intermediate result}
```

Vector Natural(int from, int to){
Vector v(to-from+1);
for (auto\& x: v) x = from++;
return v;
}

```
```

int main(){

```
int main(){
    auto v = Natural(5,12);
    auto v = Natural(5,12);
    for (auto x: v)
    for (auto x: v)
        std::cout << x << " "; // 5 6 7 8 9 10 11 12
        std::cout << x << " "; // 5 6 7 8 9 10 11 12
    std::cout << std::endl;
    std::cout << std::endl;
        << "sum = "
        << "sum = "
        << std::accumulate(v.begin(), v.end(),0); // sum = 68
        << std::accumulate(v.begin(), v.end(),0); // sum = 68
    return 0;
    return 0;
}
```

}

```

\section*{Vector Interface}
```

class Vector{
public:
Vector(); // Default Constructor
Vector(std::size_t s); // Constructor
~Vector(); // Destructor
Vector(const Vector \&v); // Copy Constructor
Vector\& operator=(const Vector\&v); // Assignment Operator
double\& operator[] (std::size_t pos); // Subscript operator (read/write)
const double\& operator[] (std::size_t pos) const; // Subscript operator
std::size_t size() const;
double* begin(); // iterator begin
double* end(); // iterator end
const double* begin() const; // const iterator begin
const double* end() const; // const iterator end
}

4.4 Efficient Memory-Management*

How to avoid copies

Number copies

How often is v being copied?

```
Vector operator+ (const Vector& l, double r){
    Vector result (l);
    for (std::size_t i = O; i < l.size(); ++i)
        result[i] = l[i] + r;
    return result;
}
int main(){
    Vector v(16);
    v = v + 1;
    return 0;
}
```


Number copies

How often is v being copied?

```
Vector operator+ (const Vector& l, double r){
    Vector result (l); // copy of l to result
    for (std::size_t i = 0; i < l.size(); ++i)
        result[i] = l[i] + r;
    return result; // deconstruction of result after assignment
}
int main(){
    Vector v(16); // allocation of elems[16]
    v = v + 1; // copy when assigned!
    return 0; // deconstruction of v
}
```


Number copies

How often is v being copied?

```
Vector operator+ (const Vector& l, double r){
    Vector result (l);
    for (std::size_t i = 0; i < l.size(); ++i)
        result[i] = l[i] + r;
    return result;
}
int main(){
    Vector v(16);
    v = v + 1;
    return 0;
}
```

v is copied (at least) twice

Move construction and move assignment

```
class Vector{
    // move constructor
    Vector (Vector&& v): Vector() {
    swap(v);
    };
    // move assignment
    Vector& operator=(Vector&& v){
        swap(v);
        return *this;
    };
}
```


Vector Interface

```
class Vector{
public:
    Vector();
    Vector(std::size_t s);
    ~Vector();
    Vector(const Vector &v);
    Vector& operator=(const Vector&v);
    Vector (Vector&& v);
    Vector& operator=(Vector&& v);
    const double& operator[] (std::size_t pos) const;
    double& operator[] (std::size_t pos);
    std::size_t size() const;
}
```


Explanation

When the source object of an assignment will not continue existing after an assignment the compiler can use the move assignment instead of the assignment operator. ${ }^{5}$ Expensive copy operations are then avoided. Number of copies in the previous example goes down to 1 .

[^10]
Illustration of the Move-Semantics

```
// nonsense implementation of a "vector" for demonstration purposes
class Vec{
public:
    Vec () {
        std::cout << "default constructor\n";}
    Vec (const Vec&) {
        std::cout << "copy constructor\n";}
    Vec& operator = (const Vec&) {
        std::cout << "copy assignment\n"; return *this;}
    ~Vec() {}
};
```


How many Copy Operations?

```
Vec operator + (const Vec& a, const Vec& b){
    Vec tmp = a;
    // add b to tmp
    return tmp;
}
int main (){
    Vec f;
    f = f + f + f + f;
}
```


How many Copy Operations?

```
Vec operator + (const Vec& a, const Vec& b){
    Vec tmp = a;
    // add b to tmp
    return tmp;
}
int main (){
    Vec f;
    f = f + f + f + f;
}
```

Output default constructor copy constructor copy constructor copy constructor copy assignment

4 copies of the vector

Illustration of the Move-Semantics

```
// nonsense implementation of a "vector" for demonstration purposes
class Vec{
public:
    Vec () { std::cout << "default constructor\n";}
    Vec (const Vec&) { std::cout << "copy constructor\n";}
    Vec& operator = (const Vec&) {
        std::cout << "copy assignment\n"; return *this;}
    ~Vec() {}
    // new: move constructor and assignment
    Vec (Vec&&) {
        std::cout << "move constructor\n";}
    Vec& operator = (Vec&&) {
        std::cout << "move assignment\n"; return *this;}
};
```


How many Copy Operations?

```
Vec operator + (const Vec& a, const Vec& b){
    Vec tmp = a;
    // add b to tmp
    return tmp;
}
int main (){
    Vec f;
    f = f + f + f + f;
}
```


How many Copy Operations?

```
Vec operator + (const Vec& a, const Vec& b){
    Vec tmp = a;
    // add b to tmp
    return tmp;
}
int main (){
    Vec f;
    f = f + f + f + f;
}
```

Output default constructor copy constructor copy constructor copy constructor move assignment

3 copies of the vector

How many Copy Operations?

```
Vec operator + (Vec a, const Vec& b){
    // add b to a
    return a;
}
```

int main () \{
Vec f;
f = f + f + f +f ;
\}

How many Copy Operations?

```
Vec operator + (Vec a, const Vec& b){
    // add b to a
    return a;
}
int main (){
    Vec f;
    f = f + f + f + f;
}
```

Output default constructor copy constructor move constructor move constructor move constructor move assignment

1 copy of the vector

How many Copy Operations?

```
Vec operator + (Vec a, const Vec& b){
    // add b to a
    return a;
}
int main (){
    Vec f;
    f = f + f + f + f;
}
```


Output

 default constructor copy constructor move constructor move constructor move constructor move assignment1 copy of the vector

Explanation: move semantics are applied when an x-value (expired value) is assigned. R-value return values of a function are examples of x-values.
http://en.cppreference.com/w/cpp/language/value_category

How many Copy Operations?

```
void swap(Vec& a, Vec& b){
    Vec tmp = a;
    a=b;
    b=tmp;
}
int main (){
    Vec f;
    Vec g;
    swap(f,g);
}
```


How many Copy Operations?

```
void swap(Vec& a, Vec& b){
    Vec tmp = a;
    a=b;
    b=tmp;
}
int main (){
    Vec f;
    Vec g;
    swap(f,g);
}
```


Forcing x-values

```
void swap(Vec& a, Vec& b){
    Vec tmp = std::move(a);
    a=std::move(b);
    b=std::move(tmp);
}
int main (){
    Vec f;
    Vec g;
    swap(f,g);
}
```


Forcing x-values

```
void swap(Vec& a, Vec& b){
    Vec tmp = std::move(a);
    a=std::move(b);
    b=std::move(tmp);
}
int main (){
    Vec f;
    Vec g;
    swap(f,g);
}
```

Output default constructor default constructor move constructor move assignment move assignment

0 copies of the vector

Forcing x-values

```
void swap(Vec& a, Vec& b){
    Vec tmp = std::move(a);
    a=std::move(b);
    b=std::move(tmp);
}
int main (){
    Vec f;
    Vec g;
    swap(f,g);
}
```


Output default constructor default constructor move constructor move assignment move assignment
 0 copies of the vector

Explanation: With std::move an l-value expression can be forced into an x-value.
Then move-semantics are applied.
http://en.cppreference.com/w/cpp/utility/move

std: : swap \& std: :move

std: : swap is implemented as above (using templates) std: :move can be used to move the elements of a container into another
std::move(va.begin(), va.end(),vb.begin())

Conclusion

- Use auto to infer a type from the initializer.

■ X-values are values where the compiler can determine that they go out of scope.
■ Use move constructors in order to move X-values instead of copying.
■ When you know what you are doing then you can enforce the use of X-Values.
■ Subscript operators can be overloaded. In order to write, references are used.

■ Behind a ranged for there is an iterator working.

- Iteration is supported by implementing an iterator following the syntactic convention of the standard library.

5. C++ advanced (II): Templates

Some (converted) slides from Malte Schwerhoff

Generic Programming

Goal: Make code (functions, classes) as widely usable as possible

Familiar use-cases:

■ vector: store objects of any type, e.g. ints, strings,
■ std::max(e1, e2): return the greater of any two objects
■ Exp* e = new ...; e.eval(): evaluate any expression (variable, constant, sum, product, ...)

Generic Programming

How: Different languages implement different approaches (and typically more than one), but high-level ideas are often similar.

Examples:

Motivation

Goal: generic vector class and functionality.

```
Vector<double> vd(10);
Vector<int> vi(10);
Vector<char> vi(20);
auto nd = vd * vd; // norm (vector of double)
auto ni = vi * vi; // norm (vector of int)
```


Parametric Polymorphism

Types as template parameters

1. In the concrete implementation of a class replace the type that should become generic (in our example: double) by a representative element, e.g. T.
2. Put in front of the class the construct template<typename $\mathrm{T}>$ Replace T by the representative name).

The construct template<typename $\mathrm{T}>$ can be understood as "for all types T".

Types as Template Parameters

```
template <typename ElementType>
class Vector{
    std::size_t size;
    ElementType* elem;
public:
    Vector(std::size_t s):
        size{s},
        elem{new ElementType[s]}{}
    ElementType& operator[](std::size_t pos){
        return elem[pos];
}

\section*{Template Instances}

Vector<typeName> generates a type instance Vector with ElementType=typeName.
```

Vector<double> x; // vector of double
Vector<int> y; // vector of int
Vector<Vector<double>> x; // vector of vector of double

```

Notation: Type Instantiation.

\section*{Type-checking}

Templates are basically replacement rules at instantiation time and during compilation. The compiler always checks as little as necessary and as much as possible.

\section*{Example}
```

template <typename T>
class Pair{
T left; T right;
public:
Pair(T l, T r):left{l}, right{r}{}
T min(){
return left < right ? left : right;
}
};

```

\section*{Example}
```

template <typename T>
class Pair{
T left; T right;
public:
Pair(T l, T r):left{l}, right{r}{}
T min(){
return left < right ? left : right;
}
};
Pair<int> a(10,20); // ok
auto m = a.min(); // ok
Pair<Pair<int>> b(a,Pair<int>(20,30)); // ok
auto n = b.min(); // no match for operator<!

```

\section*{Parametric Polymorphism II}

Function Templates
1. To make a concrete implementation generic, replace the specific type (e.g. int) with a name, e.g. T,
2. Put in front of the function the construct template<typename \(T>\) (Replace \(\boldsymbol{T}\) by the chosen name)

\section*{Function Templates}
```

template <typename T>
void swap(T\& x, T\&y){
T temp = x;
x = y;
y = temp;
}

```

The actual parameters' types determine the version of the function that is (compiled) and used:
```

int x=5;
int y=6;
swap(x,y); // calls swap with T=int

```

\section*{Safety}
```

template <typename T>
void swap(T\& x, T\&y){
T temp = x;
x = y;
y = temp;
}

```

An inadmissible version of the function is not generated:
int \(x=5\);
double \(y=6\);
swap(x,y); // error: no matching function for ...

\section*{.. also with operators}
```

template <typename T>
class Pair{
T left; T right;
public:
Pair(T l, T r):left{l}, right{r}{}
T min(){ return left < right? left: right; }
std::ostream\& print (std::ostream\& os) const{
return os << "("<< left << "," << right<< ")";
}
};
template <typename T>
std::ostream\& operator<< (std::ostream\& os, const Pair<T>\& pair){
return pair.print(os);
}

```

\section*{.. also with operators}
```

template <typename T>
class Pair{
T left; T right;
public:
Pair(T l, T r):left{l}, right{r}{}
T min(){ return left < right? left: right; }
std::ostream\& print (std::ostream\& os) const{
return os << "("<< left << "," << right<< ")";
}
};
template <typename T>
std::ostream\& operator<< (std::ostream\& os, const Pair<T>\& pair){
return pair.print(os);
}

```

\section*{Useful!}
```

// Output of an arbitrary container
template <typename T>
void output(const T\& t){
for (const auto\& x: t)
std::cout << x << " ";
std::cout << "\n";
}
int main(){
std::vector<int> v={1,2,3};
output(v); // 1 2 3
}

```

Neat: a generic function that can be applied to all containers. What are the limits of this function?
- Requirements for \(T\) ?
- Requirements on Elements of T?

\section*{Explicit Type}
```

// input of an arbitrary pair
template <typename T>
Pair<T> read(){
T left;
T right;
std::cin << left << right;
return Pair<T>(left,right);
}
auto p = read<double>();

```

\section*{Explicit Type}
```

// input of an arbitrary pair
template <typename T>
Pair<T> read(){
T left;
T right;
std::cin << left << right;
return Pair<T>(left,right);
}
auto p = read<double>();
If the type of a template instantiation cannot be inferred, it has to be provided explicitly.

```

\section*{Type Inference}

■ Upon instantiation, template parameters must be provided explicitly except if the compiler can infer them from provided arguments
■ Type inference improved with C++17
```

auto p1 = Pair<int>(1,2); // OK
Pair<int> p2 = Pair(1,2); // C++14: error; C++17: OK
auto p3 = Pair(1,2); // C++14: error; C++17: OK

```

\section*{Powerful!}
```

template <typename T> // square number
T sq(T x){
return x*x;
}
template <typename Container, typename F>
void apply(Container\& c, F f){ // x <- f(x) forall x in c
for(auto\& x: c)
x = f(x);
}
int main(){
std::vector<int> v={1,2,3};
apply(v,sq<int>);
output(v); // 1 4 9
}

```

\section*{Conclusion}

■ Templates improve code reusability, by making classes and functions parametric w.r.t. types
■ Implemented via static code-generation (compile-time meta-programming)
- Advantages
- No runtime overhead (compared to dynamic solutions, e.g. inheritance or dynamic typing)
- Compiler can optimise generated code as usual
- Type-dependent static specialisation possible (see below)
- Disadvantages
- Separate compilation (.h vs. .cpp) no longer possible
- Resulting binary (machine code) larger
- Delayed type checking, more complex error messages (mitigatable via concepts, see next)

\section*{Concepts (C++20)}
```

struct Student { ... }; // Lacks == and < operators
template <typename K>
struct BSTNode {
K key;
bool contains(K search_key) {
if (search_key < key) ..
else if (search_key == key) ...
else ...
}
Code compiles just fine
■ But should it?
■ If it shouldn't, why does it compile?
};
auto n1 = BSTNode(8);
auto n2 = BSTNode("Howdy!");
auto n3 = BSTNode(new int(8));
auto n4 = BSTNode(Student("Omar"));

```

\section*{Concepts (C++20)}
auto n4 = BSTNode(Student("Omar"));
n4.contains(Student("Ida")); // Error!

\section*{Code fails to compile}
```

test.cpp:29:
In instantiation of
'bool BSTNode<K>::contains(K)
[with K = Student]':
test.cpp:21:
no match for 'operator<' (operand types
are 'Student' and 'Student')
21 | if (search_key < key)
|

```

\section*{Problems:}
- Instantiation of BSTNode<Student> already nonsensical, but accepted by the compiler

■ Requirement on concrete Ks scattered across code, not part of declaration

\section*{Concepts (C++20)}

\section*{Better: explicit requirement, prevent nonsensical instantiations.}
```

struct Student { ... }; // Lacks < operators
template <typename T>
concept Comparable = requires(T t1, T t2) {
{ t1 < t2 };
};
template <Comparable K>
struct BSTNode {
K key;
bool contains(K search_key) { ... }
};

```
```

test.cpp:43:

```
test.cpp:43:
    In substitution of 'template<class K>
    In substitution of 'template<class K>
    BSTNode(K)-> BSTNode<K> [with K = Student]:
    BSTNode(K)-> BSTNode<K> [with K = Student]:
test.cpp:23:
test.cpp:23:
    template constraint failure for
    template constraint failure for
    'template<class K> requires Comparable<K>
    'template<class K> requires Comparable<K>
    struct BSTNode
    struct BSTNode
test.cpp:4:
test.cpp:4:
    required for the satisfaction of Comparable<K>
    required for the satisfaction of Comparable<K>
    [with K = Student]
    [with K = Student]
auto n4 = BSTNode(Student("Omar")); // Error
```


Concepts (C++20)

```
#include <algorithm>
#include <vector>
#include <list>
template <typename Iter>
void clever_sort(Iter begin, Iter end) {
    if (!is_sorted(begin, end))
        std::sort(begin, end);
}
```

```
int main() {
```

int main() {
std::vector<int> data1 = {3,-1,10};
std::vector<int> data1 = {3,-1,10};
clever_sort(data1.begin(), data1.end());
clever_sort(data1.begin(), data1.end());
std::list<int> data2 = {3,-1,10};
clever_sort(data2.begin(), data2.end());
}

```

In file included from /opt/compiler-explorer/gcc-11.2.0/include/c++/11.2.0/algorithm: 62
from <source>: \(1:\)
/opt/compiler-explorer/gec-11.2.0/include/c++/11.2.0/bits/stl_algo.h: In instantiation of 'void std: :__sort -RandomAccessiterator, -RandomAccessiterator, -Compare) [with _RandomAccessIterator = std: __List_iterator<int> Compare \(=\) _-gnu_cxx: :__ops: :_Iter_less_iter],
/opt/compiler-explorer/gec-11.2.0/include/c++/11.2.0/bits/stl_algo.h:4842:18: required from 'void std: :sort(_RAIter, _RAIter) [with RAIter \(=\) std: :_List_iterator<int>]
<source>:10:14: required from 'void clever_sort(Iter, Iter) [with Iter = std::_List_iterator<int>],
/opt/compiler-explorer/gcc-11.2.0/include/ct+/11.2.0/bits/stl_algo.h:1955:50: error: no match for 'operator-' (operand types are 'std::_List_iterator<int>' and 'std: :_List_iterator<int>')
1955 ।
std::--1g(-_last --_irst)
In file included from/opt/compiler-explorer/gcc-11.2.0/include/c++/11.2.0/bits/stl_algobase.h: 67 from /opt/compiler-explorer/gec-11.2.0/include/c++/11.2.0/algorithm: 61 from <source>:1
/opt/compiler-explorer/gcc-11.2.0/include/c++/11.2.0/bits/stl_iterator.h:560:5: note: candidate: 'template<class _Iteratorl, class _IteratorR> constexpr decltype ( \((\ldots y\).base () - __x.base())) std::operator-(const std::reverse_iterator<_Iterator \(>k\), const std:: reverse iterator< Iterator P\(\rangle \mathrm{E}\) )'
5601 operator-(const reverse_iterator<_IteratorL>\& _-x
opt/complier-explorer/gcc-11.2.0/include/c++/11.2.0/bits/st1_iterator.h:560:5: note: template argument deduction/ substitution failed:
In file included from /opt/compiler-explorer/gec-11.2.0/include/c++/11.2.0/algorithm: 62 from <source>:1
/opt/compiler-explorer/gec-11.2.0/include/c++/11.2.0/bits/stl algo.h:1955:50: note: 'std:: List iterator<int>' is not derived from 'const std::reverse_iterator<_Iterator>'
1955
std: :_-1g(_last _ _first) * 2
In file included from /opt/compiler-explorer/gcc-11.2.0/include/c++/11.2.0/bits/stl_algobase.h: 67 from /opt/compiler-explorer/gcc-11.2.0/include/ct+/11.2.0/algorithm: 61, from <source>:1:
/opt/complier-explorer/gcc-11.2.0/1nciude/c+4/11.2.0/bits/sti_iterator.h:1639:5: note: candidate: 'template<class _IteratorL class _IteratorR> constexpr decltype ( \((\ldots\).-base() - _-y.base())) std::operator-(const std::move_iterator<_IteratorL> \& const std::move_iterator<_Iterator \(\mathrm{R}>\mathrm{\&}\) )
1639 I operator-(const move_iterator<_IteratorL>\& __x,
/opt/compiler-explorer/gec-11.2.0/include/c++/11.2.0/bits/stl_iterator.h:1639:5: note: template argument deduction/ substitution failed
In file included from /opt/compiler-explorer/gec-11.2.0/include/c++/11.2.0/algorithm: 62
/opt/compiler-explorer/gcc-11.2.0/include/c++/11.2.0/bits/stl_algo.h:1955:50: note: 'std::_List_iterator<int>' is not derived

\footnotetext{
from 'const std::move_iterator<_IteratorL>
1955 ।
td::_-lg(_-last - _-first) * 2
}

\section*{Concepts (C++20)}
```

\#include <algorithm>
\#include <vector>
\#include <list>
\#include <iterator>
template<std::random_access_iterator Iter>
void clever_sort(Iter begin, Iter end) {
if (!is_sorted(begin, end))
std::sort(begin, end);
}
int main() {
std::vector<int> data1 = {3,-1,10};
clever_sort(data1.begin(), data1.end());
std::list<int> data2 = {3,-1,10};
clever_sort(data2.begin(), data2.end());
}

```

In function 'int main()':
<source>:18:14: error: no matching function for call to 'clever_sort(std::__cxx11::list<int>: : iterator, std::__cxx11::list<int>::iterator)
18 | clever_sort(data2.begin(), data2.end());
<source>:8:6: note: candidate: 'template<class Iter> requires random_access_iterator<Iter> void clever_sort(Iter, Iter)'
8 | void clever_sort(Iter begin, Iter end) \{ 1
<source>:8:6: note: template argument deduction/substitution failed:
<source>:8:6: note: constraints not satisfied
In file included from /opt/compiler-explorer/gcc-11.2.0/include/c++/11.2.0/compare:39,
from /opt/compiler-explorer/gcc-11.2.0/include/c++/11.2.0/bits/stl_pair.h:65, from /opt/compiler-explorer/gcc-11.2.0/include/c++/11.2.0/utility:70, from /opt/compiler-explorer/gcc-11.2.0/include/c++/11.2.0/algorithm:60, from <source>:1:
/opt/compiler-explorer/gcc-11.2.0/include/c++/11.2.0/concepts: In substitution of 'template< class Iter> requires random_access_iterator<Iter> void clever_sort(Iter, Iter) [with Iter = std::_List_iterator<int>]':
<source>:18:14: required from here
/opt/compiler-explorer/gcc-11.2.0/include/c++/11.2.0/concepts:67:13: required for the satisfaction of 'derived_from<typename std::__detail::__iter_concept_impl<_Iter>::type, std::random_access_iterator_tag>' [with _Iter = std::_List_iterator<int>]
/opt/compiler-explorer/gcc-11.2.0/include/c++/11.2.0/bits/iterator_concepts.h:660:13: required for the satisfaction of 'random_access_iterator<Iter>' [with Iter = std:: _List_iterator<int>]
/opt/compiler-explorer/gcc-11.2.0/include/c++/11.2.0/concepts:67:28: note: 'std:: random_access_iterator_tag' is not a base of 'std::bidirectional_iterator_tag 67 | concept derived_from = __is_base_of (_Base, _Derived) I

\section*{Specialization}

■ Basic idea: general implementation for arbitrary types, but specialised (usually: more efficient) implementation for specific types
■ Applicable to data structures (e.g. more space-efficient internal representation) and algorithms (e.g. more efficient sorting)
- Examples:

■ General vector<T>, but space-compressed vector<bool>
■ Quicksort for a random-access container, Mergesort otherwise

\section*{Specialization}
```

template <>
class Pair<bool>{
short both;
public:
Pair(bool l, bool r):both{(1?1:0) + (r?2:0)} {};
std::ostream\& print (std::ostream\& os) const{
return os << "("<< both % 2 << "," << both /2 << ")";
}
};

```

\section*{Specialization}
```

template <>
class Pair<bool>{
short both;
public:
Pair(bool l, bool r):both{(1?1:0) + (r?2:0)} {};
std::ostream\& print (std::ostream\& os) const{
return os << "("<< both % 2 << "," << both /2 << ")";
}
};
Pair<int> i(10,20); // ok -- generic template
std::cout << i << std::endl; // (10,20);
Pair<bool> b(true, false); // ok -- special bool version
std::cout << b << std::endl; // (1,0)

```

\section*{Template Parameterization with Values}
```

template <typename T, int size>
class CircularBuffer{
T buf[size] ;
int in; int out;

```


\section*{Template Parameterization with Values}
```

template <typename T, int size>
class CircularBuffer{
T buf[size] ;
int in; int out;
public:
CircularBuffer():in{0},out{0}{};
bool empty(){
return in == out;
}
bool full(){
return (in + 1) % size == out;
}

```


\section*{Template Parameterization with Values}
```

template <typename T, int size>
class CircularBuffer{
T buf[size] ;
int in; int out;
public:
CircularBuffer():in{0},out{0}{};
bool empty(){
return in == out;
}
bool full(){
return (in + 1) % size == out;
}
void put(T x); // declaration
T get(); // declaration
};

```

\section*{Template Parameterization with Values}
template <typename T, int size>
void CircularBuffer<T,size>::put(T x)\{
    assert(!full());
    buf [in] = x;
    in = (in + 1) \% size;
\}


\section*{Template Parameterization with Values}
```

template <typename T, int size>
void CircularBuffer<T,size>::put(T x){
assert(!full());
buf[in] = x;
in = (in + 1) % size;
}
template <typename T, int size>
T CircularBuffer<T,size>::get(){
assert(!empty());
T x = buf[out];
out = (out + 1) % size;
return x;
}

```


\section*{Template Parameterization with Values}
```

template <typename T, int size>
void CircularBuffer<T,size>::put(T x){
assert(!full());
buf[in] = x;
in = (in + 1) % size;
}
template <typename T, int size>
T CircularBuffer<T,size>::get(){

```

```

 assert(!empty());
 T x = buf[out];
 out = (out + 1) % size; \longleftarrow Potential for optimization if size = 2k
 return x;
 }

```

\section*{Specialisation}

Specialisation has many different use cases, and can come in different forms:

■ Optimization by specialisation of types: e.g. vector<T> generic, and vector<bool> specific
■ Optimisation by specialisation for values: e.g. std::array<T, n>
■ Type-specifict implementation via specialisations: e.g. std: :hash<T>, used e.g. by std: :unordered_set.
This idea is the base of traits.

\section*{6. Searching}

Linear Search, Binary Search, (Interpolation Search,) Lower Bounds
[Ottman/Widmayer, Kap. 3.2, Cormen et al, Kap. 2: Problems 2.1-3,2.2-3,2.3-5]

\section*{The Search Problem}

\section*{Provided}
- A set of data sets
telephone book, dictionary, symbol table
■ Each dataset has a key \(k\).
■ Keys are comparable: unique answer to the question \(k_{1} \leq k_{2}\) for keys \(k_{1}\), \(k_{2}\).

Task: find data set by key \(k\).

\section*{Search in Array}

\section*{Provided}

■ Array \(A\) with \(n\) elements \((A[1], \ldots, A[n])\).
- Key \(b\)

Wanted: index \(k, 1 \leq k \leq n\) with \(A[k]=b\) or "not found".
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline 22 & 20 & 32 & 10 & 35 & 24 & 42 & 38 & 28 & 41 \\
\hline 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 \\
\hline
\end{tabular}

Linear Search

Traverse the array from \(A[1]\) to \(A[n]\).

\section*{Linear Search}

Traverse the array from \(A[1]\) to \(A[n]\).
■ Best case: 1 comparison.

\section*{Linear Search}

Traverse the array from \(A[1]\) to \(A[n]\).
■ Best case: 1 comparison.
■ Worst case: \(n\) comparisons.

\section*{Linear Search}

Traverse the array from \(A[1]\) to \(A[n]\).
■ Best case: 1 comparison.
■ Worst case: \(n\) comparisons.
- Assumption: each permutation of the \(n\) keys with same probability. Expected number of comparisons for the successful search:

\section*{Linear Search}

Traverse the array from \(A[1]\) to \(A[n]\).
■ Best case: 1 comparison.
■ Worst case: \(n\) comparisons.
- Assumption: each permutation of the \(n\) keys with same probability. Expected number of comparisons for the successful search:

\section*{Linear Search}

Traverse the array from \(A[1]\) to \(A[n]\).
■ Best case: 1 comparison.
■ Worst case: \(n\) comparisons.
- Assumption: each permutation of the \(n\) keys with same probability. Expected number of comparisons for the successful search:
\[
\frac{1}{n} \sum_{i=1}^{n} i=\frac{n+1}{2}
\]

\section*{Search in a Sorted Array}

\section*{Provided}

■ Sorted array \(A\) with \(n\) elements \((A[1], \ldots, A[n])\) with \(A[1] \leq A[2] \leq \cdots \leq A[n]\).
- Key b

Wanted: index \(k, 1 \leq k \leq n\) with \(A[k]=b\) or "not found".
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline 10 & 20 & 22 & 24 & 28 & 32 & 35 & 38 & 41 & 42 \\
\hline 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 \\
\hline
\end{tabular}

\section*{Divide and Conquer!}

Search \(b=23\).

\section*{Divide and Conquer!}

Search \(b=23\).
\begin{tabular}{c|c|c|c|c|c|c|c|c|c|}
\hline 10 & 20 & 22 & 24 & 28 & 32 & 35 & 38 & 41 & 42 \\
\hline 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 \\
\hline
\end{tabular}

\section*{Divide and Conquer!}

Search \(b=23\).
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline 10 & 20 & 22 & 24 & 28 & 32 & 35 & 38 & 41 & 42 & \(b<28\) \\
\hline 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & \\
\hline
\end{tabular}

\section*{Divide and Conquer!}

Search \(b=23\).
\begin{tabular}{c|c|c|c|c|c|c|c|c|c|c|}
\hline 10 & 20 & 22 & 24 & 28 & 32 & 35 & 38 & 41 & 42 & \(b<28\) \\
\(\rightarrow 1\) & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & \\
\hline 10 & 20 & 22 & 24 & 28 & 32 & 35 & 38 & 41 & 42 & \(b>20\) \\
\(\rightarrow 1\) & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 &
\end{tabular}

\section*{Divide and Conquer!}

Search \(b=23\).
\begin{tabular}{cccc|c|c|c|c|c|c|c|c|}
\hline 10 & 20 & 22 & 24 & 28 & 32 & 35 & 38 & 41 & 42 & \(b<28\) \\
\hline 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & \\
\hline 10 & 20 & 22 & 24 & 28 & 32 & 35 & 38 & 41 & 42 & \(b>20\) \\
\hline 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & \\
\hline 10 & 20 & 22 & 24 & 28 & 32 & 35 & 38 & 41 & 42 & \(b>22\) \\
\hline 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & \\
\hline 1
\end{tabular}

\section*{Divide and Conquer!}

Search \(b=23\).


\section*{Divide and Conquer!}

Search \(b=23\).


\section*{Binary Search Algorithm BSearch \((A, l, r, b)\)}

Input: Sorted array \(A\) of \(n\) keys. Key \(b\). Bounds \(1 \leq l, r \leq n\) mit \(l \leq r\) or \(l=r+1\).
Output: Index \(m \in[l, \ldots, r+1]\), such that \(A[i] \leq b\) for all \(l \leq i<m\) and \(A[i] \geq b\) for all \(m<i \leq r\).
\(m \leftarrow\lfloor(l+r) / 2\rfloor\)
if \(l>r\) then // Unsuccessful search return |
else if \(b=A[m]\) then \(/ /\) found return \(m\)
else if \(b<A[m]\) then \(/ /\) element to the left return \(\operatorname{BSearch}(A, l, m-1, b)\)
else \(/ / b>A[m]\) : element to the right return \(\operatorname{BSearch}(A, m+1, r, b)\)

\section*{Analysis (worst case)}

Recurrence ( \(n=2^{k}\) )
\[
T(n)= \begin{cases}d & \text { falls } n=1 \\ T(n / 2)+c & \text { falls } n>1\end{cases}
\]

Compute:
\[
T(n)=T\left(\frac{n}{2}\right)+c
\]

\section*{Analysis (worst case)}

Recurrence ( \(n=2^{k}\) )
\[
T(n)= \begin{cases}d & \text { falls } n=1 \\ T(n / 2)+c & \text { falls } n>1\end{cases}
\]

Compute:
\[
T(n)=T\left(\frac{n}{2}\right)+c=T\left(\frac{n}{4}\right)+2 c
\]

\section*{Analysis (worst case)}

Recurrence ( \(n=2^{k}\) )
\[
T(n)= \begin{cases}d & \text { falls } n=1 \\ T(n / 2)+c & \text { falls } n>1\end{cases}
\]

Compute:
\[
\begin{aligned}
T(n) & =T\left(\frac{n}{2}\right)+c=T\left(\frac{n}{4}\right)+2 c=\ldots \\
& =T\left(\frac{n}{2^{i}}\right)+i \cdot c
\end{aligned}
\]

\section*{Analysis (worst case)}

Recurrence ( \(n=2^{k}\) )
\[
T(n)= \begin{cases}d & \text { falls } n=1 \\ T(n / 2)+c & \text { falls } n>1\end{cases}
\]

Compute:
\[
\begin{aligned}
T(n) & =T\left(\frac{n}{2}\right)+c=T\left(\frac{n}{4}\right)+2 c=\ldots \\
& =T\left(\frac{n}{2^{i}}\right)+i \cdot c \\
& =T\left(\frac{n}{n}\right)+\log _{2} n \cdot c=d+c \cdot \log _{2} n \in \Theta(\log n)
\end{aligned}
\]

\section*{Analysis (worst case)}
\[
T(n)= \begin{cases}d & \text { if } n=1 \\ T(n / 2)+c & \text { if } n>1 .\end{cases}
\]

Guess: \(T(n)=d+c \cdot \log _{2} n\)
Proof by induction:

\section*{Analysis (worst case)}
\[
T(n)= \begin{cases}d & \text { if } n=1 \\ T(n / 2)+c & \text { if } n>1\end{cases}
\]

Guess : \(T(n)=d+c \cdot \log _{2} n\)
Proof by induction:
- Base clause: \(T(1)=d\).

\section*{Analysis (worst case)}
\[
T(n)= \begin{cases}d & \text { if } n=1 \\ T(n / 2)+c & \text { if } n>1\end{cases}
\]

Guess: \(T(n)=d+c \cdot \log _{2} n\)

\section*{Proof by induction:}

■ Base clause: \(T(1)=d\).
■ Hypothesis: \(T(n / 2)=d+c \cdot \log _{2} n / 2\)

\section*{Analysis (worst case)}
\[
T(n)= \begin{cases}d & \text { if } n=1 \\ T(n / 2)+c & \text { if } n>1\end{cases}
\]

Guess: \(T(n)=d+c \cdot \log _{2} n\)

\section*{Proof by induction:}

■ Base clause: \(T(1)=d\).
■ Hypothesis: \(T(n / 2)=d+c \cdot \log _{2} n / 2\)
■ Step: \((n / 2 \rightarrow n)\)
\[
T(n)=T(n / 2)+c=d+c \cdot\left(\log _{2} n-1\right)+c=d+c \log _{2} n
\]

\section*{Result}

\section*{Theorem 8}

The binary sorted search algorithm requires \(\Theta(\log n)\) fundamental operations in the worst case.

\section*{Iterative Binary Search Algorithm}

Input: Sorted array \(A\) of \(n\) keys. Key \(b\).
Output: Index of the found element. 0, if unsuccessful.
\(l \leftarrow 1 ; r \leftarrow n\)
while \(l \leq r\) do
\(m \leftarrow\lfloor(l+r) / 2\rfloor\)
if \(A[m]=b\) then
return \(m\)
else if \(A[m]<b\) then
\[
l \leftarrow m+1
\]
else
\[
r \leftarrow m-1
\]
return NotFound;

\section*{Correctness}

Algorithm terminates only if \(A\) is empty or \(b\) is found. Invariant: If \(b\) is in \(A\) then \(b\) is in domain \(A[l . . r]\)

\section*{Proof by induction}
- Base clause \(b \in A[1 . . n]\) (oder nicht)
- Hypothesis: invariant holds after \(i\) steps.
- Step:
\[
\begin{aligned}
& b<A[m] \Rightarrow b \in A[l . . m-1] \\
& b>A[m] \Rightarrow b \in A[m+1 . . r]
\end{aligned}
\]

\section*{Lower Bounds}

Binary Search (worst case): \(\Theta(\log n)\) comparisons.
Does for any comparison-based search algorithm in a sorted array (worst case) hold that number comparisons \(=\Omega(\log n)\) ?

\section*{Decision tree}


\section*{Decision Tree}

Binary tree with height \(h\) has at most \(2^{0}+2^{1}+\cdots+2^{h-1}=2^{h}-1<2^{h}\) nodes.

\section*{Decision Tree}

Binary tree with height \(h\) has at most \(2^{0}+2^{1}+\cdots+2^{h-1}=2^{h}-1<2^{h}\) nodes.
\[
2^{h}>n \Rightarrow h>\log _{2} n
\]

Decision tree with \(n\) node has at least height \(\log _{2} n\).

\section*{Decision Tree}

Binary tree with height \(h\) has at most \(2^{0}+2^{1}+\cdots+2^{h-1}=2^{h}-1<2^{h}\) nodes.
\[
2^{h}>n \Rightarrow h>\log _{2} n
\]

Decision tree with \(n\) node has at least height \(\log _{2} n\).
Number decisions \(=\Omega(\log n)\).

\section*{Theorem 9}

Any comparison-based search algorithm on sorted data with length \(n\) requires in the worst case \(\Omega(\log n)\) comparisons.

\section*{Lower bound for Search in Unsorted Array}

\section*{Theorem 10}

Any comparison-based search algorithm with unsorted data of length \(n\) requires in the worst case \(\Omega(n)\) comparisons.

\section*{Attempt}

\section*{Correct?}
"Proof": to find \(b\) in \(A, b\) must be compared with each of the \(n\) elements \(A[i](1 \leq i \leq n)\).

\section*{Attempt}

\section*{Correct?}
"Proof": to find \(b\) in \(A, b\) must be compared with each of the \(n\) elements \(A[i](1 \leq i \leq n)\).
Wrong argument! It is still possible to compare elements within \(A\).

\section*{Better Argument}


■ Different comparisons: Number comparisons with b: e Number comparisons without \(b: i\)
- Comparisons induce \(g\) groups. Initially \(g=n\).

\section*{Better Argument}


■ Different comparisons: Number comparisons with b: e Number comparisons without \(b: i\)
■ Comparisons induce \(g\) groups. Initially \(g=n\).
■ To connect two groups at least one comparison is needed: \(n-g \leq i\).

\section*{Better Argument}


■ Different comparisons: Number comparisons with b: e Number comparisons without \(b: i\)
■ Comparisons induce \(g\) groups. Initially \(g=n\).
■ To connect two groups at least one comparison is needed: \(n-g \leq i\).

\section*{Better Argument}


■ Different comparisons: Number comparisons with b: e Number comparisons without \(b: i\)
■ Comparisons induce \(g\) groups. Initially \(g=n\).
■ To connect two groups at least one comparison is needed: \(n-g \leq i\).

\section*{Better Argument}


■ Different comparisons: Number comparisons with b: e Number comparisons without \(b: i\)
■ Comparisons induce \(g\) groups. Initially \(g=n\).
■ To connect two groups at least one comparison is needed: \(n-g \leq i\).

\section*{Better Argument}


■ Different comparisons: Number comparisons with b: e Number comparisons without \(b: i\)
■ Comparisons induce \(g\) groups. Initially \(g=n\).
■ To connect two groups at least one comparison is needed: \(n-g \leq i\).
■ At least one element per group must be compared with \(b\).

\section*{Better Argument}


■ Different comparisons: Number comparisons with b: e Number comparisons without \(b: i\)
■ Comparisons induce \(g\) groups. Initially \(g=n\).
■ To connect two groups at least one comparison is needed: \(n-g \leq i\).
■ At least one element per group must be compared with \(b\).
■ Number comparisons \(i+e \geq n-g+g=n\).

\section*{7. Selection}

The Selection Problem, Randomised Selection, Linear Worst-Case Selection [Ottman/Widmayer, Kap. 3.1, Cormen et al, Kap. 9]

\section*{The Problem of Selection}

Input
■ unsorted array \(A=\left(A_{1}, \ldots, A_{n}\right)\) with pairwise different values
- Number \(1 \leq k \leq n\).

Output \(A[i]\) with \(|\{j: A[j]<A[i]\}|=k-1\)

\section*{Special cases}
\(k=1\) : Minimum: Algorithm with \(n\) comparison operations trivial.
\(k=n\) : Maximum: Algorithm with \(n\) comparison operations trivial.
\(k=\lfloor n / 2\rfloor:\) Median.

Naive Algorithm

\section*{Naive Algorithm}

Repeatedly find and remove the minimum \(\Theta(k \cdot n)\).
\(\rightarrow\) Median in \(\Theta\left(n^{2}\right)\)

\section*{Better Approaches}

\section*{Better Approaches}

■ Sorting (covered soon): \(\Theta(n \log n)\)

\section*{Better Approaches}
- Sorting (covered soon): \(\Theta(n \log n)\)

■ Use a pivot: \(\Theta(n)\) !

Use a pivot


\section*{Use a pivot}
1. Choose a (an arbitrary) pivot \(p\)


\section*{Use a pivot}
1. Choose a (an arbitrary) pivot \(p\)
2. Partition \(A\) in two parts, and determine the rank of \(p\) by counting the indices \(i\) with \(A[i] \leq p\).


\section*{Use a pivot}
1. Choose a (an arbitrary) pivot \(p\)
2. Partition \(A\) in two parts, and determine the rank of \(p\) by counting the indices \(i\) with \(A[i] \leq p\).


\section*{Use a pivot}
1. Choose a (an arbitrary) pivot \(p\)
2. Partition \(A\) in two parts, and determine the rank of \(p\) by counting the indices \(i\) with \(A[i] \leq p\).


\section*{Use a pivot}
1. Choose a (an arbitrary) pivot \(p\)
2. Partition \(A\) in two parts, and determine the rank of \(p\) by counting the indices \(i\) with \(A[i] \leq p\).
3. Recursion on the relevant part. If \(k=r\) then found.


\section*{Algorithm Partition( \(A, l, r, p)\)}

Input: Array \(A\), that contains the pivot \(p\) in \(A[l, \ldots, r]\) at least once. Output: Array \(A\) partitioned in \([l, \ldots, r]\) around \(p\). Returns position of \(p\). while \(l \leq r\) do
while \(A[l]<p\) do
\(L l \leftarrow l+1\)
while \(A[r]>p\) do
\(L \leftarrow \leftarrow-1\)
\(\operatorname{swap}(A[l], A[r])\)
if \(A[l]=A[r]\) then
\(L l \leftarrow l+1\)
return l-1

\section*{Correctness: Invariant}

Invariant \(I: A_{i} \leq p \forall i \in[0, l), A_{i} \geq p \forall i \in(r, n], \exists k \in[l, r]: A_{k}=p\).
while \(l \leq r\) do
\[
\begin{array}{ll}
\hline \text { while } A[l]<p \text { do } & I \\
L l \leftarrow l+1 & I \text { und } A[l] \geq p \\
\hline \text { while } A[r]>p \text { do } & I \text { und } A[r] \leq p \\
L r \leftarrow r-1 & I \text { und } A[l] \leq p \\
\hline \text { swap }(A[l], A[r]) & I
\end{array}
\]
return l-1

\section*{Correctness: progress}
while \(l \leq r\) do
\[
\begin{array}{ll}
\text { while } A[l]<p \text { do } & \text { progress if } A[l]<p \\
L l \leftarrow l+1 & \\
\text { while } A[r]>p \text { do } & \text { progress if } A[r]>p \\
L r \leftarrow r-1 & \\
\text { swap }(A[l], A[r]) & \text { progress if } A[l]>p \text { oder } A \\
\text { if } A[l]=A[r] \text { then } & \text { progress if } A[l]=A[r]=p \\
L \leftarrow l+1 &
\end{array}
\]
return l-1

\section*{Choice of the pivot.}

The minimum is a bad pivot: worst case \(\Theta(\) ? )


\section*{Choice of the pivot.}

The minimum is a bad pivot: worst case \(\Theta(\) ? \()\)


\section*{Choice of the pivot.}

The minimum is a bad pivot: worst case \(\Theta(\) ? \()\)


\section*{Choice of the pivot.}

The minimum is a bad pivot: worst case \(\Theta(\) ? \()\)


\section*{Choice of the pivot.}

The minimum is a bad pivot: worst case \(\Theta\left(n^{2}\right)\)
\begin{tabular}{|l|l|l|l|l|l|l|l|l|l|}
\hline\(p_{1}\) & \(p_{2}\) & \(p_{3}\) & \(p_{4}\) & \(p_{5}\) & & & & & \\
\hline
\end{tabular}

\section*{Choice of the pivot.}

The minimum is a bad pivot: worst case \(\Theta\left(n^{2}\right)\)
\begin{tabular}{|l|l|l|l|l|l|l|l|l|l|}
\hline\(p_{1}\) & \(p_{2}\) & \(p_{3}\) & \(p_{4}\) & \(p_{5}\) & & & & & \\
\hline
\end{tabular}

A good pivot has a linear number of elements on both sides.


\section*{Analysis}

Partitioning with factor \(q(0<q<1)\) : two groups with \(q \cdot n\) and \((1-q) \cdot n\) elements (without loss of generality \(g \geq 1-q\) ).
\[
\begin{aligned}
T(n) & \leq T(q \cdot n)+c \cdot n \\
& \leq c \cdot n+q \cdot c \cdot n+T\left(q^{2} \cdot n\right) \leq \ldots=c \cdot n \sum_{i=0}^{\log _{q}(n)-1} q^{i}+T(1) \\
& \leq c \cdot n \underbrace{\sum_{i=0}^{\infty} q^{i}}_{\text {geom. Reihe }}+d=c \cdot n \cdot \frac{1}{1-q}+d=\mathcal{O}(n)
\end{aligned}
\]

\section*{How can we achieve this?}

Randomness to our rescue (Tony Hoare, 1961). In each step choose a random pivot.


Probability for a good pivot in one trial: \(\frac{1}{2}=: \rho\).
Probability for a good pivot after \(k\) trials: \((1-\rho)^{k-1} \cdot \rho\).
Expected number of trials: \(1 / \rho=2\) (Expected value of the geometric distribution:)

\section*{Algorithm Quickselect \((A, l, r, k)\)}
```

Input: Array A with length n. Indices $1 \leq l \leq k \leq r \leq n$, such that for all
$x \in A[l . . r]:|\{j \mid A[j] \leq x\}| \geq l$ and $|\{j \mid A[j] \leq x\}| \leq r$.
Output: Value $x \in A[l . . r]$ with $|\{j \mid A[j] \leq x\}| \geq k$ and $|\{j \mid x \leq A[j]\}| \geq n-k+1$
if $I=r$ then
return $A[l]$;
$x \leftarrow \operatorname{RandomPivot}(A, l, r)$
$m \leftarrow \operatorname{Partition}(A, l, r, x)$
if $k<m$ then
return QuickSelect $(A, l, m-1, k)$
else if $k>m$ then
return QuickSelect $(A, m+1, r, k)$
else
return $A[k]$

```

\section*{Algorithm RandomPivot \((A, l, r)\)}

Input: Array \(A\) with length \(n\). Indices \(1 \leq l \leq r \leq n\)
Output: Random "good" pivot \(x \in A[l, \ldots, r]\)
repeat
choose a random pivot \(x \in A[l . . r]\)
\(p \leftarrow l\)
\[
\text { for } j=l \text { to } r \text { do }
\]
\[
\text { if } A[j] \leq x \text { then } p \leftarrow p+1
\]
until \(\left\lfloor\frac{3 l+r}{4}\right\rfloor \leq p \leq\left\lceil\frac{l+3 r}{4}\right\rceil\)
return \(x\)
This algorithm is only of theoretical interest and delivers a good pivot in 2 expected iterations. Practically, in algorithm QuickSelect a uniformly chosen random pivot can be chosen or a deterministic one such as the median of three elements.

\section*{Median of medians}

Goal: find an algorithm that even in worst case requires only linearly many steps.
Algorithm Select ( \(k\)-smallest)
■ Consider groups of five elements.
■ Compute the median of each group (straighforward)
- Apply Select recursively on the group medians.
- Partition the array around the found median of medians. Result: \(i\)

■ If \(i=k\) then result. Otherwise: select recursively on the proper side.

Median of medians
\(\square \square \cdot\)

Median of medians

1. groups of five

Median of medians

1. groups of five
2. medians

\section*{Median of medians}
\(\square\)
1. groups of five
2. medians
3. recursion for pivot

\section*{Median of medians}
\(\square\)
1. groups of five
2. medians
3. recursion for pivot

\section*{Median of medians}


\section*{Algorithmus MMSelect \((A, l, r, k)\)}

Input: Array \(A\) with length \(n\) with pair-wise different entries. \(1 \leq l \leq k \leq r \leq n\), \(A[i]<A[k] \forall 1 \leq i<l, A[i]>A[k] \forall r<i \leq n\)
Output: Value \(x \in A\) with \(|\{j \mid A[j] \leq x\}|=k\)
\(m \leftarrow \operatorname{MMChoose}(A, l, r)\)
\(i \leftarrow \operatorname{Partition}(A, l, r, m)\)
if \(k<i\) then
return MMSelect \((A, l, i-1, k)\)
else if \(k>i\) then
return MMSelect \((A, i+1, r, k)\)
else
return \(A[i]\)

\section*{Algorithmus MMChoose \((A, l, r)\)}

Input: Array \(A\) with length \(n\) with pair-wise different entries. \(1 \leq l \leq r \leq n\). Output: Median \(m\) of medians if \(r-l \leq 5\) then return MedianOf5( \(A[l, \ldots, r])\)
else
\(A^{\prime} \leftarrow \operatorname{MedianOf5Array}(A[l, \ldots, r])\)
return MMSelect \(\left(A^{\prime}, 1,\left|A^{\prime}\right|,\left\lfloor\frac{\left|A^{\prime}\right|}{2}\right\rfloor\right)\)

How good is this?


How good is this?


How good is this?


How good is this?


\section*{How good is this?}


■ Number groups of five: \(\left\lceil\frac{n}{5}\right\rceil\), without median group: \(\left\lceil\frac{n}{5}\right\rceil-1\)
- Minimal number groups left / right of Mediangroup \(\left\lfloor\frac{1}{2}\left(\left\lceil\frac{n}{5}\right\rceil-1\right)\right\rfloor\)
- Minimal number of points less than / greater than \(m\)
\[
3\left\lfloor\frac{1}{2}\left(\left[\frac{n}{5}\right\rceil-1\right)\right\rfloor \geq 3\left\lfloor\frac{1}{2}\left(\frac{n}{5}-1\right)\right\rfloor \geq 3\left(\frac{n}{10}-\frac{1}{2}-1\right)>\frac{3 n}{10}-6
\]
(Fill rest group with points from the median group)

\section*{How good is this?}


■ Number groups of five: \(\left\lceil\frac{n}{5}\right\rceil\), without median group: \(\left\lceil\frac{n}{5}\right\rceil-1\)
- Minimal number groups left / right of Mediangroup \(\left\lfloor\frac{1}{2}\left(\left\lceil\frac{n}{5}\right\rceil-1\right)\right\rfloor\)
- Minimal number of points less than / greater than \(m\)
\[
3\left\lfloor\frac{1}{2}\left(\left[\frac{n}{5}\right\rceil-1\right)\right\rfloor \geq 3\left\lfloor\frac{1}{2}\left(\frac{n}{5}-1\right)\right\rfloor \geq 3\left(\frac{n}{10}-\frac{1}{2}-1\right)>\frac{3 n}{10}-6
\]
(Fill rest group with points from the median group)
\(\Rightarrow\) Recursive call with maximally \(\left\lceil\frac{7 n}{10}+6\right\rceil\) elements.

\section*{Analysis}

Recursion inequality:
\[
T(n) \leq T\left(\left\lceil\frac{n}{5}\right\rceil\right)+T\left(\left\lceil\frac{7 n}{10}+6\right\rceil\right)+d \cdot n
\]
with some constant \(d\).
Claim:
\[
T(n)=\mathcal{O}(n)
\]

\section*{Proof}

Base clause: \({ }^{7}\) choose \(c\) large enough such that
\[
T(n) \leq c \cdot n \text { für alle } n \leq n_{0} \text {. }
\]

Induction hypothesis: \(H(n)\)
\[
T(i) \leq c \cdot i \text { für alle } i<n \text {. }
\]

Induction step: \(H(k)_{k<n} \rightarrow H(n)\)
\[
\begin{aligned}
T(n) & \leq T\left(\left\lceil\frac{n}{5}\right\rceil\right)+T\left(\left\lceil\frac{7 n}{10}+6\right\rceil\right)+d \cdot n \\
& \leq c \cdot\left\lceil\frac{n}{5}\right\rceil+c \cdot\left\lceil\frac{7 n}{10}+6\right\rceil+d \cdot n \quad(\text { for } n>20) .
\end{aligned}
\]

\footnotetext{
\({ }^{7}\) It will turn out in the induction step that the base case has to hold of some fixed \(n_{0}>0\). Because an arbitrarily large value can be chosen for \(c\) and because there is a limited number of terms, this is a simple extension of the base case for \(n=1\)
}

\section*{Proof}

Induction step:
\[
\begin{aligned}
T(n) & \stackrel{n>20}{\leq} c \cdot\left\lceil\frac{n}{5}\right\rceil+c \cdot\left\lceil\frac{7 n}{10}+6\right\rceil+d \cdot n \\
& \leq c \cdot \frac{n}{5}+c+c \cdot \frac{7 n}{10}+6 c+c+d \cdot n=\frac{9}{10} \cdot c \cdot n+8 c+d \cdot n .
\end{aligned}
\]

To show
\[
\exists n_{0}, \exists c \quad \left\lvert\, \quad \frac{9}{10} \cdot c \cdot n+8 c+d \cdot n \leq c n \quad \forall n \geq n_{0}\right.
\]
thus
\[
8 c+d \cdot n \leq \frac{1}{10} c n \quad \Leftrightarrow \quad n \geq \frac{80 c}{c-10 d}
\]

Set, for example \(c=90 d, n_{0}=91 \quad \Rightarrow T(n) \leq c n \forall n \geq n_{0}\)

\section*{Result}

\section*{Theorem 11}

The \(k\)-th element of a sequence of \(n\) elements can, in the worst case, be found in \(\Theta(n)\) steps.

\section*{Overview}
\begin{tabular}{lll} 
1. & Repeatedly find minimum & \(\mathcal{O}\left(n^{2}\right)\) \\
\hline 2. & Sorting and choosing \(A[i]\) & \(\mathcal{O}(n \log n)\) \\
\hline 3. & Quickselect with random pivot & \(\mathcal{O}(n)\) expected \\
\hline 4. & Median of Medians (Blum) & \(\mathcal{O}(n)\) worst case
\end{tabular}


\subsection*{7.1 Appendix}

Derivation of some mathemmatical formulas

\section*{[Expected value of the Geometric Distribution]}

Random variable \(X \in \mathbb{N}^{+}\)with \(\mathbb{P}(X=k)=(1-p)^{k-1} \cdot p\).
Expected value
\[
\begin{aligned}
\mathbb{E}(X) & =\sum_{k=1}^{\infty} k \cdot(1-p)^{k-1} \cdot p=\sum_{k=1}^{\infty} k \cdot q^{k-1} \cdot(1-q) \\
& =\sum_{k=1}^{\infty} k \cdot q^{k-1}-k \cdot q^{k}=\sum_{k=0}^{\infty}(k+1) \cdot q^{k}-k \cdot q^{k} \\
& =\sum_{k=0}^{\infty} q^{k}=\frac{1}{1-q}=\frac{1}{p} .
\end{aligned}
\]

\section*{8. Sorting I}

Simple Sorting

\subsection*{8.1 Simple Sorting}

Selection Sort, Insertion Sort, Bubblesort [Ottman/Widmayer, Kap. 2.1, Cormen et al, Kap. 2.1, 2.2, Exercise 2.2-2, Problem 2-2

\section*{Problem}

Input: An array \(A=(A[1], \ldots, A[n])\) with length \(n\).
Output: a permutation \(A^{\prime}\) of \(A\), that is sorted: \(A^{\prime}[i] \leq A^{\prime}[j]\) for all \(1 \leq i \leq j \leq n\).

\section*{Algorithm: IsSorted(A)}
```

Input: \quad Array $A=(A[1], \ldots, A[n])$ with length n.
Output: Boolean decision "sorted" or "not sorted"
for $i \leftarrow 1$ to $n-1$ do
if $A[i]>A[i+1]$ then
return "not sorted";
return "sorted";

```

\section*{Observation}

IsSorted \((A)\) :"not sorted", if \(A[i]>A[i+1]\) for any \(i\).

\section*{Observation}

IsSorted \((A)\) :"not sorted", if \(A[i]>A[i+1]\) for any \(i\).
\(\Rightarrow\) idea:

\section*{Observation}

IsSorted \((A)\) :"not sorted", if \(A[i]>A[i+1]\) for any \(i\).
\(\Rightarrow\) idea:
\[
\begin{aligned}
& \text { for } j \leftarrow 1 \text { to } n-1 \text { do } \\
& \qquad \begin{array}{l}
\text { if } A[j]>A[j+1] \text { then } \\
\lfloor\operatorname{swap}(A[j], A[j+1]) ;
\end{array}
\end{aligned}
\]

Give it a try
\[
\begin{array}{|c|c|c|ccc|}
\hline 5 \leftrightarrow & 2 & 8 & 4 & 1 & (j=1)
\end{array}
\]

Give it a try
\[
\begin{array}{ccccccc}
\hline 5 & 6 & 2 & 8 & 4 & 1 & (j=1) \\
5 & 6 \leftrightarrow & 2 & 8 & 4 & 1 & (j=2)
\end{array}
\]

Give it a try
[5k (6 2] 8 [4 1 \(\quad(j=1)\)
(5) \(6 \leqslant \sqrt{2} 8 \quad 4 \quad 1 \quad(j=2)\)
(5) 2] \(6 k \sqrt{6} \quad 1 \quad(j=3)\)

Give it a try

(5) 6ト~2 \(8 \quad 4 \quad 1 \quad(j=2)\)
(5) 2] 6k 8 [1] \(\quad(j=3)\)

5 2 6 8

Give it a try

(5) 6ト~2 \(8 \quad 4 \quad 1 \quad(j=2)\)
(5) 2] 6k 8 [1 \(\quad(j=3)\)

5 2 6 6 8- \(4 \quad(j=4)\)
(5) 2] 6 [8k \(\sqrt{1} \quad(j=5)\)

Give it a try

(5) 6ト~2 \(8 \quad 4 \quad 1 \quad(j=2)\)
(5) 2] 6k 8 [1] \(\quad(j=3)\)

5 2 6 6 8- \(4 \quad(j=4)\)
(5) 2] 64 [8k 1 ( \(j=5)\)

5 2 6 4 [1 8

\section*{Give it a try}
\begin{tabular}{|lllllll}
\hline 5 & \(\boxed{6}\) & 2 & 8 & 4 & 1 & \((j=1)\)
\end{tabular}
\(\begin{array}{lllllll}5 & 6 & 2 & 8 & 4 & \boxed{1} \quad(j=2)\end{array}\)
■ Not sorted! - \(^{-}\)
\(\begin{array}{lllllll}5 & 2 & 6 & 8 & 4 & 1 & (j=3)\end{array}\)
\(\begin{array}{lllllll}5 & 2 & 6 & 8 & 4 & 1 & (j=4)\end{array}\)
\(\begin{array}{lllllll}5 & 2 & 6 & 4 & 8 & 1 & (j=5)\end{array}\)
\(\begin{array}{lllllll}5 & 2 & 6 & 4 & 1 & 8\end{array}\)

\section*{Give it a try}
\begin{tabular}{|lllllll}
\hline 5 & \(\boxed{6}\) & 2 & 8 & 4 & 1 & \((j=1)\)
\end{tabular}
\(\begin{array}{lllllll}5 & 6 & 2 & 8 & 4 & \boxed{1} \quad(j=2)\end{array}\)
■ Not sorted! - \(^{-}\)
\(\begin{array}{lllllll}5 & 2 & 6 & 8 & 4 & 1 & (j=3)\end{array}\)
\(\begin{array}{lllllll}5 & 2 & 6 & 8 & 4 & 1 & (j=4)\end{array}\)
\(\begin{array}{lllllll}5 & 2 & 6 & 4 & 8 & 1 & (j=5)\end{array}\)
\(\begin{array}{lllllll}5 & 2 & 6 & 4 & 1 & 8\end{array}\)

\section*{Give it a try}
\[
\begin{aligned}
& \text { (5) 2] } 6 k \sqrt{8}[1 \quad(j=3) \\
& \text { (5) 2] } 8 \text { 8 }-4 \quad(j=4) \\
& \text { 5 2] } 64^{8} \leftrightarrow \sqrt{1} \quad(j=5) \\
& \text { 5 } 2 \times 6418
\end{aligned}
\]
- Not sorted! \()^{-}\)
- But the greatest element moves to the right
\[
\Rightarrow \text { new idea! } ;
\]

\section*{Try it out}
iteratively.

\section*{Try it out}

> iteratively.
> - For \(A[1, \ldots, n]\),

\section*{Try it out}

\section*{Try it out}

\section*{Try it out}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline 5 & 6 & 2 & 8 & 4 & 1 & ( \(j=1, i=1\) ) & \\
\hline 5 & 6 & 2 & 8 & 4 & 1 & ( \(j=2\) ) & \\
\hline 5 & 2 & 6 & 8 & 4 & 1 & \((j=3)\) & \\
\hline 5 & 2 & 6 & 8 & 4 & 1 & \((j=4)\) & \\
\hline 5 & 2 & 6 & 4 & 8 & 1 & \((j=5)\) & ■ Apply the procedure \\
\hline 5 & 2 & 6 & 4 & \(\square\) & 8 & \((j=1, i=2)\) & iteratively. \\
\hline 2 & 5 & 6 & 4 & 1 & 8 & \((j=2)\) & iteratively. \\
\hline 2 & 5 & 6 & 4 & \(\square\) & 8 & \((j=3)\) & ■ For \(A[1, \ldots, n]\), \\
\hline 2 & 5 & 4 & 6 & 1 & 8 & \((j=4)\) & then \(A[1, \ldots, n-1]\), \\
\hline
\end{tabular}

\section*{Try it out}

\section*{Try it out}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline 5 & 6 & 2 & 8 & 4 & 1 & ( \(j=1, i=1)\) & \\
\hline 5 & 6 & 2 & 8 & 4 & 1 & ( \(j=2\) ) & \\
\hline 5 & 2 & 6 & 8 & 4 & 1 & \((j=3)\) & \\
\hline 5 & 2 & 6 & 8 & 4 & 1 & \((j=4)\) & \\
\hline 5 & 2 & 6 & 4 & 8 & 1 & ( \(j=5\) ) & - Apply the procedure \\
\hline 5 & 2 & 6 & 4 & 1 & 8 & \((j=1, i=2)\) & iteratively. \\
\hline 2 & 5 & 6 & 4 & 1 & 8 & ( \(j=2\) ) & \\
\hline 2 & 5 & 6 & 4 & 1 & 8 & \((j=3)\) & ■ For \(A[1, \ldots, n]\), \\
\hline 2 & 5 & 4 & 6 & 1 & 8 & ( \(j=4\) ) & \\
\hline 2 & 5 & 4 & 1 & 6 & 8 & \((j=1, i=3)\) & then \(A[1, \ldots, n-1]\), \\
\hline 2 & 5 & 4 & \(\square\) & 6 & 8 & ( \(j=2\) ) & then \(A[1, \ldots, n-2]\), \\
\hline 2 & 4 & 5 & 1 & 6 & 8 & ( \(j=3\) ) & \\
\hline 2 & 4 & 1 & 5 & 6 & 8 & \((j=1, i=4)\) & \\
\hline
\end{tabular}

\section*{Try it out}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline 5 & 6 & 2 & 8 & 4 & 1 & ( \(j=1, i=1\) ) & \\
\hline 5 & 6 & 2 & 8 & 4 & 1 & ( \(j=2\) ) & \\
\hline 5 & 2 & 6 & 8 & 4 & 1 & ( \(j=3\) ) & \\
\hline 5 & 2 & 6 & 8 & 4 & 1 & ( \(j=4\) ) & \\
\hline 5 & 2 & 6 & 4 & 8 & 1 & \((j=5)\) & - Apply the procedure \\
\hline 5 & 2 & 6 & 4 & 1 & 8 & \((j=1, i=2)\) & iteratively. \\
\hline 2 & 5 & 6 & 4 & 1 & 8 & \((j=2)\) & iteratively. \\
\hline 2 & 5 & 6 & 4 & 1 & 8 & \((j=3)\) & \(\square\) For \(A[1, \ldots, n]\), \\
\hline 2 & 5 & 4 & 6 & 1 & 8 & ( \(j=4\) ) & then \(A[1, \ldots, n-1]\), \\
\hline 2 & 5 & 4 & 1 & 6 & 8 & \((j=1, i=3)\) & then \(A[1, \ldots, n-1]\), \\
\hline 2 & 5 & 4 & 1 & 6 & 8 & \((j=2)\) & then \(A[1, \ldots, n-2]\), \\
\hline 2 & 4 & 5 & 1 & 6 & 8 & ( \(j=3\) ) & etc. \\
\hline 2 & 4 & 1 & 5 & 6 & 8 & \((j=1, i=4)\) & \\
\hline 2 & 4 & 1 & 5 & 6 & 8 & ( \(j=2\) ) & \\
\hline 2 & 1 & 4 & 5 & 6 & 8 & \((i=1, j=5)\) & \\
\hline 1 & 2 & 4 & 5 & 6 & 8 & & \\
\hline
\end{tabular}

\section*{Algorithm: Bubblesort}
```

Input: Array }A=(A[1],···,A[n]),n\geq0
Output: Sorted Array A
for }i\leftarrow1\mathrm{ to }n-1\mathrm{ do
for }j\leftarrow1\mathrm{ to }n-i\mathrm{ do
if }A[j]>A[j+1] the
swap(A[j],A[j+1]);

```

\section*{Analysis}

Number key comparisons \(\sum_{i=1}^{n-1}(n-i)=\frac{n(n-1)}{2}=\Theta\left(n^{2}\right)\).
Number swaps in the worst case: \(\Theta\left(n^{2}\right)\)
What is the worst case?

\section*{Analysis}

Number key comparisons \(\sum_{i=1}^{n-1}(n-i)=\frac{n(n-1)}{2}=\Theta\left(n^{2}\right)\).
Number swaps in the worst case: \(\Theta\left(n^{2}\right)\)
What is the worst case?
If \(A\) is sorted in decreasing order.

\section*{Selection Sort}
\[
\begin{array}{|llllll}
\hline 5 & 6 & 2 & 8 & 4 & \boxed{1}
\end{array} \quad(i=1)
\]
- Selection of the smallest element by search in the unsorted part \(A[i . . n]\) of the array.

\section*{Selection Sort}

\section*{\begin{tabular}{lllllll}
\hline 5 & 6 & 2 & 8 & 4 & 1 & \((i=1)\)
\end{tabular}}
- Selection of the smallest element by search in the unsorted part \(A[i . . n]\) of the array.
- Swap the smallest element with the first element of the unsorted part.

\section*{Selection Sort}
\[
\begin{array}{lllllll}
\hline 5 & 6 & 2 & 8 & 4 & \boxed{1} & (i=1) \\
4 & & (i=1 & \\
\hline 1 & 6 & 2 & 8 & 4 & 5 & (i=2)
\end{array}
\]
- Selection of the smallest element by search in the unsorted part \(A[i . . n]\) of the array.

■ Swap the smallest element with the first element of the unsorted part.
- Unsorted part decreases in size by one element ( \(i \rightarrow i+1\) ). Repeat until all is sorted. \((i=n)\)

\section*{Selection Sort}
\[
\begin{array}{lllllll}
\hline 5 & 6 & 2 & 8 & 4 & \boxed{1} & (i=1) \\
4 & & (i=1 & \\
\hline 1 & 6 & 2 & 8 & 4 & 5 & (i=2)
\end{array}
\]
- Selection of the smallest element by search in the unsorted part \(A[i . . n]\) of the array.

■ Swap the smallest element with the first element of the unsorted part.
- Unsorted part decreases in size by one element ( \(i \rightarrow i+1\) ). Repeat until all is sorted. \((i=n)\)

\section*{Selection Sort}

- Selection of the smallest element by search in the unsorted part \(A[i . . n]\) of the array.

■ Swap the smallest element with the first element of the unsorted part.

■ Unsorted part decreases in size by one element ( \(i \rightarrow i+1\) ). Repeat until all is sorted. \((i=n)\)

\section*{Selection Sort}

- Selection of the smallest element by search in the unsorted part \(A[i . . n]\) of the array.

■ Swap the smallest element with the first element of the unsorted part.

■ Unsorted part decreases in size by one element ( \(i \rightarrow i+1\) ). Repeat until all is sorted. \((i=n)\)

\section*{Selection Sort}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline 5 & 6 & 2 & 8 & 4 & 1 & \(=1)\) \\
\hline 1 & 6 & 2 & 8 & 4 & 5 & \(i=2)\) \\
\hline 1 & 2 & 6 & 8 & 4 & 5 & \(i=3)\) \\
\hline 1 & 2 & 4 & 8 & 6 & 5 & \((i=4)\) \\
\hline
\end{tabular}
- Selection of the smallest element by search in the unsorted part \(A[i . . n]\) of the array.

■ Swap the smallest element with the first element of the unsorted part.

■ Unsorted part decreases in size by one element ( \(i \rightarrow i+1\) ). Repeat until all is sorted. \((i=n)\)

\section*{Selection Sort}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline 5 & 6 & 2 & 8 & 4 & 1 & \(=1)\) \\
\hline 1 & 6 & 2 & 8 & 4 & 5 & \(i=2)\) \\
\hline 1 & 2 & 6 & 8 & 4 & 5 & \(i=3)\) \\
\hline 1 & 2 & 4 & 8 & 6 & 5 & \((i=4)\) \\
\hline
\end{tabular}
- Selection of the smallest element by search in the unsorted part \(A[i . . n]\) of the array.

■ Swap the smallest element with the first element of the unsorted part.

■ Unsorted part decreases in size by one element ( \(i \rightarrow i+1\) ). Repeat until all is sorted. \((i=n)\)

\section*{Selection Sort}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline 5 & 6 & 2 & 8 & 4 & 1 & ( \(i=1\) ) \\
\hline 1 & 6 & 2 & 8 & 4 & 5 & ( \(i=2\) ) \\
\hline 1 & 2 & 6 & 8 & 4 & 5 & ( \(i=3\) ) \\
\hline 1 & 2 & 4 & 8 & 6 & 5 & ( \(i=4\) ) \\
\hline 1 & 2 & 4 & 5 & 6 & 8 & ( \(i=5\) ) \\
\hline
\end{tabular}
- Selection of the smallest element by search in the unsorted part \(A[i . . n]\) of the array.
- Swap the smallest element with the first element of the unsorted part.
- Unsorted part decreases in size by one element ( \(i \rightarrow i+1\) ). Repeat until all is sorted. \((i=n)\)

\section*{Selection Sort}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline 5 & 6 & 2 & 8 & 4 & 1 & ( \(i=1\) ) \\
\hline 1 & 6 & 2 & 8 & 4 & 5 & ( \(i=2\) ) \\
\hline 1 & 2 & 6 & 8 & 4 & 5 & ( \(i=3\) ) \\
\hline 1 & 2 & 4 & 8 & 6 & 5 & ( \(i=4\) ) \\
\hline 1 & 2 & 4 & 5 & 6 & 8 & ( \(i=5\) ) \\
\hline
\end{tabular}
- Selection of the smallest element by search in the unsorted part \(A[i . . n]\) of the array.
- Swap the smallest element with the first element of the unsorted part.
- Unsorted part decreases in size by one element ( \(i \rightarrow i+1\) ). Repeat until all is sorted. \((i=n)\)

\section*{Selection Sort}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline 5 & 6 & 2 & 8 & 4 & 1 & ( \(i=1\) ) \\
\hline 1 & 6 & 2 & 8 & 4 & 5 & \((i=2)\) \\
\hline 1 & 2 & 6 & 8 & 4 & 5 & = 3) \\
\hline 1 & 2 &  & 8 & 6 & 5 & i=4) \\
\hline 1 & 2 & 4 & ¢ & 6 & 8 & \((i=5)\) \\
\hline 1 & 2 & 4 & 5 & 4 & 8 & \((i=6)\) \\
\hline
\end{tabular}
- Selection of the smallest element by search in the unsorted part \(A[i . . n]\) of the array.
- Swap the smallest element with the first element of the unsorted part.
- Unsorted part decreases in size by one element ( \(i \rightarrow i+1\) ). Repeat until all is sorted. \((i=n)\)

\section*{Selection Sort}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline 5 & 6 & 2 & 8 & 4 & 1 & ( \(i=1\) ) \\
\hline 1 & 6 & 2 & 8 & 4 & 5 & ( \(i=2\) ) \\
\hline 1 & 2 & 6 & 8 & 4 & 5 & \(i=3)\) \\
\hline 1 & 2 & 4 & 8 & 6 & 5 & \((i=4)\) \\
\hline 1 & 2 & 4 & 5 & 6 & 8 & ( \(i=5\) ) \\
\hline 1 & 2 & 4 & 5 & 6 & 8 & ( \(i=6\) ) \\
\hline
\end{tabular}
- Selection of the smallest element by search in the unsorted part \(A[i . . n]\) of the array.
- Swap the smallest element with the first element of the unsorted part.
- Unsorted part decreases in size by one element ( \(i \rightarrow i+1\) ). Repeat until all is sorted. \((i=n)\)

\section*{Selection Sort}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline 5 & 6 & 2 & 8 & 4 & 1 & ( \(i=1\) ) \\
\hline 1 & 6 & 2 & 8 & 4 & 5 & ( \(i=2\) ) \\
\hline 1 & 2 & 6 & 8 & 4 & 5 & ( \(i=3\) ) \\
\hline 1 & 2 & 4 & 8 & 6 & 5 & \((i=4)\) \\
\hline 1 & 2 & 4 & 5 & 6 & 8 & \((i=5)\) \\
\hline 1 & 2 & 4 & 5 & 6 & 8 & ( \(i=6\) ) \\
\hline 1 & 2 & 4 & 5 & 6 & 8 & \\
\hline
\end{tabular}
- Selection of the smallest element by search in the unsorted part \(A[i . . n]\) of the array.
- Swap the smallest element with the first element of the unsorted part.
- Unsorted part decreases in size by one element ( \(i \rightarrow i+1\) ). Repeat until all is sorted. \((i=n)\)

\section*{Algorithm: Selection Sort}
```

Input: Array $A=(A[1], \ldots, A[n]), n \geq 0$.
Output: Sorted Array A
for $i \leftarrow 1$ to $n-1$ do
$p \leftarrow i$
for $j \leftarrow i+1$ to n do
if $A[j]<A[p]$ then
$\llcorner p \leftarrow j$;
$\operatorname{swap}(A[i], A[p])$

```

\section*{Analysis}

Number comparisons in worst case:

\section*{Analysis}

Number comparisons in worst case: \(\Theta\left(n^{2}\right)\). Number swaps in the worst case:

\section*{Analysis}

Number comparisons in worst case: \(\Theta\left(n^{2}\right)\).
Number swaps in the worst case: \(n-1=\Theta(n)\)

Insertion Sort
\(\begin{array}{lllllll}1 & 6 & 2 & 8 & 4 & 1 & (i=1)\end{array}\)

Insertion Sort
\begin{tabular}{l|lllllll}
\hline & 5 & 6 & 2 & 8 & 4 & 1 & \((i=1)\)
\end{tabular}
■ Iterative procedure:
\[
i=1 \ldots n
\]

\section*{Insertion Sort}
\[
\begin{aligned}
& \begin{array}{|llllllll}
1 & 5 & 6 & 2 & 8 & 4 & 1 & (i=1)
\end{array} \\
& \begin{array}{l|llllll}
5 & 6 & 2 & 8 & 4 & 1 & (i=2) \quad \text { ■ Iterative procedure: }
\end{array} \\
& i=1 \ldots n \\
& \text { - Determine insertion } \\
& \text { position for element } i \text {. }
\end{aligned}
\]

\section*{Insertion Sort}
\[
\begin{aligned}
& \begin{array}{lllllllll}
\mid & 5 & 6 & 2 & 8 & 4 & 1 & (i=1)
\end{array} \\
& \begin{array}{|c|ccccccc}
\uparrow & 5 & 6 & 2 & 8 & 4 & 1 & (i=2) \\
\hline
\end{array} \begin{array}{l}
\text { Iterative procedure: } \\
i=1 \ldots n
\end{array} \\
& \text { - Determine insertion } \\
& \text { position for element } i \text {. } \\
& \text { ■ Insert element } i
\end{aligned}
\]

\section*{Insertion Sort}
\[
\begin{aligned}
& \begin{array}{|llllllll}
1 & 5 & 6 & 2 & 8 & 4 & 1 & (i=1)
\end{array} \\
& \begin{array}{|l|llll|lll} 
& 5 & 6 & 2 & 8 & 4 & 1 & (i=2) \quad \text { ■ Iterative procedure: }
\end{array} \\
& i=1 \ldots n \\
& \text { - Determine insertion } \\
& \text { position for element } i \text {. } \\
& \text { ■ Insert element } i
\end{aligned}
\]

\section*{Insertion Sort}
\[
\begin{aligned}
& \begin{array}{|llllllll}
\mid & 5 & 6 & 2 & 8 & 4 & 1 & (i=1)
\end{array} \\
& \begin{array}{lllllllll}
\uparrow & 5 & 6 & 2 & 8 & 4 & 1 & (i=2) & \text { ■ Iterative procedure: } \\
i=1 \ldots n
\end{array}
\end{aligned}
\]

\section*{Insertion Sort}
\[
\begin{aligned}
& \begin{array}{l|llllllll}
\mid & 5 & 6 & 2 & 8 & 4 & 1 & (i=1)
\end{array} \\
& \begin{array}{l|l|llllll}
\uparrow & 5 & 6 & 2 & 8 & 4 & 1 & (i=2) \quad \text { ■ Iterative procedure: }
\end{array} \\
& i=1 \text {...n } \\
& \text { - Determine insertion } \\
& \text { position for element } i \text {. } \\
& \text { - Insert element } i \text { array } \\
& \text { block movement } \\
& \text { potentially required }
\end{aligned}
\]

\section*{Insertion Sort}
\[
\begin{aligned}
& \begin{array}{l|llllllll}
\mid & 5 & 6 & 2 & 8 & 4 & \square & (i=1)
\end{array} \\
& \begin{array}{l|l|l|l|l|l|l} 
& \text { 个 } & 5 & 6 & 2 & 8 & 4 \\
1 & (i=2) \\
\hline & \text { ■ Iterative procedure: }
\end{array} \\
& i=1 \text {...n } \\
& \text { - Determine insertion } \\
& \text { position for element } i \text {. } \\
& \text { - Insert element } i \text { array } \\
& \text { block movement } \\
& \text { potentially required }
\end{aligned}
\]

\section*{Insertion Sort}
\[
\begin{aligned}
& \begin{array}{|llllllll}
1 & 5 & 6 & 2 & 8 & 4 & 1 & (i=1)
\end{array} \\
& \begin{array}{l|lllll|l|}
\hline & 5 & 6 & 2 & 8 & 4 & 1 \\
\hline
\end{array} \\
& \text { - Iterative procedure: } \\
& i=1 \text {...n } \\
& \text { - Determine insertion } \\
& \text { position for element } i \text {. } \\
& \text { ■ Insert element } i \text { array } \\
& \text { block movement } \\
& \text { potentially required }
\end{aligned}
\]

\section*{Insertion Sort}


\section*{Insertion Sort}


\section*{Insertion Sort}


\section*{Insertion Sort}


\section*{Insertion Sort}

What is the disadvantage of this algorithm compared to sorting by selection?

\section*{Insertion Sort}

What is the disadvantage of this algorithm compared to sorting by selection?

Many element movements in the worst case.
What is the advantage of this algorithm compared to selection sort?

\section*{Insertion Sort}

What is the disadvantage of this algorithm compared to sorting by selection?

Many element movements in the worst case.
What is the advantage of this algorithm compared to selection sort?
The search domain (insertion interval) is already sorted. Consequently: binary search possible.

\section*{Algorithm: Insertion Sort}
```

Input: \quad Array $A=(A[1], \ldots, A[n]), n \geq 0$.
Output: Sorted Array A
for $i \leftarrow 2$ to n do
$x \leftarrow A[i]$
$p \leftarrow \operatorname{BinarySearch}(A, 1, i-1, x)$; // Smallest $p \in[1, i]$ with $A[p] \geq x$
for $j \leftarrow i-1$ downto p do
$A[j+1] \leftarrow A[j]$
$A[p] \leftarrow x$

```

\section*{Analysis}

Number comparisons in the worst case:

\section*{Analysis}

Number comparisons in the worst case:
\(\sum_{k=1}^{n-1} a \cdot \log k=a \log ((n-1)!) \in \Theta(n \log n)\).
Number swaps in the worst case

\section*{Analysis}

Number comparisons in the worst case:
\(\sum_{k=1}^{n-1} a \cdot \log k=a \log ((n-1)!) \in \Theta(n \log n)\).
Number swaps in the worst case \(\sum_{k=2}^{n}(k-1) \in \Theta\left(n^{2}\right)\)

\section*{Different point of view}

Sorting node:
\[
\begin{gathered}
\stackrel{8}{\downarrow} \\
\downarrow^{4}
\end{gathered}
\]

\section*{Different point of view}

Sorting node:
\[
\begin{gathered}
\stackrel{4}{\downarrow} \\
\\
\downarrow^{4}
\end{gathered}
\]

Different point of view
\(8 \gtrless \gtrless \gtrless\)
\(4 \gtrless \geqslant \quad \gtrless\)
\(1 \quad \gtrless \quad \gtrless \quad \gtrless\)

Different point of view


Different point of view


Different point of view


\section*{Different point of view}


\section*{Different point of view}


Different point of view


Different point of view


Different point of view


Different point of view


\section*{Different point of view}


Different point of view
\begin{tabular}{llllll}
5 & & & & & \\
6 & \(\gtrless\) & & & \\
2 & \(\gtrless\) & \(\gtrless\) & & \\
8 & \(\gtrless\) & \(\gtrless\) & \(\gtrless\) & & \\
4 & \(\gtrless\) & \(\gtrless\) & \(\gtrless\) & \(\gtrless\) & \\
4 & \(\gtrless\) & \(\gtrless\) & \(\gtrless\) & \(\gtrless\) & \(\gtrless\) \\
1 & \(\gtrless\) & \(\gtrless\) & \(\gtrless\) & \(\gtrless\) &
\end{tabular}

Different point of view


Different point of view


Different point of view


\section*{Different point of view}


\section*{Different point of view}


\section*{Different point of view}


\section*{Conclusion}

In a certain sense, Selection Sort, Bubble Sort and Insertion Sort provide the same kind of sort strategy. Will be made more precise. \({ }^{8}\)

\footnotetext{
\({ }^{8}\) In the part about parallel sorting networks. For the sequential code of course the observations as described above still hold.
}

\section*{Shellsort (Donald Shell 1959)}

Intuition: moving elements far apart takes many steps in the naive methods from abobe
Insertion sort on subsequences of the form \(\left(A_{k \cdot i}\right)(i \in \mathbb{N})\) with decreasing distances \(k\). Last considered distance must be \(k=1\).
Worst-case performance critically depends on the chosen subsequences
■ Original concept with sequence \(1,2,4,8, \ldots, 2^{k}\). Running time: \(\mathcal{O}\left(n^{2}\right)\)
■ Sequence \(1,3,7,15, \ldots, 2^{k}-1\) (Hibbard 1963). \(\mathcal{O}\left(n^{3 / 2}\right)\)
■ Sequence \(1,2,3,4,6,8, \ldots, 2^{p} 3^{q}\) (Pratt 1971). \(\mathcal{O}\left(n \log ^{2} n\right)\)

\section*{Shellsort}
\begin{tabular}{llllllllll}
9 & 8 & 7 & 6 & 5 & 4 & 3 & 2 & 1 & 0
\end{tabular}

\section*{Shellsort}
\begin{tabular}{lllllllllll}
9 & 8 & 7 & 6 & 5 & 4 & 3 & 2 & 1 & 0 & \\
2 & 8 & 7 & 6 & 5 & 4 & 3 & 9 & 1 & 0 & insertion sort, \(k=7\)
\end{tabular}

\section*{Shellsort}
\begin{tabular}{lllllllllll}
9 & 8 & 7 & 6 & 5 & 4 & 3 & 2 & 1 & 0 & \\
2 & 8 & 7 & 6 & 5 & 4 & 3 & 9 & 1 & 0 & insertion sort, \(k=7\) \\
2 & 1 & 7 & 6 & 5 & 4 & 3 & 9 & 8 & 0 &
\end{tabular}

\section*{Shellsort}
\begin{tabular}{lllllllllll}
9 & 8 & 7 & 6 & 5 & 4 & 3 & 2 & 1 & 0 & \\
2 & 8 & 7 & 6 & 5 & 4 & 3 & 9 & 1 & 0 & insertion sort, \(k=7\) \\
2 & 1 & 7 & 6 & 5 & 4 & 3 & 9 & 8 & 0 & \\
2 & 1 & 0 & 6 & 5 & 4 & 3 & 9 & 8 & 7 &
\end{tabular}

\section*{Shellsort}
\begin{tabular}{lllllllllll}
9 & 8 & 7 & 6 & 5 & 4 & 3 & 2 & 1 & 0 & \\
2 & 8 & 7 & 6 & 5 & 4 & 3 & 9 & 1 & 0 & insertion sort, \(k=7\) \\
2 & 1 & 7 & 6 & 5 & 4 & 3 & 9 & 8 & 0 & \\
2 & 1 & 0 & 6 & 5 & 4 & 3 & 9 & 8 & 7 & 2 \\
2 & 1 & 0 & 3 & 5 & 4 & 6 & 9 & 8 & 7 & insertion sort, \(k=3\)
\end{tabular}

\section*{Shellsort}
\begin{tabular}{lllllllllll}
9 & 8 & 7 & 6 & 5 & 4 & 3 & 2 & 1 & 0 & \\
2 & 8 & 7 & 6 & 5 & 4 & 3 & 9 & 1 & 0 & insertion sort, \(k=7\) \\
2 & 1 & 7 & 6 & 5 & 4 & 3 & 9 & 8 & 0 & \\
2 & 1 & 0 & 6 & 5 & 4 & 3 & 9 & 8 & 7 & 2 \\
2 & 1 & 0 & 3 & 5 & 4 & 6 & 9 & 8 & 7 & insertion sort, \(k=3\) \\
2 & 1 & 0 & 3 & 5 & 4 & 6 & 9 & 8 & 7 &
\end{tabular}

\section*{Shellsort}
\begin{tabular}{lllllllllll}
9 & 8 & 7 & 6 & 5 & 4 & 3 & 2 & 1 & 0 & \\
2 & 8 & 7 & 6 & 5 & 4 & 3 & 9 & 1 & 0 & insertion sort, \(k=7\) \\
2 & 1 & 7 & 6 & 5 & 4 & 3 & 9 & 8 & 0 & \\
2 & 1 & 0 & 6 & 5 & 4 & 3 & 9 & 8 & 7 & 2 \\
2 & 1 & 0 & 3 & 5 & 4 & 6 & 9 & 8 & 7 & insertion sort, \(k=3\) \\
2 & 1 & 0 & 3 & 5 & 4 & 6 & 9 & 8 & 7 & \\
2 & 1 & 0 & 3 & 5 & 4 & 6 & 9 & 8 & 7 &
\end{tabular}

\section*{Shellsort}
\begin{tabular}{lllllllllll}
9 & 8 & 7 & 6 & 5 & 4 & 3 & 2 & 1 & 0 & \\
2 & 8 & 7 & 6 & 5 & 4 & 3 & 9 & 1 & 0 & insertion sort, \(k=7\) \\
2 & 1 & 7 & 6 & 5 & 4 & 3 & 9 & 8 & 0 & \\
2 & 1 & 0 & 6 & 5 & 4 & 3 & 9 & 8 & 7 & \\
2 & 1 & 0 & 3 & 5 & 4 & 6 & 9 & 8 & 7 & insertion sort, \(k=3\) \\
2 & 1 & 0 & 3 & 5 & 4 & 6 & 9 & 8 & 7 & \\
2 & 1 & 0 & 3 & 5 & 4 & 6 & 9 & 8 & 7 & \\
0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & insertion sort, \(k=1\)
\end{tabular}

\section*{9. Sorting II}

\author{
Mergesort, Quicksort
}

\subsection*{9.1 Mergesort}
[Ottman/Widmayer, Kap. 2.4, Cormen et al, Kap. 2.3],

\section*{Mergesort}

Divide and Conquer!
■ Assumption: two halves of the array \(A\) are already sorted.
- Minimum of \(A\) can be evaluated with a single element comparison.
- Iteratively: merge the two presorted halves of \(A\) in \(\mathcal{O}(n)\).

Merge
\[
\begin{array}{l|l|l|l|l|l|l|l|l}
1 & 4 & 7 & 9 & 16 & 2 & 3 & 10 & 11
\end{array} 12
\]

Merge


\section*{Algorithm Merge \((A, l, m, r)\)}

Input: Array \(A\) with length \(n\), indexes \(1 \leq l \leq m \leq r \leq n\).
\[
A[l, \ldots, m], A[m+1, \ldots, r] \text { sorted }
\]

Output: \(A[l, \ldots, r]\) sorted
\(1 \quad B \leftarrow\) new \(\operatorname{Array}(r-l+1)\)
\(2 i \leftarrow l ; j \leftarrow m+1 ; k \leftarrow 1\)
3 while \(i \leq m\) and \(j \leq r\) do
\(4 \quad\) if \(A[i] \leq A[j]\) then \(B[k] \leftarrow A[i] ; i \leftarrow i+1\)
\(5 \quad\) else \(B[k] \leftarrow A[j] ; j \leftarrow j+1\)
\(6 \quad k \leftarrow k+1\);
7 while \(i \leq m\) do \(B[k] \leftarrow A[i] ; i \leftarrow i+1 ; k \leftarrow k+1\)
8 while \(j \leq r\) do \(B[k] \leftarrow A[j] ; j \leftarrow j+1 ; k \leftarrow k+1\)
9 for \(k \leftarrow l\) to \(r\) do \(A[k] \leftarrow B[k-l+1]\)

\section*{Correctness}

Hypothesis: after \(k\) iterations of the loop in line \(3 B[1, \ldots, k]\) is sorted and \(B[k] \leq A[i]\), if \(i \leq m\) and \(B[k] \leq A[j]\) if \(j \leq r\).
Proof by induction:
Base case: the empty array \(B[1, \ldots, 0]\) is trivially sorted. Induction step ( \(k \rightarrow k+1\) ):

■ \(\boldsymbol{w l o g} A[i] \leq A[j], i \leq m, j \leq r\).
- \(B[1, \ldots, k]\) is sorted by hypothesis and \(B[k] \leq A[i]\).
- After \(B[k+1] \leftarrow A[i] B[1, \ldots, k+1]\) is sorted.
- \(B[k+1]=A[i] \leq A[i+1](\) if \(i+1 \leq m)\) and \(B[k+1] \leq A[j]\) if \(j \leq r\).

■ \(k \leftarrow k+1, i \leftarrow i+1\) : Statement holds again.

\section*{Analysis (Merge)}

\section*{Lemma 12}

If: array \(A\) with length \(n\), indexes \(1 \leq l<r \leq n . m=\lfloor(l+r) / 2\rfloor\) and \(A[l, \ldots, m], A[m+1, \ldots, r]\) sorted.
Then: in the call of \(\operatorname{Merge}(A, l, m, r)\) a number of \(\Theta(r-l)\) key movements and comparisons are executed.

Proof: straightforward(Inspect the algorithm and count the operations.)

Mergesort
\[
\begin{array}{llllllll}
5 & 2 & 6 & 1 & 8 & 4 & 3 & 9
\end{array}
\]

Mergesort
\[
\begin{array}{llllllll}
5 & 2 & 6 & 1 & 8 & 4 & 3 & 9
\end{array}
\]

Split

Mergesort
\[
\begin{array}{|l|l|l|l|l|l|l|l|}
\hline 5 & 2 & 6 & 1 & 8 & 4 & 3 & 9 \\
\hline 5 & 2 & 6 & 1 & 8 & 4 & 3 & 9 \\
\hline
\end{array}
\]

Split

Mergesort
\[
\begin{array}{|l|l|l|l|l|l|l|l|}
\hline 5 & 2 & 6 & 1 & 8 & 4 & 3 & 9 \\
\hline 5 & 2 & 6 & 1 & 8 & 4 & 3 & 9 \\
\hline
\end{array}
\]

Split
Split

Mergesort
\[
\begin{array}{|l|l|ll|ll|l|l|}
\hline 5 & 2 & 6 & 1 & 8 & 4 & 3 & 9 \\
\left\lvert\, \begin{array}{|l|l|ll|ll|ll|}
\hline 5 & 2 & 6 & 1 & 8 & 4 & 3 & 9 \\
\hline
\end{array}\right. \\
\begin{array}{|l|l|ll|ll|ll|}
\hline 5 & 2 & 6 & 1 & 8 & 4 & 3 & 9 \\
\hline
\end{array}
\end{array}
\]

Split
Split

Mergesort
\[
\begin{array}{|l|l|ll|ll|l|l|}
\hline 5 & 2 & 6 & 1 & 8 & 4 & 3 & 9 \\
\left\lvert\, \begin{array}{|l|l|ll|llll|}
\hline 5 & 2 & 6 & 1 & 8 & 4 & 3 & 9 \\
\hline
\end{array}\right. \\
\begin{array}{|l|l|ll|ll|ll|}
\hline 5 & 2 & 6 & 1 & 8 & 4 & 3 & 9 \\
\hline
\end{array}
\end{array}
\]
SplitSplitSplit

Mergesort
\[
\begin{aligned}
& \begin{array}{llllllllll}
5 & 2 & 6 & 1 & 8 & 4 & 3 & 9
\end{array} \\
& \begin{array}{|llll|llll|}
\hline 5 & 2 & 6 & 1 & 8 & 4 & 3 & 9 \\
\hline
\end{array} \\
& \begin{array}{|l|l|ll|l|l|ll|}
\hline 5 & 2 & 6 & 1 & 8 & 4 & 3 & 9 \\
\hline
\end{array} \\
& \begin{array}{|l|l|l|l|l|l|l|l|}
\hline 5 & 2 & 6 & 1 & 8 & 4 & 3 & 9 \\
\hline
\end{array} \\
& \text { Split } \\
& \text { Split } \\
& \text { Split }
\end{aligned}
\]

Mergesort
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline 5 & 2 & 6 & 1 & 8 & 4 & 3 & \\
\hline 5 & 2 & 6 & 1 & 8 & 4 & 3 & \\
\hline 5 & 2 & 6 & 1 & 8 & 4 & 3 & \\
\hline & & & & & & & \\
\hline 5 & 2 & 6 & 1 & 8 & 4 & 3 & \\
\hline
\end{tabular}

Mergesort
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline 5 & 2 & 6 & 1 & 8 & 4 & 3 & 9 & \multirow{3}{*}{Split} \\
\hline & & & & & & & & \\
\hline 5 & 2 & 6 & 1 & 8 & 4 & 3 & 9 & \\
\hline & & & & & & & & \multirow[t]{2}{*}{Split} \\
\hline 5 & 2 & 6 & 1 & 8 & 4 & 3 & 9 & \\
\hline & & & & & & & & \multirow[t]{2}{*}{Split} \\
\hline 5 & 2 & 6 & 1 & 8 & 4 & 3 & 9 & \\
\hline & & & & & & & , & \multirow[t]{2}{*}{Merge} \\
\hline 2 & 5 & 1 & 6 & 4 & 8 & 3 & 9 & \\
\hline
\end{tabular}

Mergesort
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline 5 & 2 & 6 & 1 & 8 & 4 & 3 & 9 & \\
\hline & & & & & & & & \multirow[t]{2}{*}{Split} \\
\hline 5 & 2 & 6 & 1 & 8 & 4 & 3 & 9 & \\
\hline & & & & & & & & \multirow[t]{2}{*}{Split} \\
\hline 5 & 2 & 6 & 1 & 8 & 4 & 3 & 9 & \\
\hline & & & & & & & & \multirow[t]{2}{*}{Split} \\
\hline 5 & 2 & 6 & 1 & 8 & 4 & 3 & 9 & \\
\hline \multicolumn{8}{|l|}{*} & \multirow[t]{2}{*}{Merge} \\
\hline 2 & 5 & 1 & 6 & 4 & 8 & 3 & 9 & \\
\hline & & & & & & & & Merge \\
\hline
\end{tabular}

Mergesort
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline 5 & 2 & 6 & 1 & 8 & 4 & 3 & 9 & \multirow{3}{*}{Split} \\
\hline & & & & & & & & \\
\hline 5 & 2 & 6 & 1 & 8 & 4 & 3 & 9 & \\
\hline & & & & & & & & \multirow[t]{2}{*}{Split} \\
\hline 5 & 2 & 6 & 1 & 8 & 4 & 3 & 9 & \\
\hline & & & & & & & & \multirow[t]{2}{*}{Split} \\
\hline 5 & 2 & 6 & 1 & 8 & 4 & 3 & 9 & \\
\hline & & & & & & & - & \multirow[t]{2}{*}{Merge} \\
\hline 2 & 5 & 1 & 6 & 4 & 8 & 3 & 9 & \\
\hline & & & & & & & , & \multirow[t]{2}{*}{Merge} \\
\hline 1 & 2 & 5 & 6 & 3 & 4 & 8 & 9 & \\
\hline
\end{tabular}

Mergesort
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline 5 & 2 & 6 & 1 & 8 & 4 & 3 & 9 & \multirow{3}{*}{Split} \\
\hline & & & & & & & & \\
\hline 5 & 2 & 6 & 1 & 8 & 4 & 3 & 9 & \\
\hline & & & & & & & & \multirow[t]{2}{*}{Split} \\
\hline 5 & 2 & 6 & 1 & 8 & 4 & 3 & 9 & \\
\hline & & & & & & & & \multirow[t]{2}{*}{Split} \\
\hline 5 & 2 & 6 & 1 & 8 & 4 & 3 & 9 & \\
\hline & & & & & & & & \multirow[t]{2}{*}{Merge} \\
\hline 2 & 5 & 1 & 6 & 4 & 8 & 3 & 9 & \\
\hline \multicolumn{8}{|l|}{+} & \multirow[t]{2}{*}{Merge} \\
\hline 1 & 2 & 5 & 6 & 3 & 4 & 8 & 9 & \\
\hline & & & & & & & & Merge \\
\hline
\end{tabular}

Mergesort
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline 5 & 2 & 6 & 1 & 8 & 4 & 3 & 9 & \multirow{3}{*}{Split} \\
\hline & & & & & & & & \\
\hline 5 & 2 & 6 & 1 & 8 & 4 & 3 & 9 & \\
\hline & & & & & & & & \multirow[t]{2}{*}{Split} \\
\hline 5 & 2 & 6 & 1 & 8 & 4 & 3 & 9 & \\
\hline & & & & & & & & \multirow[t]{2}{*}{Split} \\
\hline 5 & 2 & 6 & 1 & 8 & 4 & 3 & 9 & \\
\hline & & & & & & & & \multirow[t]{2}{*}{Merge} \\
\hline 2 & 5 & 1 & 6 & 4 & 8 & 3 & 9 & \\
\hline & & & , & \(\checkmark\) & - & & & \multirow[t]{2}{*}{Merge} \\
\hline 1 & 2 & 5 & 6 & & 4 & 8 & 9 & \\
\hline & & & \(\stackrel{ }{2}\) & \% & r & \(\downarrow\) & & \multirow[t]{2}{*}{Merge} \\
\hline 1 & 2 & 3 & 4 & 5 & 6 & 8 & 9 & \\
\hline
\end{tabular}

Algorithm (recursive 2-way) Mergesort \((A, l, r)\)

Input: Array \(A\) with length \(n .1 \leq l \leq r \leq n\)
Output: \(A[l, \ldots, r]\) sorted.
if \(l<r\) then
\begin{tabular}{ll}
\(m \leftarrow\lfloor(l+r) / 2\rfloor\) & \(/ /\) middle position \\
Mergesort \((A, l, m)\) & \(/ /\) sort lower half \\
Mergesort \((A, m+1, r)\) & // sort higher half \\
Merge \((A, l, m, r)\) & // Merge subsequences
\end{tabular}

\section*{Analysis}

Recursion equation for the number of comparisons and key movements:
\[
T(n)=T\left(\left\lfloor\frac{n}{2}\right\rceil\right)+T\left(\left\lfloor\frac{n}{2}\right\rfloor\right)+\Theta(n)
\]

\section*{Analysis}

Recursion equation for the number of comparisons and key movements:
\[
T(n)=T\left(\left\lceil\frac{n}{2}\right\rceil\right)+T\left(\left\lfloor\frac{n}{2}\right\rfloor\right)+\Theta(n) \in \Theta(n \log n)
\]

\section*{Algorithm StraightMergesort( \(A\) )}

Avoid recursion: merge sequences of length \(1,2,4, \ldots\) directly Input: Array \(A\) with length \(n\)
Output: Array \(A\) sorted
length \(\leftarrow 1\)
```

while length $<n$ do
$r \leftarrow 0$
while $r+$ length $<n$ do / Iterate over subsequences
$l \leftarrow r+1$
$m \leftarrow l+$ length -1
$r \leftarrow \min (m+$ length,$n)$
Merge (A, l, m, r)
length \leftarrow length $\cdot 2$

```

\section*{Analysis}

Like the recursive variant, the straight 2-way mergesort always executes a number of \(\Theta(n \log n)\) key comparisons and key movements.

\section*{Natural 2-way mergesort}

Observation: the variants above do not make use of any presorting and always execute \(\Theta(n \log n)\) memory movements.

How can partially presorted arrays be sorted better?

\section*{Natural 2-way mergesort}

Observation: the variants above do not make use of any presorting and always execute \(\Theta(n \log n)\) memory movements.

How can partially presorted arrays be sorted better?
(1) Recursive merging of previously sorted parts (runs) of \(A\).

Natural 2-way mergesort
\[
\begin{array}{lllllllll}
5 & 6 & 2 & 4 & 8 & 3 & 9 & 7 & 1
\end{array}
\]

Natural 2-way mergesort


\section*{Algorithm NaturalMergesort( \(A\) )}

Input: Array \(A\) with length \(n>0\)
Output: Array \(A\) sorted
repeat
\(r \leftarrow 0\)
while \(r<n\) do
\[
l \leftarrow r+1
\]
\[
m \leftarrow l ; \text { while } m<n \text { and } A[m+1] \geq A[m] \text { do } m \leftarrow m+1
\]
\[
\text { if } m<n \text { then }
\]
\(r \leftarrow m+1\); while \(r<n\) and \(A[r+1] \geq A[r]\) do \(r \leftarrow r+1\) Merge \((A, l, m, r)\);
else
\(-r \leftarrow n\)
until \(l=1\)

\section*{Analysis}

Is it also asymptotically better than StraightMergesort on average?

\section*{Analysis}

Is it also asymptotically better than StraightMergesort on average?
(1)No. Given the assumption of pairwise distinct keys, on average there are \(n / 2\) positions \(i\) with \(k_{i}>k_{i+1}\), i.e. \(n / 2\) runs. Only one iteration is saved on average. Natural mergesort executes in the worst case and on average a number of \(\Theta(n \log n)\) comparisons and memory movements.

\subsection*{9.2 Quicksort}
[Ottman/Widmayer, Kap. 2.2, Cormen et al, Kap. 7]

\section*{Quicksort}

What is the disadvantage of Mergesort?

\section*{Quicksort}

What is the disadvantage of Mergesort?
Requires additional \(\Theta(n)\) storage for merging.

\section*{Quicksort}

What is the disadvantage of Mergesort?
Requires additional \(\Theta(n)\) storage for merging.
How could we reduce the merge costs?

\section*{Quicksort}

What is the disadvantage of Mergesort?
Requires additional \(\Theta(n)\) storage for merging.
How could we reduce the merge costs?
Make sure that the left part contains only smaller elements than the right part.

How?

\section*{Quicksort}

\section*{What is the disadvantage of Mergesort?}

Requires additional \(\Theta(n)\) storage for merging.

How could we reduce the merge costs?
Make sure that the left part contains only smaller elements than the right part.

\section*{How?}

Pivot and Partition!

Use a pivot


\section*{Use a pivot}
1. Choose a (an arbitrary) pivot \(p\)


\section*{Use a pivot}
1. Choose a (an arbitrary) pivot \(p\)
2. Partition \(A\) in two parts, one part \(L\) with the elements with \(A[i] \leq p\) and another part \(R\) with \(A[i]>p\)


\section*{Use a pivot}
1. Choose a (an arbitrary) pivot \(p\)
2. Partition \(A\) in two parts, one part \(L\) with the elements with \(A[i] \leq p\) and another part \(R\) with \(A[i]>p\)
3. Quicksort: Recursion on parts \(L\) and \(R\)


\section*{Use a pivot}
1. Choose a (an arbitrary) pivot \(p\)
2. Partition \(A\) in two parts, one part \(L\) with the elements with \(A[i] \leq p\) and another part \(R\) with \(A[i]>p\)
3. Quicksort: Recursion on parts \(L\) and \(R\)


\section*{Algorithm Partition( \(A, l, r, p)\)}

Input: Array \(A\), that contains the pivot \(p\) in \(A[l, \ldots, r]\) at least once. Output: Array \(A\) partitioned in \([l, \ldots, r]\) around \(p\). Returns position of \(p\). while \(l \leq r\) do
\[
\text { while } A[l]<p \text { do }
\]
\[
L l \leftarrow l+1
\]
while \(A[r]>p\) do
\(L r \leftarrow r-1\)
\(\operatorname{swap}(A[l], A[r])\)
if \(A[l]=A[r]\) then
\(L l \leftarrow l+1\)
return l-1

Input: \(\quad\) Array \(A\) with length \(n .1 \leq l \leq r \leq n\).
Output: Array \(A\), sorted in \(A[l, \ldots, r]\).
if \(l<r\) then
Choose pivot \(p \in A[l, \ldots, r]\)
\(k \leftarrow \operatorname{Partition}(A, l, r, p)\)
Quicksort \((A, l, k-1)\)
Quicksort \((A, k+1, r)\)

\section*{Quicksort (arbitrary pivot)}
\[
\begin{array}{lllllllllll}
2 & 4 & 5 & 6 & 8 & 3 & 7 & 9 & 1
\end{array}
\]

\section*{Quicksort (arbitrary pivot)}
\[
\begin{array}{llllll|l|l|l|l|}
\hline 2 & 4 & 5 & 6 & 8 & 3 & 7 & 9 & 1
\end{array}
\]

\section*{Quicksort (arbitrary pivot)}
\[
\begin{array}{lllll|l|l|l|l}
2 & 4 & 5 & 6 & 8 & 3 & 7 & 9 & 1 \\
\hline 2 & 1 & 3 & 6 & 8 & 5 & 7 & 9 & 4
\end{array}
\]

\section*{Quicksort (arbitrary pivot)}
\[
\begin{array}{|l|l|l|l|l|l|l|l|}
\hline 2 & 4 & 5 & 6 & 8 & 3 & 7 & 9 \\
1 \\
\hline 2 & 1 & 3 & 6 & 8 & 5 & 7 & 9
\end{array} 4
\]

\section*{Quicksort (arbitrary pivot)}
\[
\begin{array}{|lllll|l|l|l|l|}
2 & 4 & 5 & 6 & 8 & 3 & 7 & 9 & 1 \\
\hline 2 & 1 & 3 & 6 & 8 & 5 & 7 & 9 & 4 \\
\hline 1 & 2 & 3 & 4 & 5 & 8 & 7 & 9 & 6 \\
\hline
\end{array}
\]

\section*{Quicksort (arbitrary pivot)}
\[
\begin{array}{|l|l|l|l|l|l|l|l|l|}
\hline 2 & 4 & 5 & 6 & 8 & 3 & 7 & 9 & 1 \\
\hline 2 & 1 & 3 & 6 & 8 & 5 & 7 & 9 & 4 \\
\hline 1 & 2 & 3 & 4 & 5 & 8 & 7 & 9 & 6 \\
\hline
\end{array}
\]

\section*{Quicksort (arbitrary pivot)}
\[
\begin{array}{|l|l|l|l|l|l|l|l|}
\hline 2 & 4 & 5 & 6 & 8 & 3 & 7 & 9 \\
\hline
\end{array} \left\lvert\, \begin{array}{l|llll|l|l|l|l|}
\hline 2 & 1 & 3 & 6 & 8 & 5 & 7 & 9 & 4 \\
\hline 1 & 2 & 3 & 4 & 5 & 8 & 7 & 9 & 6 \\
1 & 2 & 3 & 4 & 5 & 6 & 7 & 9 & 8 \\
\hline
\end{array}\right.
\]

\section*{Quicksort (arbitrary pivot)}
\[
\begin{array}{|lllll|l|l|l|l|}
\hline 2 & 4 & 5 & 6 & 8 & 3 & 7 & 9 & 1 \\
\hline 2 & 1 & 3 & 6 & 8 & 5 & 7 & 9 & 4 \\
\hline 1 & 2 & 3 & 4 & 5 & 8 & 7 & 9 & 6 \\
1 & 2 & 3 & 4 & 5 & 6 & 7 & 9 & 8 \\
\hline
\end{array}
\]

\section*{Quicksort (arbitrary pivot)}
\[
\begin{array}{|llllllllll|}
\hline 2 & 4 & 5 & 6 & 8 & 3 & 7 & 9 & 1 \\
\hline 2 & 1 & 3 & 6 & 8 & 5 & 7 & 9 & 4 \\
\hline 1 & 2 & 3 & 4 & 5 & 8 & 7 & 9 & 6 \\
1 & 2 & 3 & 4 & 5 & 6 & 7 & 9 & 8 \\
\hline 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9
\end{array}
\]

\section*{Quicksort (arbitrary pivot)}
\[
\begin{array}{|lllll|l|lll|l|}
\hline 2 & 4 & 5 & 6 & 8 & 3 & 7 & 9 & 1 \\
\hline 2 & 1 & 3 & 6 & 8 & 5 & 7 & 9 & 4 \\
\hline 1 & 2 & 3 & 4 & 5 & 8 & 7 & 9 & 6 \\
1 & 2 & 3 & 4 & 5 & 6 & 7 & 9 & 8 \\
\hline 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9
\end{array}
\]

\section*{Analysis: number comparisons}

Worst case.

\section*{Analysis: number comparisons}

Worst case. Pivot = min or max; number comparisons:
\[
T(n)=T(n-1)+c \cdot n, T(1)=d \quad \Rightarrow \quad T(n) \in \Theta\left(n^{2}\right)
\]

\section*{Analysis: number swaps}

Result of a call to partition (pivot 3):
\[
\begin{array}{llllllllll}
2 & 1 & 3 & 6 & 8 & 5 & 7 & 9 & 4
\end{array}
\]
? How many swaps have taken place?

\section*{Analysis: number swaps}

Result of a call to partition (pivot 3):

\section*{\(\begin{array}{llllllllll}2 & 1 & 3 & 6 & 8 & 5 & 7 & 9 & 4\end{array}\)}
? How many swaps have taken place?
(7) 2. The maximum number of swaps is given by the number of keys in the smaller part.

\section*{Analysis: number swaps}

Thought experiment

\section*{Analysis: number swaps}

Thought experiment
■ Each key from the smaller part pays a coin when it is being swapped.

\section*{Analysis: number swaps}

\section*{Thought experiment}

■ Each key from the smaller part pays a coin when it is being swapped.
■ After a key has paid a coin the domain containing the key decreases to half its previous size.

\section*{Analysis: number swaps}

\section*{Thought experiment}

■ Each key from the smaller part pays a coin when it is being swapped.
■ After a key has paid a coin the domain containing the key decreases to half its previous size.
■ Every key needs to pay at most \(\log n\) coins. But there are only \(n\) keys.

\section*{Analysis: number swaps}

\section*{Thought experiment}

■ Each key from the smaller part pays a coin when it is being swapped.
■ After a key has paid a coin the domain containing the key decreases to half its previous size.
■ Every key needs to pay at most \(\log n\) coins. But there are only \(n\) keys.
Consequence: there are \(\mathcal{O}(n \log n)\) key swaps in the worst case.

\section*{Randomized Quicksort}

Despite the worst case running time of \(\Theta\left(n^{2}\right)\), quicksort is used practically very often.
Reason: quadratic running time unlikely provided that the choice of the pivot and the pre-sorting are not very disadvantageous.
Avoidance: randomly choose pivot. Draw uniformly from \([l, r]\).

\section*{Analysis (randomized quicksort)}

Expected number of compared keys with input length \(n\) :
\[
T(n)=(n-1)+\frac{1}{n} \sum_{k=1}^{n}(T(k-1)+T(n-k)), T(0)=T(1)=0
\]

Claim \(T(n) \leq 4 n \log n\).
Proof by induction:
Base case straightforward for \(n=0\) (with \(0 \log 0:=0\) ) and for \(n=1\).
Hypothesis: \(T(n) \leq 4 n \log n\) for some \(n\).
Induction step: \((n-1 \rightarrow n)\)

\section*{Analysis (randomized quicksort)}
\[
\begin{aligned}
T(n) & =n-1+\frac{2}{n} \sum_{k=0}^{n-1} T(k) \stackrel{\text { H }}{\leq} n-1+\frac{2}{n} \sum_{k=0}^{n-1} 4 k \log k \\
& =n-1+\sum_{k=1}^{n / 2} 4 k \underbrace{\log k}_{\leq \log n-1}+\sum_{k=n / 2+1}^{n-1} 4 k \underbrace{\log k}_{\leq \log n} \\
& \leq n-1+\frac{8}{n}\left((\log n-1) \sum_{k=1}^{n / 2} k+\log n \sum_{k=n / 2+1}^{n-1} k\right) \\
& =n-1+\frac{8}{n}\left((\log n) \cdot \frac{n(n-1)}{2}-\frac{n}{4}\left(\frac{n}{2}+1\right)\right) \\
& =4 n \log n-4 \log n-3 \leq 4 n \log n
\end{aligned}
\]

\section*{Analysis (randomized quicksort)}

Theorem 13
On average randomized quicksort requires \(\mathcal{O}(n \log n)\) comparisons.

\section*{Practical Considerations}

Worst case recursion depth \(n-1^{9}\). Then also a memory consumption of \(\mathcal{O}(n)\).
Can be avoided: recursion only on the smaller part. Then guaranteed \(\mathcal{O}(\log n)\) worst case recursion depth and memory consumption.

\footnotetext{
\({ }^{9}\) stack overflow possible!
}

\section*{Quicksort with logarithmic memory consumption}

Input: \(\quad\) Array \(A\) with length \(n .1 \leq l \leq r \leq n\).
Output: Array \(A\), sorted between \(l\) and \(r\).
while \(l<r\) do
Choose pivot \(p \in A[l, \ldots, r]\)
\(k \leftarrow \operatorname{Partition}(A, l, r, p)\)
if \(k-l<r-k\) then
Quicksort \((A[l, \ldots, k-1])\)
\(l \leftarrow k+1\)
else
Quicksort \((A[k+1, \ldots, r])\)
\(r \leftarrow k-1\)

The call of Quicksort \((A[l, \ldots, r])\) in the original algorithm has moved to iteration (tail recursion!): the if-statement became a while-statement.

\section*{Practical Considerations.}

■ Practically the pivot is often the median of three elements. For example: Median3( \(A[l], A[r], A[l l+r / 2\rfloor])\).
■ There is a variant of quicksort that requires only constant storage. Idea: store the old pivot at the position of the new pivot.
- Complex divide-and-conquer algorithms often use a trivial \(\left(\Theta\left(n^{2}\right)\right)\) algorithm as base case to deal with small problem sizes.

\subsection*{9.3 Appendix}

Derivation of some mathematical formulas
\[
\begin{aligned}
\log n!=\sum_{i=1}^{n} \log i & \leq \sum_{i=1}^{n} \log n=n \log n \\
\sum_{i=1}^{n} \log i & =\sum_{i=1}^{\lfloor n / 2\rfloor} \log i+\sum_{\lfloor n / 2\rfloor+1}^{n} \log i \\
& \geq \sum_{i=2}^{\lfloor n / 2\rfloor} \log 2+\sum_{\lfloor n / 2\rfloor+1}^{n} \log \frac{n}{2} \\
& =(\underbrace{\lfloor n / 2\rfloor}_{>n / 2-1}-2+1)+(\underbrace{n-\lfloor n / 2\rfloor}_{\geq n / 2})(\log n-1) \\
& >\frac{n}{2} \log n-2 .
\end{aligned}
\]
\[
\begin{gathered}
n \log n \geq \sum_{i=1}^{\lfloor n / 2\rfloor} \log 2 i+\sum_{i=\lfloor n / 2\rfloor+1}^{n} \log i \\
\quad=\sum_{i=1}^{n} \log i+\left\lfloor\frac{n}{2}\right\rfloor \log 2 \\
>\sum_{i=1}^{n} \log i+n / 2-1=\log n!+n / 2-1 \\
\Rightarrow \frac{n!}{n^{n}} \leq 2^{-n / 2+1} \xrightarrow{n \rightarrow \infty} 0 \Rightarrow n!\in o\left(n^{n}\right)=\mathcal{O}\left(n^{n}\right) \backslash \Omega\left(n^{n}\right)
\end{gathered}
\]
[Even \(n!\in o\left((n / c)^{n}\right) \forall 0<c<e\) ]

Konvergenz oder Divergenz von \(f_{n}=\frac{n!}{(n / c)^{n}}\).
Ratio Test
\[
\frac{f_{n+1}}{f_{n}}=\frac{(n+1)!}{\left(\frac{n+1}{c}\right)^{n+1}} \cdot \frac{\left(\frac{n}{c}\right)^{n}}{n!}=c \cdot\left(\frac{n}{n+1}\right)^{n} \longrightarrow c \cdot \frac{1}{e} \lessgtr 1 \text { if } c \lessgtr e
\]
because \(\left(1+\frac{1}{n}\right)^{n} \rightarrow e\). Even the series \(\sum_{i=1}^{n} f_{n}\) converges / diverges for \(c \lessgtr e\).
\(f_{n}\) diverges for \(c=e\), because (Stirling): \(n!\approx \sqrt{2 \pi n}\left(\frac{n}{e}\right)^{n}\).

Ratio test for a sequence \(\left(f_{n}\right)_{n \in \mathbb{N}}\) : If \(\frac{f_{n+1}}{f_{n}} \xrightarrow[n \rightarrow \infty]{\longrightarrow} \lambda\), then the sequence \(f_{n}\) and the series \(\sum_{i=1}^{n} f_{i}\)
- converge, if \(\lambda<1\) and
- diverge, if \(\lambda>1\).

\section*{[ Ratio Test Derivation ]}

Ratio test is implied by Geometric Series
\[
S_{n}(r):=\sum_{i=0}^{n} r^{i}=\frac{1-r^{n+1}}{1-r} .
\]
converges for \(n \rightarrow \infty\) if and only if \(-1<r<1\).
Let \(0 \leq \lambda<1\) :
\[
\begin{aligned}
& \forall \varepsilon>0 \exists n_{0}: f_{n+1} / f_{n}<\lambda+\varepsilon \forall n \geq n_{0} \\
& \Rightarrow \exists \varepsilon>0, \exists n_{0}: f_{n+1} / f_{n} \leq \mu<1 \forall n \geq n_{0}
\end{aligned}
\]

Thus
\[
\sum_{n=n_{0}}^{\infty} f_{n} \leq f_{n_{0}} \cdot \sum_{n=n_{0}}^{\infty} \cdot \mu^{n-n_{0}} \quad \text { konvergiert. }
\]
(Analogously for divergence)

\section*{L'Hospital's rule}

\section*{Theorem 14}

Let \(f, g: \mathbb{R}^{+} \rightarrow \mathbb{R}\) differentiable functions with \(g^{\prime}(x) \neq 0 \forall x>0\). If
\[
\lim _{x \rightarrow \infty} f(x)=\lim _{x \rightarrow \infty} g(x)=0
\]
or
\[
\lim _{x \rightarrow \infty} f(x)= \pm \infty \text { and } \lim _{x \rightarrow \infty} g(x)= \pm \infty
\]
then
\[
\lim _{x \rightarrow \infty} \frac{f(x)}{g(x)}=\lim _{x \rightarrow \infty} \frac{f^{\prime}(x)}{g^{\prime}(x)}
\]
if the limit of \(f^{\prime}(x) / g^{\prime}(x)\) exists

\section*{L'Hospital's rule}

\section*{Example}

Es gilt \(\log ^{k}(n) \in o(n)\), because with \(f(x)=\log ^{k}(x), g(n)=x\), we can apply L'Hospital's rule and get
\[
\lim _{x \rightarrow \infty} \frac{\log ^{k}(x)}{x}=\lim _{x \rightarrow \infty} \frac{f(x)}{g(x)}=\lim _{x \rightarrow \infty} \frac{f^{\prime}(x)}{g^{\prime}(x)}=\lim _{x \rightarrow \infty} k \frac{\log ^{k-1}(x)}{x}
\]

After \(k\) iterations we get
\[
\lim _{x \rightarrow \infty} \frac{\log ^{k}(x)}{x}=\lim _{x \rightarrow \infty} k!\frac{1}{x}=0
\]

\section*{10. Sorting III}

Lower bounds for the comparison based sorting, radix- and bucket-sort

\subsection*{10.1 Lower bounds for comparison based sorting}
[Ottman/Widmayer, Kap. 2.8, Cormen et al, Kap. 8.1]

\section*{Lower bound for sorting}

Up to here: worst case sorting takes \(\Omega(n \log n)\) steps. Is there a better way?

\section*{Lower bound for sorting}

Up to here: worst case sorting takes \(\Omega(n \log n)\) steps.
Is there a better way? No:

\section*{Theorem 15}

Sorting procedures that are based on comparison require in the worst case and on average at least \(\Omega(n \log n)\) key comparisons.

\section*{Comparison based sorting}

■ An algorithm must identify the correct one of \(n\) ! permutations of an array \(\left(A_{i}\right)_{i=1, \ldots, n}\).

\section*{Comparison based sorting}

■ An algorithm must identify the correct one of \(n\) ! permutations of an array \(\left(A_{i}\right)_{i=1, \ldots, n}\).
- At the beginning the algorithm knows nothing about the array structure.

\section*{Comparison based sorting}

■ An algorithm must identify the correct one of \(n\) ! permutations of an array \(\left(A_{i}\right)_{i=1, \ldots, n}\).
- At the beginning the algorithm knows nothing about the array structure.

■ We consider the knowledge gain of the algorithm in the form of a decision tree:

\section*{Comparison based sorting}

■ An algorithm must identify the correct one of \(n\) ! permutations of an array \(\left(A_{i}\right)_{i=1, \ldots, n}\).
- At the beginning the algorithm knows nothing about the array structure.

■ We consider the knowledge gain of the algorithm in the form of a decision tree:
- Nodes contain the remaining possibilities.

\section*{Comparison based sorting}

■ An algorithm must identify the correct one of \(n\) ! permutations of an array \(\left(A_{i}\right)_{i=1, \ldots, n}\).
- At the beginning the algorithm knows nothing about the array structure.

■ We consider the knowledge gain of the algorithm in the form of a decision tree:
- Nodes contain the remaining possibilities.
- Edges contain the decisions.

\section*{Decision tree}


\section*{Decision tree}

A binary tree with \(L\) leaves provides \(K=L-1\) inner nodes. \({ }^{10}\)
The height of a binary tree with \(L\) leaves is at least \(\log _{2} L . \Rightarrow\) The height of the decision tree \(h \geq \log n!\in \Omega(n \log n)\).
Thus the length of the longest path in the decision tree \(\in \Omega(n \log n)\).
Remaining to show: mean length \(M(n)\) of a path \(M(n) \in \Omega(n \log n)\).

\footnotetext{
\({ }^{10}\) Proof: start with emtpy tree ( \(K=0, L=1\) ). Each added node replaces a leaf by two leaves, i.e.\} \(K \rightarrow K+1 \Rightarrow L \rightarrow L+1\).
}

\section*{Average lower bound}

■ Decision tree \(T_{n}\) with \(n\) leaves, average height of a leaf \(m\left(T_{n}\right)\)
- Assumption \(m\left(T_{n}\right) \geq \log n\) not for all \(n\).

■ Choose smallest \(b\) with \(m\left(T_{b}\right)<\log b \Rightarrow b \geq 2\)
■ \(b_{l}+b_{r}=b\) with \(b_{l}>0\) and \(b_{r}>0 \Rightarrow\) \(b_{l}<b, b_{r}<b \Rightarrow m\left(T_{b_{l}}\right) \geq \log b_{l}\) und \(m\left(T_{b_{r}}\right) \geq \log b_{r}\)

\section*{Average lower bound}

Average height of a leaf:
\[
\begin{aligned}
m\left(T_{b}\right) & =\frac{b_{l}}{b}\left(m\left(T_{b_{l}}\right)+1\right)+\frac{b_{r}}{b}\left(m\left(T_{b_{r}}\right)+1\right) \\
& \geq \frac{1}{b}\left(b_{l}\left(\log b_{l}+1\right)+b_{r}\left(\log b_{r}+1\right)\right)=\frac{1}{b}\left(b_{l} \log 2 b_{l}+b_{r} \log 2 b_{r}\right) \\
& \geq \frac{1}{b}(b \log b)=\log b .
\end{aligned}
\]

Contradiction.
The last inequality holds because \(f(x)=x \log x\) is convex \(\left(f^{\prime \prime}(x)=1 / x>0\right)\) and for a convex function it holds that \(f((x+y) / 2) \leq 1 / 2 f(x)+1 / 2 f(y)\left(x=2 b_{l}\right.\), \(\left.y=2 b_{r}\right) .{ }^{11}\) Enter \(x=2 b_{l}, y=2 b_{r}\), and \(b_{l}+b_{r}=b\).

\footnotetext{
\({ }^{11}\) generally \(f(\lambda x+(1-\lambda) y) \leq \lambda f(x)+(1-\lambda) f(y)\) for \(0 \leq \lambda \leq 1\).
}

\subsection*{10.2 Radixsort and Bucketsort}

Radixsort, Bucketsort [Ottman/Widmayer, Kap. 2.5, Cormen et al, Kap. 8.3]

\section*{Radix Sort}

Sorting based on comparison: comparable keys (< or >, often =). No further assumptions.

Sorting based on comparison: comparable keys (<or \(>\), often \(=\) ). No further assumptions.
Different idea: use more information about the keys.

\section*{Assumptions}

Assumption: keys representable as words from an alphabet containing \(m\) elements.

\section*{Examples}
\[
m=10 \quad \text { decimal numbers } \quad 183=183_{10}
\]
\(m\) is called the radix of the representation.

\section*{Assumptions}

Assumption: keys representable as words from an alphabet containing \(m\) elements.

\section*{Examples}
\[
\begin{array}{lll}
m=10 & \text { decimal numbers } & 183=183_{10} \\
m=2 & \text { dual numbers } & 101_{2}
\end{array}
\]
\(m\) is called the radix of the representation.

\section*{Assumptions}

Assumption: keys representable as words from an alphabet containing \(m\) elements.

\section*{Examples}
\[
\begin{array}{lll}
m=10 & \text { decimal numbers } & 183=183_{10} \\
m=2 & \text { dual numbers } & 101_{2} \\
m=16 & \text { hexadecimal numbers } & A 0_{16}
\end{array}
\]
\(m\) is called the radix of the representation.

\section*{Assumptions}

Assumption: keys representable as words from an alphabet containing \(m\) elements.

\section*{Examples}
\[
\begin{array}{lll}
m=10 & \text { decimal numbers } & 183=183_{10} \\
m=2 & \text { dual numbers } & 101_{2} \\
m=16 & \text { hexadecimal numbers } & A 0_{16} \\
m=26 & \text { words } & \text { "INFORMATIK" }
\end{array}
\]
\(m\) is called the radix of the representation.

\section*{Assumptions}

■ keys = \(m\)-adic numbers with same length.

\section*{Assumptions}

■ keys = \(m\)-adic numbers with same length.
■ Procedure \(z\) for the extraction of digit \(k\) in \(\mathcal{O}(1)\) steps.

\section*{Example}
\[
\begin{aligned}
& z_{10}(0,85)=5 \\
& z_{10}(1,85)=8 \\
& z_{10}(2,85)=0
\end{aligned}
\]

\section*{Radix-Exchange-Sort}

Keys with radix 2.
Observation: if for some \(k \geq 0\) :
\[
z_{2}(i, x)=z_{2}(i, y) \text { for all } i>k
\]
and
\[
z_{2}(k, x)<z_{2}(k, y)
\]
then it holds that \(x<y\).

\section*{Radix-Exchange-Sort}

Idea:
■ Start with a maximal \(k\).
■ Binary partition the data sets with \(z_{2}(k, \cdot)=0\) vs. \(z_{2}(k, \cdot)=1\) like with quicksort.
- \(k \leftarrow k-1\).

Radix-Exchange-Sort

01110110100000110001

Radix-Exchange-Sort

01110110100000110001

Radix-Exchange-Sort


Radix-Exchange-Sort



\section*{Radix-Exchange-Sort}




\begin{tabular}{|l|l|l|l|}
\hline 0001 & 0011 & 0110 & 0111 \\
\hline
\end{tabular}

\section*{Algorithm RadixExchangeSort(A,l,r,b)}

Input: \(\quad\) Array \(A\) with length \(n\), left and right bounds \(1 \leq l \leq r \leq n\), bit position \(b\) Output: Array \(A\), sorted in the domain \([l, r]\) by bits \([0, \ldots, b]\).
if \(l<r\) and \(b \geq 0\) then
\(i \leftarrow l-1\)
\(j \leftarrow r+1\)
repeat
repeat \(i \leftarrow i+1\) until \(z_{2}(b, A[i])=1\) or \(i \geq j\)
repeat \(j \leftarrow j-1\) until \(z_{2}(b, A[j])=0\) or \(i \geq j\)
if \(i<j\) then \(\operatorname{swap}(A[i], A[j])\)
until \(i \geq j\)
RadixExchangeSort \((A, l, i-1, b-1)\)
RadixExchangeSort \((A, i, r, b-1)\)

\section*{Analysis}

RadixExchangeSort provides recursion with maximal recursion depth = maximal number of digits \(p\).
Worst case run time \(\mathcal{O}(p \cdot n)\).

\section*{Bucket Sort}
\(\begin{array}{llllllll}3 & 8 & 18 & 122121 & 131 & 23 & 21 & 19 \\ 29\end{array}\)
\begin{tabular}{|l|l|l|l|l|l|l|l|l|l|}
\hline 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\
\hline
\end{tabular}

\section*{Bucket Sort}


\section*{Bucket Sort}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\
\hline & 21 & & & & & & & & \\
\hline & 131 & & 23 & & & & & 18 & 29 \\
\hline & 121 & 122 & 3 & & & & & 8 & 19 \\
\hline
\end{tabular}

\section*{Bucket Sort}
\(\begin{array}{llllllll}3 & 8 & 18 & 122121 & 131 & 23 & 21 & 19 \\ 29\end{array}\)


\section*{Bucket Sort}
\(\begin{array}{llllllll}121 & 131 & 21 & 122 & 3 & 23 & 8 & 18 \\ 19 & 29\end{array}\)

\section*{Bucket Sort}
\(\begin{array}{llllllll}121 & 131 & 21 & 122 & 3 & 23 & 8 & 18 \\ 19 & 29\end{array}\)


\section*{Bucket Sort}
\(\begin{array}{lllllllll}121 & 131 & 21 & 122 & 3 & 23 & 8 & 18 & 19\end{array}\)

\(\begin{array}{lllllllll}3 & 8 & 18 & 19 & 121 & 21 & 122 & 23 & 29\end{array}\)

\section*{Bucket Sort}
\(\begin{array}{llllllll}3 & 8 & 18 & 19 & 121 & 21 & 122 & 23 \\ 29\end{array}\)

\section*{Bucket Sort}


\section*{Bucket Sort}
\(\begin{array}{lllllllll}3 & 8 & 18 & 19 & 121 & 21 & 122 & 23 & 29\end{array}\)

\(\begin{array}{llllllllll}3 & 8 & 18 & 19 & 21 & 23 & 29 & 121 & 122 & 131 \\ \text { - }\end{array}\)

\section*{implementation details}

Bucket size varies greatly. Possibilities
- Linked list or dynamic array for each digit.

■ One array of length \(n\). compute offsets for each digit in the first iteration. Assumptions: Input length \(n\), Number bits / integer: \(k\), Number Buckets: \(2^{b}\)
Asymptotic running time \(\mathcal{O}\left(\frac{k}{b} \cdot\left(n+2^{b}\right)\right.\).
For Example: \(k=32,2^{b}=256: \frac{k}{b} \cdot\left(n+2^{b}\right)=4 n+1024\).

\section*{Bucket Sort - Different Assumption}

Hypothesis: uniformly distributed data e.g. from \([0,1)\)
Input: \(\quad\) Array \(A\) with length \(n, A_{i} \in[0,1)\), constant \(M \in \mathbb{N}^{+}\)
Output: Sorted array
\(k \leftarrow\lceil n / M\rceil\)
\(B \leftarrow\) new array of \(k\) empty lists
for \(i \leftarrow 1\) to \(n\) do
\(B\left[\left\lfloor A_{i} \cdot k\right\rfloor\right]\).append \((A[i])\)
for \(i \leftarrow 1\) to \(k\) do
sort \(B[i] / /\) e.g. insertion sort, running time \(\mathcal{O}\left(M^{2}\right)\)
return \(B[0] \circ B[1] \circ \cdots \circ B[k] / /\) concatenated

Expected asymptotic running time \(\mathcal{O}(n)\) (Proof in Cormen et al, Kap. 8.4)

\section*{11. Fundamental Data Structures}

Abstract data types stack, queue, implementation variants for linked lists [Ottman/Widmayer, Kap. 1.5.1-1.5.2, Cormen et al, Kap. 10.1.-10.2]

\section*{Abstract Data Types}

\section*{We recall}

A stack is an abstract data type (ADR) with operations

\section*{Abstract Data Types}

\section*{We recall}

A stack is an abstract data type (ADR) with operations
■ push \((x, S)\) : Puts element \(x\) on the stack \(S\).

\section*{Abstract Data Types}

\section*{We recall}

A stack is an abstract data type (ADR) with operations
■ push \((x, S)\) : Puts element \(x\) on the stack \(S\).
■ \(\operatorname{pop}(S)\) : Removes and returns top most element of \(S\) or null

\section*{Abstract Data Types}

\section*{We recall}

A stack is an abstract data type (ADR) with operations
■ push \((x, S)\) : Puts element \(x\) on the stack \(S\).
\(\square \operatorname{pop}(S)\) : Removes and returns top most element of \(S\) or null
■ \(\operatorname{top}(S)\) : Returns top most element of \(S\) or null.

\section*{Abstract Data Types}

\section*{We recall}

A stack is an abstract data type (ADR) with operations
■ push \((x, S)\) : Puts element \(x\) on the stack \(S\).
■ \(\operatorname{pop}(S)\) : Removes and returns top most element of \(S\) or null
■ top \((S)\) : Returns top most element of \(S\) or null.
■ isEmpty \((S)\) : Returns true if stack is empty, false otherwise.

\section*{Abstract Data Types}

\section*{We recall}

A stack is an abstract data type (ADR) with operations
■ push \((x, S)\) : Puts element \(x\) on the stack \(S\).
■ \(\operatorname{pop}(S)\) : Removes and returns top most element of \(S\) or null
■ \(\operatorname{top}(S)\) : Returns top most element of \(S\) or null.
■ isEmpty \((S)\) : Returns true if stack is empty, false otherwise.
■ emptyStack(): Returns an empty stack.

\section*{Implementation Push}
\[
\text { top } \longrightarrow x_{n} \bullet \longrightarrow x_{n-1} \bullet---\rightarrow x_{1} \bullet \longrightarrow \text { null }
\]
push \((x, S)\) :

\section*{Implementation Push}

1. Create new list element with \(x\) and pointer to the value of top.

\section*{Implementation Push}

1. Create new list element with \(x\) and pointer to the value of top.
2. Assign the node with \(x\) to top.

\section*{Implementation Pop}
\[
\text { top } \longrightarrow x_{n} \bullet \longrightarrow x_{n-1} \bullet---\rightarrow x_{1} \bullet \longrightarrow \text { null }
\]
\(\operatorname{pop}(S)\) :

\section*{Implementation Pop}

\(\operatorname{pop}(S)\) :
1. If top=null, then return null

\section*{Implementation Pop}

1. If top=null, then return null
2. otherwise memorize pointer \(p\) of top in \(r\).

\section*{Implementation Pop}

1. If top=null, then return null
2. otherwise memorize pointer \(p\) of top in \(r\).
3. Set top to \(p\).next and return \(r\)

\section*{Analysis}

Each of the operations push, pop, top and isEmpty on a stack can be executed in \(\mathcal{O}(1)\) steps.

\section*{Queue (fifo)}

\section*{A queue is an ADT with the following operations}

\section*{Queue (fifo)}

A queue is an ADT with the following operations
■ enqueue \((x, Q)\) : adds \(x\) to the tail (=end) of the queue.

\section*{Queue (fifo)}

A queue is an ADT with the following operations
■ enqueue \((x, Q)\) : adds \(x\) to the tail (=end) of the queue.
■ dequeue \((Q)\) : removes \(x\) from the head of the queue and returns \(x\) (null otherwise)

\section*{Queue (fifo)}

A queue is an ADT with the following operations
■ enqueue \((x, Q)\) : adds \(x\) to the tail (=end) of the queue.
■ dequeue \((Q)\) : removes \(x\) from the head of the queue and returns \(x\) (null otherwise)
■ head \((Q)\) : returns the object from the head of the queue (null otherwise)

\section*{Queue (fifo)}

A queue is an ADT with the following operations
■ enqueue \((x, Q)\) : adds \(x\) to the tail (=end) of the queue.
■ dequeue \((Q)\) : removes \(x\) from the head of the queue and returns \(x\) (null otherwise)
■ head \((Q)\) : returns the object from the head of the queue (null otherwise)
- isEmpty \((Q)\) : return true if the queue is empty, otherwise false

\section*{Queue (fifo)}

A queue is an ADT with the following operations
■ enqueue \((x, Q)\) : adds \(x\) to the tail (=end) of the queue.
■ dequeue \((Q)\) : removes \(x\) from the head of the queue and returns \(x\) (null otherwise)
■ head \((Q)\) : returns the object from the head of the queue (null otherwise)
- isEmpty \((Q)\) : return true if the queue is empty, otherwise false

■ emptyQueue(): returns empty queue.

\section*{Implementation Queue}

enqueue \((x, S)\) :

\section*{Implementation Queue}

enqueue \((x, S)\) :
1. Create a new list element with \(x\) and pointer to null.

\section*{Implementation Queue}

enqueue \((x, S)\) :
1. Create a new list element with \(x\) and pointer to null.
2. If tail \(\neq\) null, then set tail . next to the node with \(x\).

\section*{Implementation Queue}

enqueue \((x, S)\) :
1. Create a new list element with \(x\) and pointer to null.
2. If tail \(\neq\) null, then set tail . next to the node with \(x\).
3. Set tail to the node with \(x\).

\section*{Implementation Queue}

enqueue \((x, S)\) :
1. Create a new list element with \(x\) and pointer to null.
2. If tail \(\neq\) null, then set tail . next to the node with \(x\).
3. Set tail to the node with \(x\).
4. If head \(=\) null, then set head to tail.

\section*{Invariants}


With this implementation it holds that

\section*{Invariants}


With this implementation it holds that
■ either head = tail = null,

\section*{Invariants}


With this implementation it holds that
\(\square\) either head = tail = null,
■ or head \(=\) tail \(\neq\) null and head.next \(=\) null

\section*{Invariants}


With this implementation it holds that
\(\square\) either head = tail = null,
■ or head \(=\) tail \(\neq\) null and head.next \(=\) null
- or head \(\neq\) null and tail \(\neq\) null and head \(\neq\) tail and head.next \(\neq\) null.

\section*{Implementation Queue}

dequeue \((S)\) :

\section*{Implementation Queue}

dequeue \((S)\) :
1. Store pointer to head in \(r\). If \(r=\) null, then return \(r\).

\section*{Implementation Queue}

dequeue \((S)\) :
1. Store pointer to head in \(r\). If \(r=\) null, then return \(r\).
2. Set the pointer of head to head.next.

\section*{Implementation Queue}


\section*{dequeue \((S)\) :}
1. Store pointer to head in \(r\). If \(r=\) null, then return \(r\).
2. Set the pointer of head to head.next.
3. Is now head \(=\) null then set tail to null.

\section*{Implementation Queue}


\section*{dequeue \((S)\) :}
1. Store pointer to head in \(r\). If \(r=\) null, then return \(r\).
2. Set the pointer of head to head.next.
3. Is now head = null then set tail to null.
4. Return the value of \(r\).

\section*{Analysis}

Each of the operations enqueue, dequeue, head and isEmpty on the queue can be executed in \(\mathcal{O}(1)\) steps.

\section*{Implementation Variants of Linked Lists}

List with dummy elements (sentinels).


Advantage: less special cases

\section*{Implementation Variants of Linked Lists}

List with dummy elements (sentinels).


Advantage: less special cases
Variant: like this with pointer of an element stored singly indirect. (Example: pointer to \(x_{3}\) points to \(x_{2}\).)

\section*{Implementation Variants of Linked Lists}

Doubly linked list


\section*{Overview}
\begin{tabular}{lllll} 
& enqueue & delete & search & concat \\
\hline (A) & \(\Theta(1)\) & \(\Theta(n)\) & \(\Theta(n)\) & \(\Theta(n)\) \\
\hline (B) & \(\Theta(1)\) & \(\Theta(n)\) & \(\Theta(n)\) & \(\Theta(1)\) \\
\hline (C) & \(\Theta(1)\) & \(\Theta(1)\) & \(\Theta(n)\) & \(\Theta(1)\) \\
\hline (D) & \(\Theta(1)\) & \(\Theta(1)\) & \(\Theta(n)\) & \(\Theta(1)\) \\
\hline
\end{tabular}
(A) = singly linked
(B) = Singly linked with dummy element at the beginning and the end
(C) = Singly linked with indirect element addressing
(D) = doubly linked

\section*{12. Amortized Analyis}

Amortized Analysis: Aggregate Analysis, Account-Method, Potential-Method [Ottman/Widmayer, Kap. 3.3, Cormen et al, Kap. 17]

\section*{Multistack}

Multistack adds to the stack operations push und pop
multipop \((k, S)\) : remove the \(\min (\operatorname{size}(S), k)\) most recently inserted objects and return them.
Implementation as with the stack. Runtime of multipop is \(\mathcal{O}(k)\).

\section*{Academic Question}

If we execute on a stack with \(n\) elements a number of \(n\) times multipop ( \(\mathrm{k}, \mathrm{S}\) ) then this costs \(\mathcal{O}\left(n^{2}\right)\) ?

\section*{Academic Question}

If we execute on a stack with \(n\) elements a number of \(n\) times multipop ( \(\mathrm{k}, \mathrm{S}\) ) then this costs \(\mathcal{O}\left(n^{2}\right)\) ?
Certainly correct because each multipop may take \(\mathcal{O}(n)\) steps.

\section*{Academic Question}

If we execute on a stack with \(n\) elements a number of \(n\) times multipop ( \(\mathrm{k}, \mathrm{S}\) ) then this costs \(\mathcal{O}\left(n^{2}\right)\) ?
Certainly correct because each multipop may take \(\mathcal{O}(n)\) steps. How to make a better estimation?

\section*{Amortized Analysis}
- Upper bound: average performance of each considered operation in the worst case.
\[
\frac{1}{n} \sum_{i=1}^{n} \operatorname{cost}\left(\mathrm{op}_{i}\right)
\]

■ Makes use of the fact that a few expensive operations are opposed to many cheap operations.
■ In amortized analysis we search for a credit or a potential function that captures how the cheap operations can "compensate" for the expensive ones.

\section*{Aggregate Analysis}

Direct argument: compute a bound for the total number of elementary operations and divide by the total number of operations.

\section*{Aggregate Analysis: (Stack)}

■ With \(n\) operations at most \(n\) elements can be pushed onto the stack. Therefore a maximum of \(n\) elements can be removed from the stack
■ For the total costs we get
\[
\sum_{i=1}^{n} \operatorname{cost}\left(\mathrm{op}_{i}\right) \leq 2 n
\]
and thus
\[
\text { amortized } \operatorname{cost}\left(\mathrm{op}_{i}\right) \leq 2 \in \mathcal{O}(1)
\]

\section*{Accounting Method}

\section*{Model}

■ The computer is driven with coins: each elementary operation of the machine costs a coin.

■ For each operation \(o p_{k}\) of a data structure, a number of coins \(a_{k}\) has to be put on an account \(A\) : \(A_{k}=A_{k-1}+a_{k}\)
- Use the coins from the account \(A\) to pay the true costs \(t_{k}\) of each operation.
■ The account \(A\) needs to provide enough coins in order to pay each of the ongoing operations \(o p_{k}: A_{k}-t_{k} \geq 0 \forall k\).
\(\Rightarrow a_{k}\) are the amortized costs of \(o p_{k}\).

\section*{Accounting Method (Stack)}

■ Each call of push costs 1 CHF and additionally 1 CHF will be deposited on the account. ( \(a_{k}=2\) )
■ Each call to pop costs 1 CHF and will be paid from the account. ( \(a_{k}=0\) )
Account will never have a negative balance.
\(a_{k} \leq 2 \forall k\), thus: constant amortized costs.

\section*{Potential Method}

Slightly different model
- Define a potential \(\Phi_{i}\) that is associated to the state of a data structure at time \(i\).
■ The potential shall be used to level out expensive operations und therefore needs to be chosen such that it is increased during the (frequent) cheap operations while it decreases for the (rare) expensive operations.

\section*{Potential Method (Formal)}

Let \(t_{i}\) denote the real costs of the operation \(o p_{i}\).
Potential function \(\Phi_{i} \geq 0\) to the data structure after \(i\) operations.
Requirement: \(\Phi_{i} \geq \Phi_{0} \forall i\).
Amortized costs of the \(i\) th operation:
\[
a_{i}:=t_{i}+\Phi_{i}-\Phi_{i-1} .
\]

It holds
\[
\sum_{i=1}^{n} a_{i}=\sum_{i=1}^{n}\left(t_{i}+\Phi_{i}-\Phi_{i-1}\right)=\left(\sum_{i=1}^{n} t_{i}\right)+\Phi_{n}-\Phi_{0} \geq \sum_{i=1}^{n} t_{i}
\]

\section*{Example stack}

Potential function \(\Phi_{i}=\) number element on the stack.
\(\square\) push \((x, S)\) : real costs \(t_{i}=1\). \(\Phi_{i}-\Phi_{i-1}=1\). Amortized costs \(a_{i}=2\).
\(\square \operatorname{pop}(S)\) : real costs \(t_{i}=1 . \Phi_{i}-\Phi_{i-1}=-1\). Amortized costs \(a_{i}=0\).
■ multipop \((k, S)\) : real costs \(t_{i}=k\). \(\Phi_{i}-\Phi_{i-1}=-k\). amortized costs \(a_{i}=0\).
All operations have constant amortized cost! Therefore, on average Multipop requires a constant amount of time. \({ }^{12}\)

\footnotetext{
\({ }^{12}\) Note that we are not talking about the probabilistic mean but the (worst-case) average of the costs.
}

\section*{Example Binary Counter}

Given: counter with \(k\) bits. We count from 0 to \(n-1\) where \(n=2^{k}\).
Wanted: average counting costs as number bit-flips per operation
Naive: per operation maximally \(k\) bit-flips. Thus, in total \(\mathcal{O}(n \cdot k)\) operations or \(\mathcal{O}(\log n)\) bitflips per count operation on average.

\section*{Example Binary Counter}

Real costs \(t_{i}=\) number bit flips from 0 to 1 plus number of bit-flips from 1 to 0 .
\[
\begin{gathered}
\ldots 0 \underbrace{1111111}_{l \text { Ones }}+1=\ldots 1 \underbrace{0000000}_{l \text { Zeroes }} . \\
\Rightarrow t_{i}=l+1
\end{gathered}
\]

\section*{Binary Counter: Aggregate Analysis}

Count the number of bit flips when counting from 0 to \(n-1\). 0001
Observation
■ Bit 0 flips each time 0100
■ Bit 1 flips each 2 . time 0101
■ Bit 2 flips each 4. time 0110 ■ ... 01111000

Thus, total number bit flips
Thus, total number bit fips ..... 1001
\(\sum_{i=0}^{n-1} \frac{n}{2^{i}} \leq n \cdot \sum_{i=0}^{\infty} \frac{1}{2^{i}}=2 n\) ..... 1011 ..... 1100
Amortized cost for operation: \(\mathcal{O}(1)\) bit flips. ..... 1110

\section*{Binary Counter: Account Method}

Observation: for each increment exactly one bit is incremented to 1 , while many bits may be reset to 0 . Only a bit that had previously been set to 1 can be reset to 0 .

Amortised costs \(a_{i}=2\) :
■ 1 CHF real cost for setting \(0 \mapsto 1\)
- plus 1 CHF to deposit on the account.
- Every reset \(1 \rightarrow 0\) can be paid from the account.

\section*{Binary Counter: Potential Method}
\[
\ldots 0 \underbrace{1111111}_{l \text { ones }}+1=\ldots 1 \underbrace{0000000}_{l \text { zeros }}
\]
potential function \(\Phi_{i}\) : number of 1-bits of \(x_{i}\).
\[
\begin{aligned}
0=\Phi_{0} & \leq \Phi_{i} \forall i, \\
\Phi_{i}-\Phi_{i-1} & =1-l_{i}, \\
\Rightarrow a_{i} & =t_{i}+\Phi_{i}-\Phi_{i-1} \\
& =l_{i}+1+\left(1-l_{i}\right) \\
& =2
\end{aligned}
\]

Amortized constant cost per count operation. ©

\section*{13. Dictionaries}

Dictionary, Self-ordering List, Implementation of Dictionaries with Array / List / Skip lists. [Ottman/Widmayer, Kap. 3.3,1.7, Cormen et al, Kap. Problem 17-5]

\section*{Dictionary}

ADT to manage keys from a set \(\mathcal{K}\) with operations
■ insert \((k, D)\) : Insert \(k \in \mathcal{K}\) to the dictionary \(D\). Already exists \(\Rightarrow\) error messsage.
■ delete \((k, D)\) : Delete \(k\) from the dictionary \(D\). Not existing \(\Rightarrow\) error message.

■ search \((k, D)\) : Returns true if \(k \in D\), otherwise false

Implement dictionary as sorted array
Worst case number of fundamental operations
Search
Insert
Delete

\section*{Idea}

Implement dictionary as sorted array
Worst case number of fundamental operations
Search \(\mathcal{O}(\log n) \odot\)
Insert
Delete

\section*{Idea}

Implement dictionary as sorted array
Worst case number of fundamental operations
\[
\begin{array}{ll}
\text { Search } & \mathcal{O}(\log n) \odot \\
\text { Insert } & \mathcal{O}(n) \bigodot \\
\text { Delete } &
\end{array}
\]

\section*{Idea}

Implement dictionary as sorted array
Worst case number of fundamental operations
\[
\begin{array}{ll}
\text { Search } & \mathcal{O}(\log n) \odot \\
\text { Insert } & \mathcal{O}(n) \bigodot \\
\text { Delete } & \mathcal{O}(n) \bigodot
\end{array}
\]

\section*{Other idea}

Implement dictionary as a linked list Worst case number of fundamental operations

\author{
Search \\ Insert \\ Delete
}
\({ }^{13}\) Provided that we do not have to check existence.

\section*{Other idea}

Implement dictionary as a linked list Worst case number of fundamental operations

\author{
Search \(\mathcal{O}(n) \bigodot\) Insert \\ Delete
}
\({ }^{13}\) Provided that we do not have to check existence.

\section*{Other idea}

Implement dictionary as a linked list Worst case number of fundamental operations
```

Search \mathcal{O}(n) %
Insert }\mathcal{O}(1\mp@subsup{)}{}{13}
Delete

```
\({ }^{13}\) Provided that we do not have to check existence.

\section*{Other idea}

Implement dictionary as a linked list Worst case number of fundamental operations

\({ }^{13}\) Provided that we do not have to check existence.
13.1 Self Ordering

\section*{Self Ordered Lists}

Problematic with the adoption of a linked list: linear search time
Idea: Try to order the list elements such that accesses over time are possible in a faster way
For example
■ Transpose: For each access to a key, the key is moved one position closer to the front.
■ Move-to-Front (MTF): For each access to a key, the key is moved to the front of the list.

\section*{Transpose}

Transpose:


Worst case: Alternating sequence of \(n\) accesses to \(k_{n-1}\) and \(k_{n}\).

\section*{Transpose}

Transpose:


Worst case: Alternating sequence of \(n\) accesses to \(k_{n-1}\) and \(k_{n}\).

\section*{Transpose}

Transpose:


Worst case: Alternating sequence of \(n\) accesses to \(k_{n-1}\) and \(k_{n}\).

\section*{Transpose}

Transpose:
\[
\begin{array}{l|l|l|l|l|l|l|l}
\hline k_{1} & k_{2} & k_{3} & k_{4} & k_{5} & \ldots & k_{n-1} & k_{n} \\
\hline
\end{array}
\]

Worst case: Alternating sequence of \(n\) accesses to \(k_{n-1}\) and \(k_{n}\). Runtime: \(\Theta\left(n^{2}\right)\)

\section*{Move-to-Front}

Move-to-Front:
\begin{tabular}{|l|l|l|l|l|l|l|l|}
\(k_{1}\) & \(k_{2}\) & \(k_{3}\) & \(k_{4}\) & \(k_{5}\) & \(\ldots\) & \(k_{n-1}\) & \(k_{n}\) \\
\hline
\end{tabular}

Alternating sequence of \(n\) accesses to \(k_{n-1}\) and \(k_{n}\).

\section*{Move-to-Front}

Move-to-Front:
\[
\begin{array}{c|c|c|c|c|c|c}
k_{n-1} & k_{1} & k_{2} & k_{3} & k_{4} & \ldots & k_{n-2}
\end{array} k_{n}
\]

Alternating sequence of \(n\) accesses to \(k_{n-1}\) and \(k_{n}\).

\section*{Move-to-Front}

Move-to-Front:


Alternating sequence of \(n\) accesses to \(k_{n-1}\) and \(k_{n}\).

\section*{Move-to-Front}

Move-to-Front:


Alternating sequence of \(n\) accesses to \(k_{n-1}\) and \(k_{n}\). Runtime: \(\Theta(n)\)

\section*{Move-to-Front}

Move-to-Front:


Alternating sequence of \(n\) accesses to \(k_{n-1}\) and \(k_{n}\). Runtime: \(\Theta(n)\) Also here we can provide a sequence of accesses with quadratic runtime, e.g. access to the last element. But there is no obvious strategy to counteract much better than MTF..

\section*{Analysis}

Compare MTF with the best-possible competitor (algorithm) A. How much better can A be?
Assumptions:
■ MTF and A may only move the accessed element.
■ MTF and A start with the same list.
Let \(M_{k}\) and \(A_{k}\) designate the lists after the \(k\) th step. \(M_{0}=A_{0}\).

\section*{Analysis}

Costs:
■ Access to \(x\) : position \(p\) of \(x\) in the list.
■ No further costs, if \(x\) is moved before \(p\)
■ Further costs \(q\) for each element that \(x\) is moved back starting from \(p\).


\section*{Amortized Analysis}

Let an arbitrary sequence of search requests be given and let \(G_{k}^{(M)}\) and \(G_{k}^{(A)}\) the costs in step \(k\) for Move-to-Front and A, respectively. Want estimation of \(\sum_{k} G_{k}^{(M)}\) compared with \(\sum_{k} G_{k}^{(A)}\).
\(\Rightarrow\) Amortized analysis with potential function \(\Phi\).

\section*{Potential Function}

Potential function \(\Phi=\) Number of inversions of \(A\) vs. MTF. Inversion \(=\) Pair \(x, y\) such that for the positions of \(a\) and \(y\)
\[
\left(p^{(A)}(x)<p^{(A)}(y)\right) \neq\left(p^{(M)}(x)<p^{(M)}(y)\right)
\]

\#inversion = \#crossings

\section*{Estimating the Potential Function: MTF}

■ Element \(i\) at position \(p_{i}:=p^{(M)}(i)\).
- access costs \(C_{k}^{(M)}=p_{i}\).
- \(x_{i}\) : Number elements that are in \(M\) before \(p_{i}\) and in A after \(i\).

■ MTF removes \(x_{i}\) inversions.
- \(p_{i}-x_{i}-1\) : Number elements
that in M are before \(p_{i}\) and in
- \(p_{i}-x_{i}-1\) : Number elements
that in M are before \(p_{i}\) and in A are before \(i\).

■ MTF generates \(p_{i}-1-x_{i}\) inversions.


\section*{Estimating the Potential Function: A}

■ Wlog element \(i\) at position \(p^{(A)}(i)\).

■ \(X_{k}^{(A)}\) : number movements to
 the back (otherwise 0).

■ access costs for \(i\) :
\(C_{k}^{(A)}=p^{(A)}(i) \geq p^{(M)}(i)-x_{i}\).
■ A increases the number of inversions maximally by \(X_{k}^{(A)}\).


\section*{Estimation}
\[
\Phi_{k+1}-\Phi_{k} \leq-x_{i}+\left(p_{i}-1-x_{i}\right)+X_{k}^{(A)}
\]

Amortized costs of MTF in step \(k\) :
\[
\begin{aligned}
a_{k}^{(M)} & =C_{k}^{(M)}+\Phi_{k+1}-\Phi_{k} \\
& \leq p_{i}-x_{i}+\left(p_{i}-1-x_{i}\right)+X_{k}^{(A)} \\
& =\left(p_{i}-x_{i}\right)+\left(p_{i}-x_{i}\right)-1+X_{k}^{(A)} \\
& \leq C_{k}^{(A)}+C_{k}^{(A)}-1+X_{k}^{(A)} \leq 2 \cdot C_{k}^{(A)}+X_{k}^{(A)}
\end{aligned}
\]

\section*{Estimation}

Summing up costs
\[
\begin{aligned}
\sum_{k} G_{k}^{(M)}=\sum_{k} C_{k}^{(M)} & \leq \sum_{k} a_{k}^{(M)} \leq \sum_{k} 2 \cdot C_{k}^{(A)}+X_{k}^{(A)} \\
& \leq 2 \cdot \sum_{k} C_{k}^{(A)}+X_{k}^{(A)} \\
& =2 \cdot \sum_{k} G_{k}^{(A)}
\end{aligned}
\]

In the worst case MTF requires at most twice as many operations as the optimal strategy.
13.2 Skip Lists

\section*{Sorted Linked List}


Search for element / insertion position: worst-case \(n\) Steps.

\section*{Sorted Linked List with two Levels}
\[
\begin{aligned}
& l_{0} \\
& l_{1} \\
& l_{2}
\end{aligned}
\]


■ Number elements: \(n_{0}:=n\)
- Stepsize on level 1: \(n_{1}\)

■ Stepsize on level 2: \(n_{2}=1\)
\(\Rightarrow\) Search for element / insertion position: worst-case \(\frac{n_{0}}{n_{1}}+\frac{n_{1}}{n_{2}}\).
\(\Rightarrow\) Best Choice for \({ }^{14} n_{1}: n_{1}=\frac{n_{0}}{n_{1}}=\sqrt{n_{0}}\).
Search for element / insertion position: worst-case \(2 \sqrt{n}\) steps.

\footnotetext{
\({ }^{14}\) Differentiate and set to zero, cf. appendix
}

\section*{Sorted Linked List with two Levels}
\(l_{0}\)
\(l_{1}\)
\(l_{2}\)
\(l_{3}\)


■ Number elements: \(n_{0}:=n\)
- Stepsizes on levels \(0<i<3\) : \(n_{i}\)
- Stepsize on level 3: \(n_{3}=1\)
\(\Rightarrow\) Best Choice for \(\left(n_{1}, n_{2}\right): n_{2}=\frac{n_{0}}{n_{1}}=\frac{n_{1}}{n_{2}}=\sqrt[3]{n_{0}}\).
Search for element / insertion position: worst-case \(3 \cdot \sqrt[3]{n}\) steps.

\section*{Sorted Linked List with \(k\) Levels (Skiplist)}

■ Number elements: \(n_{0}:=n\)
■ Stepsizes on levels \(0<i<k\) : \(n_{i}\)
■ Stepsize on level \(k: n_{k}=1\)
\(\Rightarrow\) Best Choice for \(\left(n_{1}, \ldots, n_{k}\right): n_{k-1}=\frac{n_{0}}{n_{1}}=\frac{n_{1}}{n_{2}}=\cdots=\sqrt[k]{n_{0}}\).
Search for element / insertion position: worst-case \(k \cdot \sqrt[k]{n}\) steps \({ }^{15}\).
Assumption \(n=2^{k}\)
\(\Rightarrow\) worst case \(\log _{2} n \cdot 2\) steps and \(\frac{n_{i}}{n_{i+1}}=2 \forall 0 \leq i<\log _{2} n\).

\footnotetext{
\({ }^{15}\) (Derivation: Appendix)
}

\section*{Search in a Skiplist}
skip list

\(x_{1} \leq x_{2} \leq x_{3} \leq \cdots \leq x_{9}\).

\section*{Search in a Skiplist}
skip list

\(x_{1} \leq x_{2} \leq x_{3} \leq \cdots \leq x_{9}\)

\section*{Search in a Skiplist}
skip list

\(x_{1} \leq x_{2} \leq x_{3} \leq \cdots \leq x_{9}\).

\section*{Search in a Skiplist}
skip list

\(x_{1} \leq x_{2} \leq x_{3} \leq \cdots \leq x_{9}\).

\section*{Search in a Skiplist}

Perfect skip list

\(x_{1} \leq x_{2} \leq x_{3} \leq \cdots \leq x_{9}\).
Example: search for a key \(x\) with \(x_{5}<x<x_{6}\).

\section*{Search in a Skiplist}

Perfect skip list

\(x_{1} \leq x_{2} \leq x_{3} \leq \cdots \leq x_{9}\).
Example: search for a key \(x\) with \(x_{5}<x<x_{6}\).

\section*{Search in a Skiplist}

Perfect skip list

\(x_{1} \leq x_{2} \leq x_{3} \leq \cdots \leq x_{9}\).
Example: search for a key \(x\) with \(x_{5}<x<x_{6}\).

\section*{Search in a Skiplist}

Perfect skip list

\(x_{1} \leq x_{2} \leq x_{3} \leq \cdots \leq x_{9}\).
Example: search for a key \(x\) with \(x_{5}<x<x_{6}\).

\section*{Search in a Skiplist}

Perfect skip list

\(x_{1} \leq x_{2} \leq x_{3} \leq \cdots \leq x_{9}\).
Example: search for a key \(x\) with \(x_{5}<x<x_{6}\).

\section*{Search in a Skiplist}

Perfect skip list

\(x_{1} \leq x_{2} \leq x_{3} \leq \cdots \leq x_{9}\).
Example: search for a key \(x\) with \(x_{5}<x<x_{6}\).

\section*{Search in a Skiplist}

Perfect skip list

\(x_{1} \leq x_{2} \leq x_{3} \leq \cdots \leq x_{9}\).
Example: search for a key \(x\) with \(x_{5}<x<x_{6}\).

\section*{Search in a Skiplist}

Perfect skip list

\(x_{1} \leq x_{2} \leq x_{3} \leq \cdots \leq x_{9}\).
Example: search for a key \(x\) with \(x_{5}<x<x_{6}\).

\section*{Search in a Skiplist}

Perfect skip list

\(x_{1} \leq x_{2} \leq x_{3} \leq \cdots \leq x_{9}\).
Example: search for a key \(x\) with \(x_{5}<x<x_{6}\).

\section*{Search in a Skiplist}

Perfect skip list

\(x_{1} \leq x_{2} \leq x_{3} \leq \cdots \leq x_{9}\).
Example: search for a key \(x\) with \(x_{5}<x<x_{6}\).

\section*{Analysis perfect skip list (worst cases)}

Search in \(\mathcal{O}(\log n)\). Insert in \(\mathcal{O}(n)\).

\section*{Randomized Skip List}

Idea: insert a key with random height \(H\) with \(\mathbb{P}(H=i)=\frac{1}{2^{2+1}}\).

\section*{Randomized Skip List}

Idea: insert a key with random height \(H\) with \(\mathbb{P}(H=i)=\frac{1}{2^{2+1}}\).


\section*{Analysis Randomized Skip List}

\section*{Theorem 16}

The expected number of fundamental operations for Search, Insert and Delete of an element in a randomized skip list is \(\mathcal{O}(\log n)\).

The lengthy proof that will not be presented in this courseobserves the length of a path from a searched node back to the starting point in the highest level.

\subsection*{13.3 Appendix}

\author{
Mathematik zur Skipliste
}

\section*{[ \(k\)-Level Skiplist Math]}

Let the number of data points \(n_{0}\) and number levels \(k>0\) be given and let \(n_{l}\) be the numbers of elements skipped per level \(l, n_{k}=1\). Maximum number of total steps in the skip list:
\[
f(\vec{n})=\frac{n_{0}}{n_{1}}+\frac{n_{1}}{n_{2}}+\ldots \frac{n_{k-1}}{n_{k}}
\]

Minimize \(f\) for \(\left(n_{1}, \ldots, n_{k-1}\right): \frac{\partial f(\vec{n})}{\partial n_{t}}=0\) for all \(0<t<k\), \(\frac{\partial f(\vec{n})}{\partial n_{t}}=-\frac{n_{t-1}}{n_{t}{ }^{2}}+\frac{1}{n_{t+1}}=0 \Rightarrow n_{t+1}=\frac{n_{t}^{2}}{n_{t-1}}\) and \(\frac{n_{t+1}}{n_{t}}=\frac{n_{t}}{n_{t-1}}\).

\section*{[ \(k\)-Level Skiplist Math]}

Previous slide \(\Rightarrow \frac{n_{t}}{n_{0}}=\frac{n_{t}}{n_{t-1}} \frac{n_{t-1}}{n_{t-2}} \cdots \frac{n_{1}}{n_{0}}=\left(\frac{n_{1}}{n_{0}}\right)^{t}\)
Particularly \(1=n_{k}=\frac{n_{1}^{k}}{n_{0}^{k-1}} \Rightarrow n_{1}=\sqrt[k]{n_{0}^{k-1}}\)
Thus \(n_{k-1}=\frac{n_{0}}{n_{1}}=\sqrt[k]{\frac{n_{0}^{k}}{n_{0}^{k-1}}}=\sqrt[k]{n_{0}}\).
Maximum number of total steps in the skip list: \(f(\vec{n})=k \cdot\left(\sqrt[k]{n_{0}}\right)\)
Assume \(n_{0}=2^{k}\), then \(\frac{n_{l}}{n_{l+1}}=2\) for all \(0 \leq l<k\) (skiplist halves data in each step) and \(f(n)=k \cdot 2=2 \log _{2} n \in \Theta(\log n)\).

\section*{14. Hashing}

Hash Tables, Pre-Hashing, Hashing, Resolving Collisions using Chaining, Simple Uniform Hashing, Popular Hash Functions, Table-Doubling, Open Addressing: Probing, Uniform Hashing [Ottman/Widmayer, Kap. 4.1-4.3.2, 4.3.4, Cormen et al, Kap. 11-11.4]

\section*{Introductory Example}

Gloal: Efficient management of a table of all \(n\) ETH students.
Requirement: Fast access (insertion, removal, find) of a dataset by name.

\section*{Dictionary}

Abstract Data Type (ADT) \(D\) to manage items \({ }^{16} i=(k, v)\) with keys \(k \in \mathcal{K}\) with operations:

■ insert \((D, i)\) : Insert or replace \(i\) in the dictionary \(D\).
■ delete \((D, i)\) : Delete \(i\) from the dictionary \(D\). Not existing \(\Rightarrow\) error message.
■ search \((D, k)\) : Returns item with key \(k\) if it exists.

\footnotetext{
\({ }^{16}\) Key-value pairs \((k, v)\), in the following we consider mainly the keys
}

\section*{Dictionary in C++}

\section*{Associative Container std::unordered_map<>}
```

// Create an unordered_map of strings that map to strings
std::unordered_map<std::string, std::string> colours = {
{"RED","\#FF0000"}, {"GREEN","\#00FF00"}
};
colours["BLUE"] = "\#0000FF"; // Add
std::cout << "The hex value of color red is: "
<< colours["RED"] << "\n";
for (const auto\& entry : colours) // iterate over key-value pairs
std::cout << entry.first << ": " << entry.second << '\n';

```

\section*{Motivation/Applications}

Perhaps the most popular data structure.
■ Supported in many programming languages (C++, Python, Javascript, Java, C\#, Ruby, ...)
■ Obvious use
- Databases
- Symbol tables in compilers and interpreters

■ Objects in dynamically typed languages, e.g. Python, Javascript
■ Less obvious
■ Substring search (z.B. Rabin-Karp)
■ String similarity (e.g. comparing documents, DNA)
■ File synchronisation (e.g. git, rsync)
■ Cryptography (e.g. identification, authentification)

\section*{Idea: Keys as Indices}
\begin{tabular}{l|c} 
Index & Item \\
\hline 0 & - \\
\hline 1 & - \\
\hline 2 & - \\
\hline 3 & {\([3\), value(3)] } \\
\hline 4 & - \\
\hline 5 & - \\
\hline\(\vdots\) & \(\vdots\) \\
\(k\) & {\([k, v a l u e(k)]\)} \\
\(\vdots\) & \(\vdots\)
\end{tabular}

\section*{Problems}

\section*{Idea: Keys as Indices}
\begin{tabular}{l|c} 
Index & Item \\
\hline 0 & - \\
\hline 1 & - \\
\hline 2 & - \\
\hline 3 & {\([3\), value(3)] } \\
\hline 4 & - \\
\hline 5 & - \\
\hline\(\vdots\) & \(\vdots\) \\
\(k\) & {\([k, v a l u e(k)]\)} \\
\(\vdots\) & \(\vdots\)
\end{tabular}

\section*{Problems}
1. Keys must be non-negative integers

\section*{Idea: Keys as Indices}
\begin{tabular}{l|c} 
Index & Item \\
\hline 0 & - \\
\hline 1 & - \\
\hline 2 & - \\
\hline 3 & {\([3\), value(3)] } \\
\hline 4 & - \\
\hline 5 & - \\
\hline\(\vdots\) & \(\vdots\) \\
\(k\) & {\([k, v a l u e(k)]\)} \\
\(\vdots\) & \(\vdots\)
\end{tabular}

\section*{Problems}
1. Keys must be non-negative integers
2. Large key-range \(\Rightarrow\) large array

\section*{Solution to the first problem: Prehashing}

Prehashing: Map keys to positive integers using a function \(p h: \mathcal{K} \rightarrow \mathbb{N}\)
■ Theoretically always possible because each key is stored as a bit-sequence in the computer
- Theoretically also: \(x=y \Leftrightarrow p h(x)=p h(y)\)

■ In practice: APIs offer functions for pre-hashing (Java: object.hashCode(), C++: std: :hash<>, Python: hash (object))
■ APIs map the key from the key set to an integer with a restricted size \({ }^{17}\)

\footnotetext{
\({ }^{17}\) Therefore the implication \(p h(x)=p h(y) \Rightarrow x=y\) does not hold any more for all \(x, y\).
}

\section*{Prehashing Example: String}

Mapping Name \(s=s_{1} s_{2} \ldots s_{l_{s}}\) to key
\[
p h(s)=\left(\sum_{i=1}^{l_{s}} s_{i} \cdot b^{i}\right) \bmod 2^{w}
\]
\(b\) so that different names map to different keys as far as possible.
\(b\) Word-size of the system (e.g. 32 or 64)
Example with \(b=31, w=32\), ASCII values \(s_{i}\)
Anna \(\mapsto 92966272\)
Anne \(\mapsto 96660356\)
Heinz-Harald \(\mapsto 81592996699304236533 \bmod 2^{32}=631641589\)

\section*{Solution to the second problem: Hashing}

Reduce the universe. Map (hash-function) \(h: \mathcal{K} \rightarrow\{0, \ldots, m-1\}(m \approx n=\) number entries of the table)


Collision: \(h\left(k_{i}\right)=h\left(k_{j}\right)\).

\section*{Nomenclature}

Hash function \(h\) : Mapping from the set of keys \(\mathcal{K}\) to the index set \(\{0,1, \ldots, m-1\}\) of an array (hash table).
\[
h: \mathcal{K} \rightarrow\{0,1, \ldots, m-1\} .
\]

Usually \(|\mathcal{K}| \gg m\). There are \(k_{1}, k_{2} \in \mathcal{K}\) with \(h\left(k_{1}\right)=h\left(k_{2}\right)\) (collision).
A hash function should map the set of keys as uniformly as possible to the hash table.

\section*{Examples of popular Hash Functions}

\section*{Division method}
\[
h(k)=k \bmod m
\]

Ideal: \(m\) prime number, not too close to powers of 2 or 10 (see e.g. Cormen et al. "Introduction to Algorithms", Donald E. Knuth "The Art of Computer Programming").

But often: \(m=2^{r}-1(r \in \mathbb{N}\) ), due to growing tables by doubling (more later).

\section*{Examples of popular Hash Functions}

\section*{Multiplication method}
\[
h(k)=\left\lfloor\left(a \cdot k \bmod 2^{w}\right) / 2^{w-r}\right\rfloor \bmod m
\]

■ A good value of \(a\) : \(\left\lfloor\frac{\sqrt{5}-1}{2} \cdot 2^{w}\right\rfloor\) : Integer that represents the first \(w\) bits of the fractional part of the irrational number.

■ Table size \(m=2^{r}, w=\) size of the machine word in bits.
■ Multiplication adds \(k\) along all bits of \(a\), integer division by \(2^{w-r}\) and \(\bmod m\) extract the upper \(r\) bits.

■ Written as code very simple: a * k >> (w-r)

\section*{Illustration}


\section*{Resolving Collisions: Chaining}
\(m=7, \mathcal{K}=\{0, \ldots, 500\}, h(k)=k \bmod m\).
Keys 12
Direct Chaining of the Colliding entries
hash table


Colliding entries

\section*{Resolving Collisions: Chaining}
\(m=7, \mathcal{K}=\{0, \ldots, 500\}, h(k)=k \bmod m\).
Keys 12,55
Direct Chaining of the Colliding entries
hash table


Colliding entries

\section*{Resolving Collisions: Chaining}
\(m=7, \mathcal{K}=\{0, \ldots, 500\}, h(k)=k \bmod m\).
Keys 12,55 , 5
Direct Chaining of the Colliding entries
hash table


Colliding entries

\section*{Resolving Collisions: Chaining}
\(m=7, \mathcal{K}=\{0, \ldots, 500\}, h(k)=k \bmod m\).
Keys 12,55 , 5, 15
Direct Chaining of the Colliding entries



\section*{Resolving Collisions: Chaining}
\(m=7, \mathcal{K}=\{0, \ldots, 500\}, h(k)=k \bmod m\).
Keys 12 , 55 , 5, 15, 2
Direct Chaining of the Colliding entries
hash table


\section*{Resolving Collisions: Chaining}
\(m=7, \mathcal{K}=\{0, \ldots, 500\}, h(k)=k \bmod m\).
Keys 12 , 55,5,15, 2, 19
Direct Chaining of the Colliding entries
hash table


\section*{Resolving Collisions: Chaining}
\(m=7, \mathcal{K}=\{0, \ldots, 500\}, h(k)=k \bmod m\).
Keys 12 , 55 , 5, 15, 2, 19, 43
Direct Chaining of the Colliding entries


\section*{Resolving Collisions: Chaining}
\(m=7, \mathcal{K}=\{0, \ldots, 500\}, h(k)=k \bmod m\).
Keys 12 , 55 , 5, 15, 2, 19, 43
Direct Chaining of the Colliding entries


\section*{Algorithm for Hashing with Chaining}

Let \(H\) be a hash table with collision lists.
■ insert ( \(H, i\) ) Check if key \(k\) of item \(i\) is in list at position \(h(k)\). If no, then append \(i\) to the end of the list. Otherwise replace element by \(i\).
■ find \((H, k)\) Check if key \(k\) is in list at position \(h(k)\). If yes, return the data associated to key \(k\), otherwise return empty element null.
■ delete \((H, k)\) Search the list at position \(h(k)\) for \(k\). If successful, remove the list element.

\section*{Worst-case Analysis}

Worst-case: all keys are mapped to the same index. \(\Rightarrow \Theta(n)\) per operation in the worst case. \(\dot{O}^{-}\)

\section*{Simple Uniform Hashing}

Strong Assumptions: Each key will be mapped to one of the \(m\) available slots

■ with equal probability (uniformity)
■ and independent of where other keys are hashed (independence).

\section*{Simple Uniform Hashing}

Under the assumption of simple uniform hashing:
Expected length of a chain when \(n\) elements are inserted into a hash table with \(m\) elements
\[
\begin{aligned}
\mathbb{E}(\text { Length of Chain } \mathrm{j}) & =\mathbb{E}\left(\sum_{i=0}^{n-1} \mathbb{1}\left(h\left(k_{i}\right)=j\right)\right)=\sum_{i=0}^{n-1} \mathbb{P}\left(h\left(k_{i}\right)=j\right) \\
& =\sum_{i=1}^{n} \frac{1}{m}=\frac{n}{m}
\end{aligned}
\]
\(\alpha=n / m\) is called load factor of the hash table.

\section*{Simple Uniform Hashing}

\section*{Theorem 17}

Let a hash table with chaining be filled with load factor \(\alpha=\frac{n}{m}<1\). Under the assumption of simple uniform hashing, the next operation has expected costs of \(\Theta(1+\alpha)\).

Consequence: if the number slots \(m\) of the hash table is always at least proportional to the number of elements \(n\) of the hash table, \(n \in \mathcal{O}(m) \Rightarrow\) Expected Running time of Insertion, Search and Deletion is \(\mathcal{O}(1)\).

Further Analysis (directly chained list)
1. Unsuccesful search.

Further Analysis (directly chained list)
1. Unsuccesful search. The average list lenght is \(\alpha=\frac{n}{m}\). The list has to be traversed entirely.

\section*{Further Analysis (directly chained list)}
1. Unsuccesful search. The average list lenght is \(\alpha=\frac{n}{m}\). The list has to be traversed entirely.
\(\Rightarrow\) Average number of entries considered
\[
C_{n}^{\prime}=\alpha
\]

\section*{Further Analysis (directly chained list)}
1. Unsuccesful search. The average list lenght is \(\alpha=\frac{n}{m}\). The list has to be traversed entirely.
\(\Rightarrow\) Average number of entries considered
\[
C_{n}^{\prime}=\alpha
\]
2. Successful search. Consider the insertion history: key \(j\) sees an average list length of \((j-1) / m\).

\section*{Further Analysis (directly chained list)}
1. Unsuccesful search. The average list lenght is \(\alpha=\frac{n}{m}\). The list has to be traversed entirely.
\(\Rightarrow\) Average number of entries considered
\[
C_{n}^{\prime}=\alpha
\]
2. Successful search. Consider the insertion history: key \(j\) sees an average list length of \((j-1) / m\).
\(\Rightarrow\) Average number of considered entries
\[
\left.C_{n}=\frac{1}{n} \sum_{j=1}^{n}(1+(j-1) / m)\right)
\]

\section*{Further Analysis (directly chained list)}
1. Unsuccesful search. The average list lenght is \(\alpha=\frac{n}{m}\). The list has to be traversed entirely.
\(\Rightarrow\) Average number of entries considered
\[
C_{n}^{\prime}=\alpha
\]
2. Successful search. Consider the insertion history: key \(j\) sees an average list length of \((j-1) / m\).
\(\Rightarrow\) Average number of considered entries
\[
\left.C_{n}=\frac{1}{n} \sum_{j=1}^{n}(1+(j-1) / m)\right)=1+\frac{1}{n} \frac{n(n-1)}{2 m}
\]

\section*{Further Analysis (directly chained list)}
1. Unsuccesful search. The average list lenght is \(\alpha=\frac{n}{m}\). The list has to be traversed entirely.
\(\Rightarrow\) Average number of entries considered
\[
C_{n}^{\prime}=\alpha
\]
2. Successful search. Consider the insertion history: key \(j\) sees an average list length of \((j-1) / m\).
\(\Rightarrow\) Average number of considered entries
\[
\left.C_{n}=\frac{1}{n} \sum_{j=1}^{n}(1+(j-1) / m)\right)=1+\frac{1}{n} \frac{n(n-1)}{2 m} \approx 1+\frac{\alpha}{2} .
\]

\section*{Advantages and Disadvantages of Chaining}

\section*{Advantages:}

■ Load factor greater 1 possible (more entries than hash table slots)
■ Removing keys is straightforward (relative to alternative introduced later)

Disadvantages:
- Linear runtime in case of degenerated hash tables with long collision chains
- (Memory consumption of the chains)

Better: reduce probability of collisions

\section*{Table size increase}
- We do not know beforehand how large \(n\) will be

■ We would like \(m=\Theta(n)\) at all times (hash table size \(m\) linearly dependent on no. of entries \(n\), i.e. not arbitrarily large)

Adjust table size

\section*{Table size increase}
- We do not know beforehand how large \(n\) will be

■ We would like \(m=\Theta(n)\) at all times (hash table size \(m\) linearly dependent on no. of entries \(n\), i.e. not arbitrarily large)

Adjust table size \(\rightarrow\) Hash function changes \(\rightarrow\) rehashing
- Allocate array \(A^{\prime}\) with size \(m^{\prime}>m\)
- Insert each entry of \(A\) into \(A^{\prime}\) (with re-hashing the keys)
- Set \(A \leftarrow A^{\prime}\)
- Costs \(\Theta\left(n+m+m^{\prime}\right)\)

How to choose \(m^{\prime}\) ?

\section*{Table size increase}

Double the table size, depending on the load factor.
\(\Rightarrow\) Amortized analysis yields: Each operation of hashing with chaining has expected amortized costs \(\Theta(1)\).

\section*{Open Addressing}

Store the colliding entries directly in the hash table using a probing function \(s: \mathcal{K} \times\{0,1, \ldots, m-1\} \rightarrow\{0,1, \ldots, m-1\}\)
Key table position along a probing sequence
\[
S(k):=(s(k, 0), s(k, 1), \ldots, s(k, m-1)) \quad \bmod m
\]

Probing sequence must for each \(k \in \mathcal{K}\) be a permutation of \(\{0,1, \ldots, m-1\}\)

Notational clarification: this method uses open addressing (meaning that the positions in the hash table are not fixed), but it is nonetheless a closed hashing procedure (entries stay in the hash table).

\section*{Algorithms for open addressing}

Let \(H\) be a hash table (without collision lists).
■ insert \((H, i)\) Search for kes \(k\) of \(i\) in the table according to \(S(k)\). If \(k\) is not present, insert \(k\) at the first free position in the probing sequence. Otherwise error message.
■ \(\operatorname{find}(H, k)\) Traverse table entries according to \(S(k)\). If \(k\) is found, return data associated to \(k\). Otherwise return an empty element null.
■ delete \((H, k)\) Search \(k\) in the table according to \(S(k)\). If \(k\) is found, replace it with a special key removed.

\section*{Linear Probing}
\[
s(k, j)=h(k)+j \Rightarrow S(k)=(h(k), h(k)+1, \ldots, h(k)+m-1) \bmod m
\]

\section*{Linear Probing}
\[
s(k, j)=h(k)+j \Rightarrow S(k)=(h(k), h(k)+1, \ldots, h(k)+m-1) \bmod m
\]
\[
m=7, \mathcal{K}=\{0, \ldots, 500\}, h(k)=k \bmod m .
\]

Key 12


\section*{Linear Probing}
\[
s(k, j)=h(k)+j \Rightarrow S(k)=(h(k), h(k)+1, \ldots, h(k)+m-1) \bmod m
\]
\[
m=7, \mathcal{K}=\{0, \ldots, 500\}, h(k)=k \bmod m .
\]

Key 12 , 55


\section*{Linear Probing}
\[
s(k, j)=h(k)+j \Rightarrow S(k)=(h(k), h(k)+1, \ldots, h(k)+m-1) \bmod m
\]
\(m=7, \mathcal{K}=\{0, \ldots, 500\}, h(k)=k \bmod m\).
Key 12 , 55 , 5


\section*{Linear Probing}
\[
s(k, j)=h(k)+j \Rightarrow S(k)=(h(k), h(k)+1, \ldots, h(k)+m-1) \bmod m
\]
\(m=7, \mathcal{K}=\{0, \ldots, 500\}, h(k)=k \bmod m\).
Key \(12,55,5,15\)


\section*{Linear Probing}
\[
s(k, j)=h(k)+j \Rightarrow S(k)=(h(k), h(k)+1, \ldots, h(k)+m-1) \bmod m
\]
\(m=7, \mathcal{K}=\{0, \ldots, 500\}, h(k)=k \bmod m\).
Key \(12,55,5,15,2\)
\begin{tabular}{|l|l|l||l|l||c|c|}
\hline 0 & 1 & 2 & 3 & 4 & 5 & 6 \\
\hline 5 & 15 & & & & 12 & 55 \\
\hline
\end{tabular}

\section*{Linear Probing}
\[
s(k, j)=h(k)+j \Rightarrow S(k)=(h(k), h(k)+1, \ldots, h(k)+m-1) \bmod m
\]
\(m=7, \mathcal{K}=\{0, \ldots, 500\}, h(k)=k \bmod m\).
Key \(12,55,5,15,2,19\)
\begin{tabular}{|l|l|l||l|l||c|c|}
\hline 0 & 1 & 2 & 3 & 4 & 5 & 6 \\
\hline 5 & 15 & 2 & & & 12 & 55 \\
\hline
\end{tabular}

\section*{Linear Probing}
\[
s(k, j)=h(k)+j \Rightarrow S(k)=(h(k), h(k)+1, \ldots, h(k)+m-1) \bmod m
\]
\(m=7, \mathcal{K}=\{0, \ldots, 500\}, h(k)=k \bmod m\).
Key \(12,55,5,15,2,19\)
\begin{tabular}{|c|c||c||c||c||c|c|}
\hline 0 & 1 & 2 & 3 & 4 & 5 & 6 \\
\hline .5 & 15 & 2 & 19 & & 12 & 55 \\
\hline
\end{tabular}

Discussion

\section*{Discussion}

\section*{Example \(\alpha=0.95\)}

The unsuccessful search consideres 200 table entries on average! (Here without derivation.).

\section*{Discussion}

\section*{Example \(\alpha=0.95\)}

The unsuccessful search consideres 200 table entries on average! (Here without derivation.).

Disadvantage of the method?

\section*{Discussion}

\section*{Example \(\alpha=0.95\)}

The unsuccessful search consideres 200 table entries on average! (Here without derivation.).

\section*{Disadvantage of the method?}

Primary clustering: similar hash addresses have similar probing sequences \(\Rightarrow\) long contiguous areas of used entries.

\section*{Quadratic Probing}
\[
\begin{aligned}
& s(k, j)=h(k)+\lceil j / 2\rceil^{2}(-1)^{j+1} \\
& S(k)=(h(k), h(k)+1, h(k)-1, h(k)+4, h(k)-4, \ldots) \bmod m
\end{aligned}
\]

\section*{Quadratic Probing}
\[
\begin{aligned}
& s(k, j)=h(k)+\lceil j / 2\rceil^{2}(-1)^{j+1} \\
& S(k)=(h(k), h(k)+1, h(k)-1, h(k)+4, h(k)-4, \ldots) \bmod m
\end{aligned}
\]
\[
m=7, \mathcal{K}=\{0, \ldots, 500\}, h(k)=k \bmod m
\]

Keys 12


\section*{Quadratic Probing}
\[
\begin{aligned}
& s(k, j)=h(k)+\lceil j / 2\rceil^{2}(-1)^{j+1} \\
& S(k)=(h(k), h(k)+1, h(k)-1, h(k)+4, h(k)-4, \ldots) \bmod m
\end{aligned}
\]
\[
m=7, \mathcal{K}=\{0, \ldots, 500\}, h(k)=k \bmod m
\]

Keys 12,55


\section*{Quadratic Probing}
\[
\begin{aligned}
& s(k, j)=h(k)+\lceil j / 2\rceil^{2}(-1)^{j+1} \\
& S(k)=(h(k), h(k)+1, h(k)-1, h(k)+4, h(k)-4, \ldots) \bmod m
\end{aligned}
\]
\[
m=7, \mathcal{K}=\{0, \ldots, 500\}, h(k)=k \bmod m
\]

Keys 12,55 , 5


\section*{Quadratic Probing}
\[
\begin{aligned}
& s(k, j)=h(k)+\lceil j / 2\rceil^{2}(-1)^{j+1} \\
& S(k)=(h(k), h(k)+1, h(k)-1, h(k)+4, h(k)-4, \ldots) \bmod m
\end{aligned}
\]
\[
m=7, \mathcal{K}=\{0, \ldots, 500\}, h(k)=k \bmod m
\]

Keys 12,55 , 5,15


\section*{Quadratic Probing}
\[
\begin{aligned}
& s(k, j)=h(k)+\lceil j / 2\rceil^{2}(-1)^{j+1} \\
& S(k)=(h(k), h(k)+1, h(k)-1, h(k)+4, h(k)-4, \ldots) \bmod m
\end{aligned}
\]
\[
m=7, \mathcal{K}=\{0, \ldots, 500\}, h(k)=k \bmod m
\]

Keys \(12,55,5,15,2\)
\begin{tabular}{|l|l|l||l||c||c|c|}
0 & 1 & 2 & 3 & 4 & 5 & 6 \\
\hline & 15 & & & 5 & 12 & 55 \\
\hline
\end{tabular}

\section*{Quadratic Probing}
\[
\begin{aligned}
& s(k, j)=h(k)+\lceil j / 2\rceil^{2}(-1)^{j+1} \\
& S(k)=(h(k), h(k)+1, h(k)-1, h(k)+4, h(k)-4, \ldots) \bmod m
\end{aligned}
\]
\[
m=7, \mathcal{K}=\{0, \ldots, 500\}, h(k)=k \bmod m
\]

Keys \(12,55,5,15,2,19\)
\begin{tabular}{|l|l|l||l||l||c|c|}
0 & 1 & 2 & 3 & 4 & 5 & 6 \\
\hline & 15 & 2 & & 5 & 12 & 55 \\
\hline
\end{tabular}

\section*{Quadratic Probing}
\[
\begin{aligned}
& s(k, j)=h(k)+\lceil j / 2\rceil^{2}(-1)^{j+1} \\
& S(k)=(h(k), h(k)+1, h(k)-1, h(k)+4, h(k)-4, \ldots) \bmod m
\end{aligned}
\]
\[
m=7, \mathcal{K}=\{0, \ldots, 500\}, h(k)=k \bmod m
\]

Keys \(12,55,5,15,2,19\)
\begin{tabular}{|c|c|c||l|l||c|c|}
\hline 0 & 1 & 2 & \multicolumn{1}{c}{3} & 4 & 5 & 6 \\
\hline 19 & 15 & 2 & & 5 & 12 & 55 \\
\hline
\end{tabular}

\section*{Discussion}

Example \(\alpha=0.95\)
Unsuccessfuly search considers 22 entries on average (Here without derivation.)

\section*{Discussion}

Example \(\alpha=0.95\)
Unsuccessfuly search considers 22 entries on average
(Here without derivation.)
Problems of this method?

\section*{Discussion}

Example \(\alpha=0.95\)
Unsuccessfuly search considers 22 entries on average
(Here without derivation.)
Problems of this method?
Secondary clustering: Synonyms \(k\) and \(k^{\prime}\) (with \(h(k)=h\left(k^{\prime}\right)\) ) travers the same probing sequence.

\section*{Double Hashing}

Two hash functions \(h(k)\) and \(h^{\prime}(k) . s(k, j)=h(k)+j \cdot h^{\prime}(k)\). \(S(k)=\left(h(k), h(k)+h^{\prime}(k), h(k)+2 h^{\prime}(k), \ldots, h(k)+(m-1) h^{\prime}(k)\right) \bmod m\)

\section*{Double Hashing}

Two hash functions \(h(k)\) and \(h^{\prime}(k) . s(k, j)=h(k)+j \cdot h^{\prime}(k)\). \(S(k)=\left(h(k), h(k)+h^{\prime}(k), h(k)+2 h^{\prime}(k), \ldots, h(k)+(m-1) h^{\prime}(k)\right) \bmod m\)
\(m=7, \mathcal{K}=\{0, \ldots, 500\}, h(k)=k \bmod 7, h^{\prime}(k)=1+k \bmod 5\).
Keys 12


\section*{Double Hashing}

Two hash functions \(h(k)\) and \(h^{\prime}(k) . s(k, j)=h(k)+j \cdot h^{\prime}(k)\). \(S(k)=\left(h(k), h(k)+h^{\prime}(k), h(k)+2 h^{\prime}(k), \ldots, h(k)+(m-1) h^{\prime}(k)\right) \bmod m\)
\(m=7, \mathcal{K}=\{0, \ldots, 500\}, h(k)=k \bmod 7, h^{\prime}(k)=1+k \bmod 5\).
Keys 12 , 55


\section*{Double Hashing}

Two hash functions \(h(k)\) and \(h^{\prime}(k) . s(k, j)=h(k)+j \cdot h^{\prime}(k)\). \(S(k)=\left(h(k), h(k)+h^{\prime}(k), h(k)+2 h^{\prime}(k), \ldots, h(k)+(m-1) h^{\prime}(k)\right) \bmod m\)
\(m=7, \mathcal{K}=\{0, \ldots, 500\}, h(k)=k \bmod 7, h^{\prime}(k)=1+k \bmod 5\).
Keys 12 , 55 , 5


\section*{Double Hashing}

Two hash functions \(h(k)\) and \(h^{\prime}(k) . s(k, j)=h(k)+j \cdot h^{\prime}(k)\). \(S(k)=\left(h(k), h(k)+h^{\prime}(k), h(k)+2 h^{\prime}(k), \ldots, h(k)+(m-1) h^{\prime}(k)\right) \bmod m\)
\(m=7, \mathcal{K}=\{0, \ldots, 500\}, h(k)=k \bmod 7, h^{\prime}(k)=1+k \bmod 5\).
Keys \(12,55,5,15\)


\section*{Double Hashing}

Two hash functions \(h(k)\) and \(h^{\prime}(k) . s(k, j)=h(k)+j \cdot h^{\prime}(k)\). \(S(k)=\left(h(k), h(k)+h^{\prime}(k), h(k)+2 h^{\prime}(k), \ldots, h(k)+(m-1) h^{\prime}(k)\right) \bmod m\)
\(m=7, \mathcal{K}=\{0, \ldots, 500\}, h(k)=k \bmod 7, h^{\prime}(k)=1+k \bmod 5\).
Keys \(12,55,5,15,2\)
\begin{tabular}{|l|l|l||l|l||c|c|}
\hline 0 & 1 & 1 & 2 & 3 & 4 & 5 \\
\hline
\end{tabular}

\section*{Double Hashing}

Two hash functions \(h(k)\) and \(h^{\prime}(k) . s(k, j)=h(k)+j \cdot h^{\prime}(k)\). \(S(k)=\left(h(k), h(k)+h^{\prime}(k), h(k)+2 h^{\prime}(k), \ldots, h(k)+(m-1) h^{\prime}(k)\right) \bmod m\)
\(m=7, \mathcal{K}=\{0, \ldots, 500\}, h(k)=k \bmod 7, h^{\prime}(k)=1+k \bmod 5\).
Keys \(12,55,5,15,2,19\)
\begin{tabular}{|l|l|l||l|l||c|c|}
\hline 0 & 1 & 2 & \multicolumn{1}{c}{3} & 4 & 5 & 6 \\
\hline 5 & 15 & 2 & & & 12 & 55 \\
\hline
\end{tabular}

\section*{Double Hashing}

Two hash functions \(h(k)\) and \(h^{\prime}(k) . s(k, j)=h(k)+j \cdot h^{\prime}(k)\). \(S(k)=\left(h(k), h(k)+h^{\prime}(k), h(k)+2 h^{\prime}(k), \ldots, h(k)+(m-1) h^{\prime}(k)\right) \bmod m\)
\(m=7, \mathcal{K}=\{0, \ldots, 500\}, h(k)=k \bmod 7, h^{\prime}(k)=1+k \bmod 5\).
Keys \(12,55,5,15,2,19\)
\begin{tabular}{|l|l|l||l||l||c|c|}
\hline 0 & \multicolumn{1}{c}{1} & 2 & \multicolumn{1}{c}{3} & 4 & 5 & 6 \\
\hline 5 & 15 & 2 & 19 & & 12 & 55 \\
\hline
\end{tabular}

\section*{Double Hashing}

■ Probing sequence must permute all hash addresses. Thus \(h^{\prime}(k) \neq 0\) and \(h^{\prime}(k)\) may not divide \(m\), for example guaranteed with \(m\) prime.
■ \(h^{\prime}\) should be as independent of \(h\) as possible (to avoid secondary clustering)

Independence:
\[
\mathbb{P}\left(\left(h(k)=h\left(k^{\prime}\right)\right) \wedge\left(h^{\prime}(k)=h^{\prime}\left(k^{\prime}\right)\right)\right)=\mathbb{P}\left(h(k)=h\left(k^{\prime}\right)\right) \cdot \mathbb{P}\left(h^{\prime}(k)=h^{\prime}\left(k^{\prime}\right)\right) .
\]

Independence largely fulfilled by \(h(k)=k \bmod m\) and \(h^{\prime}(k)=1+k \bmod\) \((m-2)\) ( \(m\) prime).

\section*{Uniform Hashing}

Strong assumption: the probing sequence \(S(k)\) of a key \(l\) is equaly likely to be any of the \(m\) ! permutations of \(\{0,1, \ldots, m-1\}\) (Double hashing is reasonably close)

\section*{Analysis of Uniform Hashing with Open Addressing}

\section*{Theorem 18}

Let an open-addressing hash table be filled with load-factor \(\alpha=\frac{n}{m}<\) 1. Under the assumption of uniform hashing, the next operation has expected costs of \(\leq \frac{1}{1-\alpha}\).

\section*{Analysis: Proof of the theorem}

Random Variable \(X\) : Number of probings when searching without success.
\[
\begin{aligned}
\mathbb{P}(X \geq i) & \stackrel{*}{=} \frac{n}{m} \cdot \frac{n-1}{m-1} \cdot \frac{n-2}{m-2} \cdots \frac{n-i+2}{m-i+2} \\
& \stackrel{* *}{\leq}\left(\frac{n}{m}\right)^{i-1}=\alpha^{i-1} . \quad(1 \leq i \leq m)
\end{aligned}
\]
* : Event \(A_{j}\) : slot used during step \(j\).
\[
\mathbb{P}\left(A_{1} \cap \cdots \cap A_{i-1}\right)=\mathbb{P}\left(A_{1}\right) \cdot \mathbb{P}\left(A_{2} \mid A_{1}\right) \cdot \ldots \cdot \mathbb{P}\left(A_{i-1} \mid A_{1} \cap \cdots \cap A_{i-2}\right),
\]
** : \(\frac{n-1}{m-1}<\frac{n}{m}\) because \(n<m: \frac{n-1}{m-1}<\frac{n}{m} \Leftrightarrow \frac{n-1}{n}<\frac{m-1}{m} \Leftrightarrow 1-\frac{1}{n}<1-\frac{1}{m} \Leftrightarrow n<m\)
\[
(n>0, m>0)
\]

Moreover \(\mathbb{P}(x \geq i)=0\) for \(i \geq m\). Therefore
\[
\mathbb{E}(X) \stackrel{\text { Appendix }}{=} \sum_{i=1}^{\infty} \mathbb{P}(X \geq i) \leq \sum_{i=1}^{\infty} \alpha^{i-1}=\sum_{i=0}^{\infty} \alpha^{i}=\frac{1}{1-\alpha}
\]

\section*{Overview}
\begin{tabular}{lrrrrrr}
\hline & \multicolumn{2}{c}{\(\alpha=0.50\)} & \multicolumn{2}{c}{\(\alpha=0.90\)} & \multicolumn{2}{c}{\(\alpha=0.95\)} \\
& \(C_{n}\) & \(C_{n}^{\prime}\) & \(C_{n}\) & \(C_{n}^{\prime}\) & \(C_{n}\) & \(C_{n}^{\prime}\) \\
\hline (Direct) Chaining & 1.25 & 0.50 & 1.45 & 0.90 & 1.48 & 0.95 \\
\hline Linear Probing & 1.50 & 2.50 & 5.50 & 50.50 & 10.50 & 200.50 \\
\hline Quadratic Probing & 1.44 & 2.19 & 2.85 & 11.40 & 3.52 & 22.05 \\
\hline Uniform Hashing & 1.39 & 2.00 & 2.56 & 10.00 & 3.15 & 20.00 \\
\hline
\end{tabular}
\(\alpha\) : load factor.
\(C_{n}\) : Number steps successful search,
\(C_{n}^{\prime}\) : Number steps unsuccessful search

\subsection*{14.8 Appendix}

Some mathematical formulas

\section*{[Birthday Paradox]}

Assumption: \(m\) urns, \(n\) balls (wlog \(n \leq m\) ). \(n\) balls are put uniformly distributed into the urns


What is the collision probability?

\section*{[Birthday Paradox]}

Assumption: \(m\) urns, \(n\) balls (wlog \(n \leq m\) ).
\(n\) balls are put uniformly distributed into the urns


What is the collision probability?
Birthdayparadox: with how many people \((n)\) the probability that two of them share the same birthday ( \(m=365\) ) is larger than \(50 \%\) ?

\section*{[Birthday Paradox]}
\[
\mathbb{P}(\text { no collision })=\frac{m}{m} \cdot \frac{m-1}{m} \cdots \cdot \frac{m-n+1}{m}=\frac{m!}{(m-n)!m^{m}} .
\]

\section*{[Birthday Paradox]}
\(\mathbb{P}(\) no collision \()=\frac{m}{m} \cdot \frac{m-1}{m} \cdots \cdot \frac{m-n+1}{m}=\frac{m!}{(m-n)!m^{m}}\).
Let \(a \ll m\). With \(e^{x}=1+x+\frac{x^{2}}{2!}+\ldots\) approximate \(1-\frac{a}{m} \approx e^{-\frac{a}{m}}\). This yields:
\[
1 \cdot\left(1-\frac{1}{m}\right) \cdot\left(1-\frac{2}{m}\right) \cdot \ldots \cdot\left(1-\frac{n-1}{m}\right) \approx e^{-\frac{1+\cdots+n-1}{m}}=e^{-\frac{n(n-1)}{2 m}} .
\]

\section*{[Birthday Paradox]}
\(\mathbb{P}(\) no collision \()=\frac{m}{m} \cdot \frac{m-1}{m} \cdots \cdot \frac{m-n+1}{m}=\frac{m!}{(m-n)!m^{m}}\).
Let \(a \ll m\). With \(e^{x}=1+x+\frac{x^{2}}{2!}+\ldots\) approximate \(1-\frac{a}{m} \approx e^{-\frac{a}{m}}\). This yields:
\[
1 \cdot\left(1-\frac{1}{m}\right) \cdot\left(1-\frac{2}{m}\right) \cdot \ldots \cdot\left(1-\frac{n-1}{m}\right) \approx e^{-\frac{1+\cdots+n-1}{m}}=e^{-\frac{n(n-1)}{2 m}} .
\]

Thus
\[
\mathbb{P}(\text { Kollision })=1-e^{-\frac{n(n-1)}{2 m}} .
\]

\section*{[Birthday Paradox]}
\(\mathbb{P}(\) no collision \()=\frac{m}{m} \cdot \frac{m-1}{m} \cdots \cdot \frac{m-n+1}{m}=\frac{m!}{(m-n)!\cdot m^{m}}\).
Let \(a \ll m\). With \(e^{x}=1+x+\frac{x^{2}}{2!}+\ldots\) approximate \(1-\frac{a}{m} \approx e^{-\frac{a}{m}}\). This yields:
\[
1 \cdot\left(1-\frac{1}{m}\right) \cdot\left(1-\frac{2}{m}\right) \cdot \ldots \cdot\left(1-\frac{n-1}{m}\right) \approx e^{-\frac{1+\cdots+n-1}{m}}=e^{-\frac{n(n-1)}{2 m}}
\]

Thus
\[
\mathbb{P}(\text { Kollision })=1-e^{-\frac{n(n-1)}{2 m}} .
\]

Puzzle answer: with 23 people the probability for a birthday collision is \(50.7 \%\). Derived from the slightly more accurate Stirling formula. \(n!\approx \sqrt{2 \pi n} \cdot n^{n} \cdot e^{-n}\)

\section*{[Formula for Expected Value]}
\(X \geq 0\) discrete random variable with \(\mathbb{E}(X)<\infty\)
\[
\begin{aligned}
\mathbb{E}(X) & \stackrel{(\text { def })}{=} \sum_{x=0}^{\infty} x \mathbb{P}(X=x) \\
& \stackrel{\text { Counting }}{=} \sum_{x=1}^{\infty} \sum_{y=x}^{\infty} \mathbb{P}(X=y) \\
& =\sum_{x=0}^{\infty} \mathbb{P}(X>x)
\end{aligned}
\]

\section*{15. C++ advanced (III): Functors and Lambda}

Generic Programming: higher order functions

\section*{Functors: Motivation}

A simple output filter
template <typename T, typename Function>
void filter (const T\& collection, Function f)\{
for (const auto\& \(x\) : collection)
if (f(x)) std::cout << x << " ";
std::cout << "\n";
\}

Question: when does a call of the filter template function work?

\section*{Functors: Motivation}

A simple output filter
```

template <typename T, typename Function>
void filter(const T\& collection, Function f){
for (const auto\& x: collection)
if (f(x)) std::cout << x << " ";
std::cout << "\n";
}

```

\section*{Question: when does a call of the filter template function work?}

Answer: works if the first argument offers an iterator and if the second argument can be applied to elements of the iterator with a return value that can be converted to bool.

\section*{Functors: Motivation}
```

template <typename T, typename Function>
void filter(const T\& collection, Function f);
template <typename T>
bool even(T x){
return x % 2 == 0;
}
std::vector<int> a {1,2,3,4,5,6,7,9,11,16,19};
filter(a,even<int>); // output: 2,4,6,16

```

\section*{Context and Overview}
- Recent C++-lecture: make code parametric on the data it operates
- Pair<T> for element types T
- print<C> for iterable containers C

■ Now: make code parameteric on a (part of) the algorithm
- filter(container, predicate)

■ apply(signal, transformation/filter)
■ We learn about
■ Higher-order functions: fucntions that take functions as arguments
■ Functors: objects with overloaded function operator ().
- Lambda-Expressions: anonymous functors (syntactic sugar)

■ Closures: lambdas that capture their environment

\section*{Functors: Motivation}
```

template <typename T, typename Function>
void filter(const T\& collection, Function f){
for (const auto\& x: collection)
if (f(x)) std::cout << x << " ";
std::cout << "\n";
}

```

■ Requirements on f: must be callable/applicable (...)
\(■ f\) must be a kind of function \(\Rightarrow\) filter is a function that takes a function as argument
- A function taking (or returning) a function is called a higher order function
- Higher order functions are parameteric in their functionality (or they generate functions)

\section*{What if...}
```

the filter should be more flexible:
template <typename T, typename function>
void filter(const T\& collection, function f);
template <typename T>
bool largerThan(T x, T y){
return x > y;
}
std::vector<int> a {1,2,3,4,5,6,7,9,11,16,19};
int val = 8;
filter(a,largerThan<int>(? ,val));

```

\section*{What if...}
```

the filter should be more flexible:
template <typename T, typename function>
void filter(const T\& collection, function f);
template <typename T>
bool largerThan(T x, T y){
return x > y;
}
std::vector<int> a {1,2,3,4,5,6,7,9,11,16,19};
int val = 8;
filtor(a,largorThan<intv(?,val)); (No, this does not exist)

```

\section*{Functor: Object with Overloaded Operator ()}
```

class GreaterThan\{
int value; // state
public:
GreaterThan(int x): value\{x\}\{\}
bool operator() (int par) const \{
return par > value;
\}
\};

```
std::vector<int> a \(\{1,2,3,4,5,6,7,9,11,16,19\} ;\)
int value=8;
filter(a,GreaterThan(value)); // 9,11,16,19

\section*{Functor: object with overloaded operator ()}
```

template <typename T>
class GreaterThan{
T value;
public:
GreaterThan(T x):value{x}{}
bool operator() (T par) const{
return par > value;
}
};

```
std: : vector<int> a \(\{1,2,3,4,5,6,7,9,11,16,19\}\);
int value=8;
filter (a,GreaterThan<int>(value)); // 9,11,16,19

\section*{Observations}

Need to give the predicate a name
```

template <typename T>
class GreaterThan{
T value;
public:
GreaterThan(T x):value{x}{}
bool operator() (T par) const{
return par > value;
}
};

```

■ Often unnecessary, many are unsed only once
- Descriptive names not always possible
■ Distance (in the code) between declaration and use
Overhead: stateful predicates as functors
- cumbersome for what is ultimately only par > value

\section*{The same with a Lambda-Expression}

Anonymous functions with lambda-expressions:
```

std::vector<int> a {1,2,3,4,5,6,7,9,11,16,19};
int value=8;
filter(a, [value](int x) {return x > value;});

```

That is just syntactic sugar, from which the compiler generates a suitable functor.

\section*{Interlude: Sorting with Custom Comparator}

■ std: : sort is generic
■ in the iterator-type
■ in the values iterated over
- in the used comparator
```

std::sort (v.begin(), v.end(), std::less());

```

■ The comparator returns true if the elements are ordered as wished.

\section*{Sorting by Different Order}
```

// pre: i >= 0
// post: returns sum of digits of i
int q(int i){
int res =0;
for(;i>0;i/=10)
res += i % 10;
return res;
}

```
std::vector<int> v \(\{10,12,9,7,28,22,14\}\);
std::sort (v.begin(), v.end(),
    [] (int i, int \(j\) ) \{ return \(q(i)<q(j) ;\}\)
) ;

\section*{Sorting by Different Order}
```

// pre: i >= 0
// post: returns sum of digits of i
int q(int i){
int res =0;
for(;i>0;i/=10)
res += i % 10;
return res;
}

```
std::vector<int> v \(\{10,12,9,7,28,22,14\}\);
std::sort (v.begin(), v.end(),
    [] (int i, int \(j\) ) \{ return \(q(i)<q(j) ;\}\)
) ;

Now \(v=\)

\section*{Sorting by Different Order}
```

// pre: i >= 0
// post: returns sum of digits of i
int q(int i){
int res =0;
for(;i>0;i/=10)
res += i % 10;
return res;
}

```
std::vector<int> v \{10, 12, \(9,7,28,22,14\}\);
std::sort (v.begin(), v.end(),
    [] (int i, int j) \{ return \(q(i)<q(j) ;\}\)
) ;

Now \(v=10,12,22,14,7,9,28\) (sorted by sum of digits)


\section*{Closure}

\section*{[value] (int x) ->bool \{return x > value;\}}

■ Lambda expressions evaluate to a temporary object - a closure
- The closure retains the execution context of the function - the captured objects.
- Lambda expressions can be implemented as functors.

\section*{Simple Lambda Expression}
[]()->void \{std::cout << "Hello World";\}

\section*{Simple Lambda Expression}
[]()->void \{std::cout << "Hello World";\}
call:
[]()->void \{std::cout << "Hello World";\}();

\section*{Simple Lambda Expression}
[]()->void \{std::cout << "Hello World";\}
call:
[]()->void \{std::cout << "Hello World";\}();
assignment:
auto \(f=[]()->v o i d ~\{s t d:: c o u t ~ \ll ~ " H e l l o ~ W o r l d " ;\} ; ~\)

\section*{Minimal Lambda Expression}

\section*{[] \{\}}

■ Return type can be inferred if no or only one return statement is present. \({ }^{18}\)
[]() \{std::cout << "Hello World";\}
■ If no parameters and no explicit return type, then () can be omitted.
[]\{std::cout << "Hello World";\}
■ [...] can never be omitted.

\footnotetext{
\({ }^{18}\) Since \(\mathrm{C}++14\) also several returns possible, provided that the same return type is deduced
}

\section*{Examples}
[] (int x , int y ) \{std::cout \(\ll \mathrm{x} * \mathrm{y}\); \} (4,5);
Output:

\section*{Examples}
[] (int \(x\), int \(y)\) \{std::cout << x * y;\} (4,5);
Output: 20

\section*{Examples}
```

int k = 8;
auto f = [](int\& v) {v += v;};
f(k);
std::cout << k;

```

Output:

\section*{Examples}
```

int k = 8;
auto f = [](int\& v) {v += v;};
f(k);
std::cout << k;

```

Output: 16

\section*{Examples}
```

int k = 8;
auto f = [] (int v) {v += v;};
f(k);
std::cout << k;

```

Output:

\section*{Examples}
```

int k = 8;
auto f = [] (int v) {v += v;};
f(k);
std::cout << k;

```

Output: 8

\section*{Commonly Used: std: : foreach}

■ Common task: iterate over a container and do something with each element
```

for (auto\& name: names) {
std::cout << name << ' ';
}

```

■ This pattern is typically implemented as higher-order function for_each
```

for_each(names, [](auto name) {std::cout << name << " ";});

```

\section*{Sum of Elements - Old School}
```

std::vector<int> a {1,2,3,4,5,6,7,9,11,16,19};
int sum = 0;
for (auto x: a)
sum += x;
std::cout << sum << std::endl; // 83

```

\section*{Sum of Elements - Old School}
std::vector<int> a \(\{1,2,3,4,5,6,7,9,11,16,19\} ;\)
int sum \(=0\);
std::cout << sum << std::endl; // 83
■ Task: increase sum for each call in for_each
■ Problem: for_each requires accesst to the context (here sum)
Other example filter: store each element of a vector into a different vector according to some condition.

\section*{Sum of Elements - with Functor}
```

template <typename T>
struct Sum{
T value = 0;
void operator() (T par){ value += par; }
};
std::vector<int> a {1,2,3,4,5,6,7,9,11,16,19};
Sum<int> sum;
// for_each copies sum: we need to copy the result back
sum = std::for_each(a.begin(), a.end(), sum);
std::cout << sum.value << std::endl; // 83

```

\section*{Sum of Elements - with Functor}
```

template <typename T>
struct Sum{
T value = 0;
void operator() (T par){ value += par; }
};
std::vector<int> a {1,2,3,4,5,6,7,9,11,16,19};
Sum<int> sum;
// for_each copies sum: we need to copy the result back
sum = std::for_each(a.begin(), a.end(), sum);
std::cout << sum.value << std::endl; // 83

```

■ Ok: solves the problem but does not operate on the sum variable

\section*{Sum of Elements - with References}
```

template <typename T>
struct SumR{
T\& value;
SumR (T\& v):value{v} {}
void operator() (T par){ value += par; }
};
std::vector<int> a {1,2,3,4,5,6,7,9,11,16,19};
int s=0;
SumR<int> sum{s};
// cannot (and do not need to) assign to sum here
std::for_each(a.begin(), a.end(), sum);
std::cout << s << std::endl; // 83

```

\section*{Sum of Elements - with \(\Lambda\)}
std::vector<int> a \(\{1,2,3,4,5,6,7,9,11,16,19\} ;\)
int \(\mathrm{s}=0\);
std::for_each(a.begin(), a.end(), [\&s] (int \(x\) ) \{s += x;\});
std::cout << s << std::endl;

\section*{Capture - Lambdas}

For Lambda-expressions the capture list determines the context accessible Syntax:

■ [x]: Access a copy of \(x\) (read-only)
■ [\&x]: Capture x by reference
■ [\&x, y]: Capture \(x\) by reference and y by value
■ [\&]: Default capture all objects by reference in the scope of the lambda expression
■ [=]: Default capture all objects by value in the context of the Lambda-Expression

\section*{Capture - Lambdas}
```

std::vector<int> v = {1,2,4,8,16};
int elements=0;
int sum=0;
std::for_each(v.begin(), v.end(),
[\&] (int k) {sum += k; elements++;} // capture all by reference
)
std::cout << "sum=" << sum << " elements=" << elements << std::endl;
Output:

```

\section*{Capture - Lambdas}
```

std::vector<int> v = {1,2,4,8,16};
int elements=0;
int sum=0;
std::for_each(v.begin(), v.end(),
[\&] (int k) {sum += k; elements++;} // capture all by reference
)
std::cout << "sum=" << sum << " elements=" << elements << std::endl;
Output: sum=31 elements=5

```

\section*{Capture - Lambdas}
```

template <typename T>
void sequence(vector<int> \& v, T done){
int i=0;
while (!done()) v.push_back(i++);
}
vector<int> s;
sequence(s, [\&] {return s.size() >= 5;})
now v =

```

\section*{Capture - Lambdas}
```

template <typename T>
void sequence(vector<int> \& v, T done){
int i=0;
while (!done()) v.push_back(i++);
}
vector<int> s;
sequence(s, [\&] {return s.size() >= 5;})
now v = 0 1234

```

\section*{Capture - Lambdas}
```

template <typename T>
void sequence(vector<int> \& v, T done){
int i=O;
while (!done()) v.push_back(i++);
}
vector<int> s;
sequence(s, [\&] {return s.size() >= 5;})
now v = 01234
The capture list refers to the context of the lambda expression.

```

\section*{Capture - Lambdas}

When is the value captured?
int \(\mathrm{v}=42\);
auto func \(=[=]\) \{std: :cout \(\ll \mathrm{v} \ll\) "\n"\};
v = 7;
func();
Output:

\section*{Capture - Lambdas}

When is the value captured?
int \(\mathrm{v}=42\);
auto func \(=[=]\) \{std: :cout \(\ll \mathrm{v} \ll\) "\n"\};
v = 7;
func();
Output: 42
Values are assigned when the lambda-expression is created.

\section*{Capture - Lambdas}
```

(Why) does this work?
class Limited\{
int limit = 10;
public:
// count entries smaller than limit
int count(const std::vector<int>\& a)\{
int c = 0;
std::for_each(a.begin(), a.end(),
[=,\&c] (int x) \{if (x < limit) c++;\}
);
return c;
\}
\};

```

\section*{Capture - Lambdas}
```

(Why) does this work?
class Limited{
int limit = 10;
public:
// count entries smaller than limit
int count(const std::vector<int>\& a){
int c = 0;
std::for_each(a.begin(), a.end(),
[=,\&c] (int x) {if (x < limit) c++;}
);
return c;
}
};

```

The this pointer is implicitly copied by value

\section*{Capture - Lambdas}
```

struct mutant{
int i = 0;
void action(){ [=] {i=42;}();}
};
mutant m;
m.action();
std::cout << m.i;
Output:

```

\section*{Capture - Lambdas}
```

struct mutant{
int i = 0;
void action(){ [=] {i=42;}();}
};

```
mutant m;
m.action();
std::cout << m.i;

Output: 42
The this pointer is implicitly copied by value

\section*{Lambda Expressions are Functors}
\[
[x, \& y]()\{y=x ;\}
\]
can be implemented as
```

unnamed {x,y};

```
with
```

class unnamed {
int x; int\& y;
unnamed (int x_, int\& y_) : x (x_), y (y_) {}
void operator () () {y = x;}
};

```

\section*{Lambda Expressions are Functors}
[=] () \{return \(x+y ;\}\)
can be implemented as
unnamed \(\{\mathrm{x}, \mathrm{y}\}\);
with
```

class unnamed {
int x; int y;
unnamed (int x_, int y_) : x (x_), y (y_) {}
int operator () () const {return x + y;}
};

```

\section*{Polymorphic Function Wrapper std: :function}
```

\#include <functional>

```
int k= 8;
std::function<int(int)> f;
\(\mathrm{f}=\) [k] (int i) \(\{\) return i+k; \};
std::cout << f(8); // 16
can be used in order to store lambda expressions.
Other Examples
std::function<int(int,int)>; std::function<void(double)> ... http://en.cppreference.com/w/cpp/utility/functional/function

\section*{Example}
```

template <typename T>
auto toFunction(std::vector<T> v){
return [v] (T x) -> double {
int index = (int) (x+0.5);
if (index < 0) index = 0;
if (index >= v.size()) index = v.size()-1;
return v[index];
};
}

```

\section*{Example}
```

auto Gaussian(double mu, double sigma){
return [mu,sigma](double x) {
const double a = (x - mu) / sigma;
return std::exp(-0.5 * a * a);
};
}
template <typename F, typename Kernel>
auto smooth(F f, Kernel kernel){
return [kernel,f] (auto x) {
// compute convolution ...
// and return result
};
}

```

\section*{Example}
```

std::vector<double> v {1,2,5,3};
auto f = toFunction(v);
auto k = Gaussian(0,0.1);
auto g = smooth(f,k);

```


\section*{Conclusion}

■ Higher-order functions are parametric in their functionality: more flexible \(\rightarrow\) more widely applicable \(\rightarrow\) more code reuse
- Being able to pass around functions means being able to pass around entire computations.
■ Lambda expressions facilitate the use of "one-off" functions, which are often used in combination with higher-order functions.
- Returning lambdas enables implementing function generators, that can generate whole families of functions.
- In C++, lambda expressions desugare into function objects (functors).
- Higher-order functions and lambdas are an important, and nowadays mainstream, building block of the functional programming paradigm.

\section*{16. Binary Search Trees}
[Ottman/Widmayer, Kap. 5.1, Cormen et al, Kap. 12.1-12.3]

\section*{Dictionary implementation}

Hashing: implementation of dictionaries with expected very fast access times.
Disadvantages of hashing:

\section*{Dictionary implementation}

Hashing: implementation of dictionaries with expected very fast access times.
Disadvantages of hashing: linear access time in worst case. Some operations not supported at all:

■ enumerate keys in increasing order

\section*{Dictionary implementation}

Hashing: implementation of dictionaries with expected very fast access times.
Disadvantages of hashing: linear access time in worst case. Some operations not supported at all:
■ enumerate keys in increasing order
■ next smallest key to given key

\section*{Dictionary implementation}

Hashing: implementation of dictionaries with expected very fast access times.
Disadvantages of hashing: linear access time in worst case. Some operations not supported at all:
■ enumerate keys in increasing order
- next smallest key to given key

■ Key \(k\) in given interval \(k \in[l, r]\)

\section*{Trees}

Trees are
■ Generalized lists: nodes can have more than one successor
■ Special graphs: graphs consist of nodes and edges. A tree is a fully connected, directed, acyclic graph.

\section*{Trees}

\section*{Use}

■ Decision trees: hierarchic representation of decision rules
■ syntax trees: parsing and traversing of expressions, e.g. in a compiler
- Code tress: representation of a code, e.g. morse alphabet, huffman code
- Search trees: allow efficient searching for an element by value

\section*{Examples}


\section*{Examples}


Expression tree

\section*{Nomenclature}

- Order of the tree: maximum number of child nodes (here: 3 )
- Height of the tree: maximum path length root to leaf (here: 4)

\section*{Binary Trees}

A binary tree is
■ either a leaf, i.e. an empty tree,
■ or an inner leaf with two trees \(T_{l}\) (left subtree) and \(T_{r}\) (right subtree) as left and right successor.
In each inner node v we store
■ a key v.key and
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|c|}{ key } \\
\hline left & right \\
\hline
\end{tabular}

■ two nodes v.left and v.right to the roots of the left and right subtree. a leaf is represented by the null-pointer

\section*{Recap: Linked-list Node in C++}
struct llnode

```

struct llnode {
int key;
llnode* next;
llnode(int k, llnode* n): key(k), next(n) {} // Constructor
};

```

\section*{Recap: Tree Nodes in C++}


\section*{Binary search tree}

A binary search tree is a binary tree that fulfils the search tree property:
■ Every node v stores a key
■ Keys in left subtree v.left are smaller than v. key
■ Keys in right subtree v.right are greater than v.key


\section*{Searching}

Input: Binary search tree with root \(r\), key \(k\)
Output: Node \(v\) with \(v\).key \(=k\) or null \(v \leftarrow r\)
while \(v \neq\) null do
if \(k=v\).key then return \(v\)
else if \(k<v\).key then \(v \leftarrow v\).left
else

return null

\section*{Searching}

Input: Binary search tree with root \(r\), key \(k\)
Output: Node \(v\) with \(v\).key \(=k\) or null \(v \leftarrow r\)
while \(v \neq\) null do
if \(k=v\).key then return \(v\)
else if \(k<v\).key then \(v \leftarrow v\).left
else

return null

\section*{Searching}

Input: Binary search tree with root \(r\), key \(k\)
Output: Node \(v\) with \(v\).key \(=k\) or null \(v \leftarrow r\)
while \(v \neq\) null do
if \(k=v\).key then return \(v\)
else if \(k<v\).key then

return null

\section*{Searching}

Input: Binary search tree with root \(r\), key \(k\)
Output: Node \(v\) with \(v\).key \(=k\) or null \(v \leftarrow r\)
while \(v \neq\) null do
if \(k=v\).key then return \(v\)
else if \(k<v\).key then

return null

\section*{Searching in C++}
```

bool contains(const llnode* root, int search_key) {
while (root != nullptr) {
if (search_key == root->key) return true;
else if (search_key < root->key) root = root->left;
else root = root->right;
}
return false;
}

```

\section*{Searching in C++}
```

bool contains(const llnode* root, int search_key) {
while (root != nullptr) {
if (search_key == root->key) return true;
else if (search_key < root->key) root = root->left;
else root = root->right;
}
return false;
}
Remarks (pot. also for subsequent code):
■ contains would typically be a member of function of struct tnode or class bin_search_tree (\rightarrow slightly different signature)

- Recursive implementation also possible

```

\section*{Height of a tree}

The height \(h(T)\) of a binary tree \(T\) with root \(r\) is given by

\section*{Height of a tree}

The height \(h(T)\) of a binary tree \(T\) with root \(r\) is given by
\[
h(r)= \begin{cases}0 & \text { if } r=\text { null } \\ 1+\max \{h(r . \text { left }), h(r . \text { right })\} & \text { otherwise } .\end{cases}
\]

The (worst case) run time of the search is thus \(\mathcal{O}(h(T))\)

\section*{Insertion of a key}

Insertion of the key \(k\)
■ Search for \(k\)
■ If successful search: e.g. output error
- If no success: insert the key at the leaf reached


\section*{Remove node}

Three cases possible:


\section*{Remove node}

Three cases possible:
■ Node has no children
■ Node has one child
■ Node has two children
[Leaves do not count here]


\section*{Remove node}

\section*{Node has no children}

Simple case: replace node by leaf.


\section*{Remove node}

Node has one child
Also simple: replace node by single child.


\section*{Remove node}

\section*{Node v has two children}


Requirements for replacement node w:
1. w. key is larger than all keys in v.left
2. w.key is smaller than all keys in v.right
3. ideally has not children

\section*{Remove node}

\section*{Node v has two children}


Requirements for replacement node w:
1. w. key is larger than all keys in v.left
2. w.key is smaller than all keys in v.right
3. ideally has not children

Observation: the smallest key in the right subtree v.right (here: 9) meets requirements 1, 2; and has at most one (right) child.

\section*{Remove node}

\section*{Node v has two children}


Requirements for replacement node w:
1. w. key is larger than all keys in v.left
2. w.key is smaller than all keys in v.right
3. ideally has not children

Observation: the smallest key in the right subtree v.right (here: 9) meets requirements 1, 2; and has at most one (right) child.

Solution: replace v by exactly this symmetric successor.

\section*{By symmetry ...}

\section*{Node v has two children}

Also possible: replace v by its symmetric predecessor.


\section*{Algorithm SymmetricSuccessor(v)}

Input: Node \(v\) of a binary search tree.
Output: Symmetric successor of \(v\)
\(w \leftarrow v\).right
\(x \leftarrow w\).left
while \(x \neq\) null do
\(w \leftarrow x\)
\(x \leftarrow x\).left
return w

\section*{Analysis}

Deletion of an element \(v\) from a tree \(T\) requires \(\mathcal{O}(h(T))\) fundamental steps:
■ Finding \(v\) has costs \(\mathcal{O}(h(T))\)
■ If \(v\) has maximal one child unequal to nullthen removal takes \(\mathcal{O}(1)\) steps
■ Finding the symmetric successor \(n\) of \(v\) takes \(\mathcal{O}(h(T))\) steps. Removal and insertion of \(n\) takes \(\mathcal{O}(1)\) steps.

\section*{Traversal possibilities}
- preorder:
\(v\), then \(T_{\text {left }}(v)\), then \(T_{\text {right }}(v)\).


\section*{Traversal possibilities}
- preorder:
\(v\), then \(T_{\text {left }}(v)\), then \(T_{\text {right }}(v)\).
\(8,3,5,4,13,10,9,19\)


\section*{Traversal possibilities}
- preorder:
\(v\), then \(T_{\text {left }}(v)\), then \(T_{\text {right }}(v)\).
\(8,3,5,4,13,10,9,19\)
- postorder:
\(T_{\text {left }}(v)\), then \(T_{\text {right }}(v)\), then \(v\).


\section*{Traversal possibilities}
- preorder:
\(v\), then \(T_{\text {left }}(v)\), then \(T_{\text {right }}(v)\).
\(8,3,5,4,13,10,9,19\)
- postorder:
\(T_{\text {left }}(v)\), then \(T_{\text {right }}(v)\), then \(v\).
\(4,5,3,9,10,19,13,8\)


\section*{Traversal possibilities}
- preorder:
\(v\), then \(T_{\text {left }}(v)\), then \(T_{\text {right }}(v)\).
\(8,3,5,4,13,10,9,19\)
- postorder:
\(T_{\text {left }}(v)\), then \(T_{\text {right }}(v)\), then \(v\).
\(4,5,3,9,10,19,13,8\)
■ inorder:
\(T_{\text {left }}(v)\), then \(v\), then \(T_{\text {right }}(v)\).


\section*{Traversal possibilities}
- preorder:
\(v\), then \(T_{\text {left }}(v)\), then \(T_{\text {right }}(v)\).
\(8,3,5,4,13,10,9,19\)
- postorder:
\(T_{\text {left }}(v)\), then \(T_{\text {right }}(v)\), then \(v\).
\(4,5,3,9,10,19,13,8\)
■ inorder:
\(T_{\text {left }}(v)\), then \(v\), then \(T_{\text {right }}(v)\).
\(3,4,5,8,9,10,13,19\)


\section*{Further supported operations}

■ Min/Max(T): Query minimal/maximal value in \(\mathcal{O}(h(T))\)
■ ExtractMin/Max(T): Query and remove remove min/max in \(\mathcal{O}(h(T))\)
■ List( \(T\) ): Output the sorted list of elements
■ \(\operatorname{Join}\left(T_{1}, T_{2}\right)\) : Merge two trees with \(\operatorname{Max}\left(T_{1}\right)<\) \(\operatorname{Min}\left(T_{2}\right)\) in \(\mathcal{O}\left(h\left(T_{1}, T_{2}\right)\right)\)


\section*{Search Trees: Balanced vs. Degenerated}


insert 4,5,8,9,10,13,19:
linear list

19
19

insert 19,13,10,9,8,5,4:
linear list

\section*{Probabilistically}

A search tree constructed from a random sequence of numbers provides an an expected path length of \(\mathcal{O}(\log n)\).
Attention: this only holds for insertions. If the tree is constructed by random insertions and deletions, the expected path length is \(\mathcal{O}(\sqrt{n})\). Balanced trees make sure (e.g. with rotations) during insertion or deletion that the tree stays balanced and provide a \(\mathcal{O}(\log n)\) Worst-case guarantee.

\section*{17. Heaps}

Data structure optimized for fast extraction of minimum or maximum and for sorting. [Ottman/Widmayer, Kap. 2.3, Cormen et al, Kap. 6]

\section*{[Max-]Heap*}

Binary tree with the following properties

*Heap(data structure), not as in "heap and stack" (memory allocation)

\section*{[Max-]Heap*}

Binary tree with the following properties
1. complete up to the lowest level

*Heap(data structure), not as in "heap and stack" (memory allocation)

\section*{[Max-]Heap*}

Binary tree with the following properties
1. complete up to the lowest level
2. Gaps (if any) of the tree in the last level to the right

*Heap(data structure), not as in "heap and stack" (memory allocation)

\section*{[Max-]Heap*}

Binary tree with the following properties
1. complete up to the lowest level
2. Gaps (if any) of the tree in the last level to the right
3. Heap-Condition:

Max-(Min-)Heap: key of a child smaller (greater) than that of the parent node

*Heap(data structure), not as in "heap and stack" (memory allocation)

\section*{Heap as Array}

Tree \(\rightarrow\) Array:
- children \((i)=\{2 i, 2 i+1\}\)

■ parent \((i)=\lfloor i / 2\rfloor\)


Children


Depends on the starting index \({ }^{19}\)

\footnotetext{
\({ }^{19}\) For arrays that start at \(0:\{2 i, 2 i+1\} \rightarrow\{2 i+1,2 i+2\},\lfloor i / 2\rfloor \rightarrow\lfloor(i-1) / 2\rfloor\)
}

\section*{Height of a Heap}

What is the height \(H(n)\) of Heap with \(n\) nodes? On the \(i\)-th level of a binary tree there are at most \(2^{i}\) nodes. Modulo the last level of a heap, all levels are filled with values.
\[
H(n)=\min \left\{h \in \mathbb{N}: \sum_{i=0}^{h-1} 2^{i} \geq n\right\}
\]
with \(\sum_{i=0}^{h-1} 2^{i}=2^{h}-1\) :
\[
H(n)=\min \left\{h \in \mathbb{N}: 2^{h} \geq n+1\right\},
\]
thus
\[
H(n)=\left\lceil\log _{2}(n+1)\right\rceil
\]

\section*{Heap in C++}
```

class MaxHeap {
int* keys; // Pointer to first key
unsigned int capacity; // Length of key array
unsigned int count; // Keys in use <= capacity
// Or even better: build on top of std::vector
public:
MaxHeap(unsigned int initial_capacity):
keys(new int[initial_capacity]),
capacity(initial_capacity),
count(0)
{}
void insert(unsigned int key) { ...}
int remove_max() { ...}
}

```

Insert


\section*{Insert}

■ Insert new kez at the first free position. Potentially violates the heap property.


\section*{Insert}

■ Insert new kez at the first free position. Potentially violates the heap property.
■ Reestablish heap property: ascend successively


\section*{Insert}

■ Insert new kez at the first free position. Potentially violates the heap property.
■ Reestablish heap property: ascend successively


\section*{Insert}

■ Insert new kez at the first free position. Potentially violates the heap property.
■ Reestablish heap property: ascend successively
- Worst-case number of operations: \(\mathcal{O}(\log n)\)


\section*{Algorithm Sift-Up( \(A, m\) )}

Input: Array \(A\) with at least \(m\) keys and heap structure on \(A[1, \ldots, m-1]\)
Output: Array \(A\) with heap structure on \(A[1, \ldots, m]\)
\(v \leftarrow A[m] / /\) new key
\(c \leftarrow m / /\) index current node (child)
\(p \leftarrow\lfloor c / 2\rfloor / /\) index parent node
while \(c>1\) and \(v>A[p]\) do
\(A[c] \leftarrow A[p] / /\) key parent node \(\rightarrow\) key current node
\(c \leftarrow p / /\) parent node \(\rightarrow\) current node
\(p \leftarrow\lfloor c / 2\rfloor\)
\(A[c] \leftarrow v / /\) place new key


\section*{Remove the Maximum}
- Replace the maximum by the lower right element


\section*{Remove the Maximum}

■ Replace the maximum by the lower right element
- Reestablish heap property: sink successively (in the direction of the greater child)


\section*{Remove the Maximum}

■ Replace the maximum by the lower right element
- Reestablish heap property: sink successively (in the direction of the greater child)


\section*{Remove the Maximum}

■ Replace the maximum by the lower right element
- Reestablish heap property: sink successively (in the direction of the greater child)
- Worst case number of operations: \(\mathcal{O}(\log n)\)


\section*{Why this is correct: Recursive heap structure}

A heap consists of two heaps:


\section*{Why this is correct: Recursive heap structure}

A heap consists of two heaps:


\section*{Algorithm SiftDown \((A, i, m)\)}

Input: Array \(A\) with heap structure for the children of \(i\). Last element \(m\).
Output: Array \(A\) with heap structure for \(i\) with last element \(m\). while \(2 i \leq m\) do
\(j \leftarrow 2 i\); / / \(j\) left child
if \(j<m\) and \(A[j]<A[j+1]\) then
\(j \leftarrow j+1\); // \(j\) right child with greater key
if \(A[i]<A[j]\) then
\(\operatorname{Swap}(A[i], A[j])\)
\(i \leftarrow j\); // keep sinking down
else
\(i \leftarrow m\); // sift down finished

\section*{Sorting Heaps}

Let \(A[1, \ldots, n]\) be a heap.
While \(n>1\) :
1. \(\operatorname{Swap}(A[1], A[n])\)
2. \(\operatorname{SiftDown}(A, 1, n-1)\)
3. \(n \leftarrow n-1\)

\section*{Sorting Heaps}
\[
\text { swap } \quad \Rightarrow \quad \begin{array}{ll|l|l|l|l|l|}
\hline 7 & 6 & 4 & 5 & 1 & 2 \\
\hline 2 & 6 & 4 & 5 & 1 & 7
\end{array}
\]

Let \(A[1, \ldots, n]\) be a heap.
While \(n>1\) :
1. \(\operatorname{Swap}(A[1], A[n])\)
2. \(\operatorname{SiftDown}(A, 1, n-1)\)
3. \(n \leftarrow n-1\)

\section*{Sorting Heaps}

Let \(A[1, \ldots, n]\) be a heap.
While \(n>1\) :
1. \(\operatorname{Swap}(A[1], A[n])\)
2. \(\operatorname{SiftDown}(A, 1, n-1)\)
3. \(n \leftarrow n-1\)
\begin{tabular}{ll|l|l|l|l|l|l} 
& & 7 & 6 & 4 & 5 & 1 & 2 \\
swap & \(\Rightarrow\) & 2 & 6 & 4 & 5 & 1 & 7 \\
siftDown & \(\Rightarrow\) & 6 & 5 & 4 & 2 & 1 & 7
\end{tabular}

\section*{Sorting Heaps}

Let \(A[1, \ldots, n]\) be a heap.
While \(n>1\) :
1. \(\operatorname{Swap}(A[1], A[n])\)
2. \(\operatorname{SiftDown}(A, 1, n-1)\)
3. \(n \leftarrow n-1\)
\begin{tabular}{ll|l|l|l|l|l|l|} 
& & 7 & 6 & 4 & 5 & 1 & 2 \\
\hline swap & \(\Rightarrow\) & 2 & 6 & 4 & 5 & 1 & 7 \\
\hline siftDown & \(\Rightarrow\) & 6 & 5 & 4 & 2 & 1 & 7 \\
\hline swap & \(\Rightarrow\) & 1 & 5 & 4 & 2 & 6 & 7
\end{tabular}

\section*{Sorting Heaps}

Let \(A[1, \ldots, n]\) be a heap.
While \(n>1\) :
1. \(\operatorname{Swap}(A[1], A[n])\)
2. \(\operatorname{SiftDown}(A, 1, n-1)\)
3. \(n \leftarrow n-1\)
\begin{tabular}{ll|l|l|l|l|l|l|l|} 
& & 7 & 6 & 4 & 5 & 1 & 2 \\
\hline swap & \(\Rightarrow\) & 2 & 6 & 4 & 5 & 1 & 7 \\
\hline siftDown & \(\Rightarrow\) & 6 & 5 & 4 & 2 & 1 & 7 \\
\hline swap & \(\Rightarrow\) & 1 & 5 & 4 & 2 & 6 & 7 \\
\hline siftDown & \(\Rightarrow\) & 5 & 4 & 2 & 1 & 6 & 7 \\
\hline swap & \(\Rightarrow\) & 1 & 4 & 2 & 5 & 6 & 7 \\
\hline siftDown & \(\Rightarrow\) & 4 & 1 & 2 & 5 & 6 & 7 \\
\hline swap & \(\Rightarrow\) & 2 & 1 & 4 & 5 & 6 & 7 \\
\hline siftDown & \(\Rightarrow\) & 2 & 1 & 4 & 5 & 6 & 7 \\
\hline swap & \(\Rightarrow\) & 1 & 2 & 4 & 5 & 6 & 7
\end{tabular}

\section*{Heap creation}

Observation: Every leaf of a heap is trivially a correct heap.

Consequence:

\section*{Heap creation}

Observation: Every leaf of a heap is trivially a correct heap.

Consequence: Induction from below!

\section*{Algorithm HeapSort( \(A, n\) )}

Input: Array \(A\) with length \(n\).
Output: A sorted.
// Build the heap
for \(i \leftarrow n / 2\) downto 1 do SiftDown \((A, i, n)\)
// Now \(A\) is a heap
for \(i \leftarrow n\) downto 2 do
Swap \((A[1], A[i])\)
\(\operatorname{SiftDown}(A, 1, i-1)\)
// Now \(A\) is sorted.

\section*{Analysis: sorting a heap}

SiftDown traverses at most \(\log n\) nodes. For each node, 2 key comparisons. \(\Rightarrow\) sorting a heap costs \(2 \log n\) comparisons in the worst case. Number of memory movements while sorting a heap also \(\mathcal{O}(n \log n)\).

\section*{Analysis: creating a heap}

Calls to SiftDown: \(n / 2\).
Thus number of comparisons and movements: \(v(n) \in \mathcal{O}(n \log n)\).
But mean length of the sift-down paths is much smaller:
We use that \(h(n)=\left\lceil\log _{2} n+1\right\rceil=\left\lfloor\log _{2} n\right\rfloor+1\) für \(n>0\)
\[
\begin{aligned}
v(n) & =\sum_{l=0}^{\left\lfloor\log _{2} n\right\rfloor} \underbrace{2^{l}}_{\text {number heaps on level l }} \cdot(\underbrace{\left\lfloor\log _{2} n\right\rfloor+1-l}_{\text {height heaps on level l }}-1)=\sum_{k=0}^{\left\lfloor\log _{2} n\right\rfloor} 2^{\left\lfloor\log _{2} n\right\rfloor-k} \cdot k \\
& =2^{\left\lfloor\log _{2} n\right\rfloor} \cdot \sum_{k=0}^{\left\lfloor\log _{2} n\right\rfloor} \frac{k}{2^{k}} \leq n \cdot \sum_{k=0}^{\infty} \frac{k}{2^{k}} \leq n \cdot 2 \in \mathcal{O}(n)
\end{aligned}
\]
with \(s(x):=\sum_{k=0}^{\infty} k x^{k}=\frac{x}{(1-x)^{2}} \quad(0<x<1)\) and \(s\left(\frac{1}{2}\right)=2\)

\section*{Disadvantages}

Heapsort: \(\mathcal{O}(n \log n)\) Comparisons and movements.
Disadvantages of heapsort?

\section*{Disadvantages}

Heapsort: \(\mathcal{O}(n \log n)\) Comparisons and movements.
Disadvantages of heapsort?
(7) Missing locality: heapsort jumps around in the sorted array (negative cache effect).

\section*{Disadvantages}

Heapsort: \(\mathcal{O}(n \log n)\) Comparisons and movements.
Disadvantages of heapsort?
(7) Missing locality: heapsort jumps around in the sorted array (negative cache effect).
(1) Two comparisons required before each necessary memory movement.

\section*{18. AVL Trees}

Balanced Trees [Ottman/Widmayer, Kap. 5.2-5.2.1, Cormen et al, Kap. Problem 13-3]

\section*{Background}

■ Search tree: Search, insertion and removal of a key in average in \(\mathcal{O}(\log n)\) steps (given \(n\) keys in the tree)
■ Worst case, though: \(\Theta(n)\) (degenerated tree)

\section*{Background}
- Search tree: Search, insertion and removal of a key in average in \(\mathcal{O}(\log n)\) steps (given \(n\) keys in the tree)
■ Worst case, though: \(\Theta(n)\) (degenerated tree)
Goal: Avoid degeneration, by balancing the tree after each update operation.
Balancing: guarantee that a tree with \(n\) nodes always has a height of \(\mathcal{O}(\log n)\).

\section*{Background}

■ Search tree: Search, insertion and removal of a key in average in \(\mathcal{O}(\log n)\) steps (given \(n\) keys in the tree)
■ Worst case, though: \(\Theta(n)\) (degenerated tree)
Goal: Avoid degeneration, by balancing the tree after each update operation.
Balancing: guarantee that a tree with \(n\) nodes always has a height of \(\mathcal{O}(\log n)\).

\section*{Adelson-Velsky and Landis (1962): AVL-Trees}

\section*{Balance of a node}

The balance of a node \(v\) is defined as the height difference of its sub-trees \(T_{l}(v)\) and \(T_{r}(v)\)
\[
\operatorname{bal}(v):=h\left(T_{r}(v)\right)-h\left(T_{l}(v)\right)
\]


\section*{AVL Condition}

AVL Condition: for each node \(v\) of a tree \(\operatorname{bal}(v) \in\{-1,0,1\}\)
\[
\frac{h-2}{}
\]
(Counter-)Examples


\section*{(Counter-)Examples}


AVL tree with height 3
AVL tree with height 4

\section*{Number of Leaves}

■ 1. observation: a binary tree with \(n\) keys provides exactly \(n+1\) leaves. simple induction argument.
- The binary tree with \(n=0\) keys has \(m=1\) leaves

■ When a key is added \((n \rightarrow n+1)\), then it replaces a leaf and adds two new leafs \((m \rightarrow m-1+2=m+1)\).
- 2. observation: a lower bound of the number of leaves in a binary tree with given height implies an upper bound of the height of a binary tree with given number of keys.

\section*{Lower bound of the leaves}


AVL tree with height 1 has \(N(1):=2\) leaves.


AVL tree with height 2 has at least \(N(2):=3\) leaves.

\section*{Lower bound on the leaves for \(h>2\) in AVL trees}

■ Height of one subtree \(\geq h-1\).
- Height of the other subtree \(\geq h-2\). Minimal number of leaves \(N(h)\) is
\[
N(h)=N(h-1)+N(h-2)
\]


Overal we have \(N(h)=F_{h+2}\) with Fibonacci-numbers \(F_{0}:=0, F_{1}:=1\), \(F_{n}:=F_{n-1}+F_{n-2}\) for \(n>1\).

\section*{Fibonacci Numbers, closed Form}

It holds that \({ }^{20}\)
\[
F_{i}=\frac{1}{\sqrt{5}}\left(\phi^{i}-\hat{\phi}^{i}\right)
\]
with the roots \(\phi, \hat{\phi}\) of the golden ratio equation \(x^{2}-x-1=0\) :
\[
\begin{aligned}
& \phi=\frac{1+\sqrt{5}}{2} \approx 1.618 \\
& \hat{\phi}=\frac{1-\sqrt{5}}{2} \approx-0.618
\end{aligned}
\]
\({ }^{20}\) Derivation using generating functions (power series) in the appendix.

\section*{Tree Height}

Because \(|\hat{\phi}|<1\), overal we have
\[
N(h) \in \Theta\left(\left(\frac{1+\sqrt{5}}{2}\right)^{h}\right) \subseteq \Omega\left(1.618^{h}\right)
\]
and thus
\[
N(h) \geq c \cdot 1.618^{h} \quad \Rightarrow \quad h \leq 1.44 \log _{2} n+c^{\prime}
\]

■ I.e. an AVL tree has, as desired, a height of \(\mathcal{O}(\log n)\)
- and is asymptotically not more than \(44 \%\) higher than a perfectly balanced tree (height \(\left\lceil\log _{2} n+1\right\rceil\) )

\section*{Insertion and Balancing}

Balance:
■ Insertion potentially violates AVL condition \(\rightarrow\) balancing
■ For that, we store the balance in each node
Insert:
■ Insert new node \(n\), as done for search trees
■ Check, and potentially restore, balance of all nodes from \(n\) upwards to the root

\section*{Balance at Insertion Point}

case 1: \(\operatorname{bal}(p)=+1\)

case 2: \(\operatorname{bal}(p)=-1\)

\section*{Balance at Insertion Point}


Directly done in both cases because the height of subtree \(p\) did not change. Balance of parent node thus also unchanged.

\section*{Balance at Insertion Point}

case 3.1: \(\operatorname{bal}(p)=0\) right

case 3.2: \(\operatorname{bal}(p)=0\), left

\section*{Balance at Insertion Point}

case 3.1: \(\operatorname{bal}(p)=0\) right

case 3.2: \(\operatorname{bal}(p)=0\), left

Not yet done in both case, since parent node potentially no longer balanced \(\rightarrow\) Invocation of function upin (p) (upwards + insert)

\section*{upin(p): Recursive Invocation Requirement}

For every call upin(p) it must hold that
- the subtree \(p\) grew and thereby
- changed \(\operatorname{bal}(p)\) from 0 to \(\in\{-1,+1\}\).

Because only in this situation can the newly developed imbalance of \(p\) \((\operatorname{bal}(p) \neq 0)\) affect the tree structure above.

\section*{upin(p)}

Assumption: \(p\) is left son of \(p p^{21}\)


In both cases the AVL-Condition holds for the subtree from \(p p\)
\({ }^{21}\) If \(p\) is a right son: symmetric cases with exchange of +1 and -1

\section*{upin(p)}

Assumption: \(p\) is left son of \(p p\)

\[
\operatorname{case} 3: \operatorname{bal}(p p)=-1,
\]

This case is problematic: adding \(n\) to the subtree from \(p p\) has violated the AVL-condition. Re-balance!
Two cases \(\operatorname{bal}(p)=-1, \operatorname{bal}(p)=+1\)

\section*{Rotations}
case \(1.1 \operatorname{bal}(p)=-1 .{ }^{22}\)

\({ }^{22} p\) right son: \(\Rightarrow \operatorname{bal}(p p)=\operatorname{bal}(p)=+1\), left rotation

\section*{Rotations}

\section*{case \(1.2 \operatorname{bal}(p)=+1 .{ }^{23}\)}

\({ }^{23} p\) right son \(\Rightarrow \operatorname{bal}(p p)=+1, \operatorname{bal}(p)=-1\), double rotation right left

\section*{Analysis}

■ Tree height: \(\mathcal{O}(\log n)\).
■ Insertion like in binary search tree.
- Balancing via recursion from node to the root (during recursive ascend). Maximal path lenght \(\mathcal{O}(\log n)\).
Insertion in an AVL-tree provides run time costs of \(\mathcal{O}(\log n)\).

\section*{Deletion}

Removing a node from an AVL tree also entails rotations, but is yet a bit more complex - and not exam relevant. If you're interested, see the handout for further information.

\section*{Conclusion}
- AVL trees have worst-case asymptotic runtimes of \(\mathcal{O}(\log n)\) for searching, insertion and deletion of keys.
■ Insertion and deletion is relatively involved. For small trees (key sets), the costs of balancing outweighs the gain of \(\mathcal{O}(\log n)\) height.
■ Several other balanced trees exist: Red-Black tree (std: :map in C++), B-tree (std:: collections: :BTreeMap in Rust), Splay tree; Treap (balanced with high probability)

\subsection*{18.6 Appendix}

Derivation of some mathemmatical formulas

\section*{Fibonacci Numbers, Inductive Proof}
\(F_{i} \stackrel{!}{=} \frac{1}{\sqrt{5}}\left(\phi^{i}-\hat{\phi}^{i}\right) \quad[*] \quad\left(\phi=\frac{1+\sqrt{5}}{2}, \hat{\phi}=\frac{1-\sqrt{5}}{2}\right)\).
1. Immediate for \(i=0, i=1\).
2. Let \(i>2\) and claim \([*]\) true for all \(F_{j}, j<i\).
\[
\begin{aligned}
F_{i} & \stackrel{\text { def }}{=} F_{i-1}+F_{i-2} \stackrel{[*]}{=} \frac{1}{\sqrt{5}}\left(\phi^{i-1}-\hat{\phi}^{i-1}\right)+\frac{1}{\sqrt{5}}\left(\phi^{i-2}-\hat{\phi}^{i-2}\right) \\
& =\frac{1}{\sqrt{5}}\left(\phi^{i-1}+\phi^{i-2}\right)-\frac{1}{\sqrt{5}}\left(\hat{\phi}^{i-1}+\hat{\phi}^{i-2}\right)=\frac{1}{\sqrt{5}} \phi^{i-2}(\phi+1)-\frac{1}{\sqrt{5}} \hat{\phi}^{i-2}(\hat{\phi}+1)
\end{aligned}
\]
\(\left(\phi, \hat{\phi}\right.\) fulfil \(x+1=x^{2}\) )
\[
=\frac{1}{\sqrt{5}} \phi^{i-2}\left(\phi^{2}\right)-\frac{1}{\sqrt{5}} \hat{\phi}^{i-2}\left(\hat{\phi}^{2}\right)=\frac{1}{\sqrt{5}}\left(\phi^{i}-\hat{\phi}^{i}\right) .
\]

\section*{[Fibonacci Numbers: closed form]}

Closed form of the Fibonacci numbers: computation via generation functions:
1. Power series approach
\[
f(x):=\sum_{i=0}^{\infty} F_{i} \cdot x^{i}
\]
2. For Fibonacci Numbers it holds that \(F_{0}=0, F_{1}=1\), \(F_{i}=F_{i-1}+F_{i-2} \forall i>1\). Therefore:
\[
\begin{aligned}
f(x) & =x+\sum_{i=2}^{\infty} F_{i} \cdot x^{i}=x+\sum_{i=2}^{\infty} F_{i-1} \cdot x^{i}+\sum_{i=2}^{\infty} F_{i-2} \cdot x^{i} \\
& =x+x \sum_{i=2}^{\infty} F_{i-1} \cdot x^{i-1}+x^{2} \sum_{i=2}^{\infty} F_{i-2} \cdot x^{i-2} \\
& =x+x \sum_{i=0}^{\infty} F_{i} \cdot x^{i}+x^{2} \sum_{i=0}^{\infty} F_{i} \cdot x^{i} \\
& =x+x \cdot f(x)+x^{2} \cdot f(x) .
\end{aligned}
\]
3. Thus:
\[
\begin{aligned}
& f(x) \cdot\left(1-x-x^{2}\right)=x . \\
\Leftrightarrow & f(x)=\frac{x}{1-x-x^{2}}=-\frac{x}{x^{2}+x-1}
\end{aligned}
\]
with the roots \(-\phi\) and \(-\hat{\phi}\) of \(x^{2}+x-1\),
\[
\phi=\frac{1+\sqrt{5}}{2} \approx 1.6, \quad \hat{\phi}=\frac{1-\sqrt{5}}{2} \approx-0.6
\]
it holds that \(\phi \cdot \hat{\phi}=-1\) and thus
\[
f(x)=-\frac{x}{(x+\phi) \cdot(x+\hat{\phi})}=\frac{x}{(1-\phi x) \cdot(1-\hat{\phi} x)}
\]
[Fibonacci Numbers: closed form]
4. It holds that:
\[
(1-\hat{\phi} x)-(1-\phi x)=\sqrt{5} \cdot x
\]

Damit:
\[
\begin{aligned}
f(x) & =\frac{1}{\sqrt{5}} \frac{(1-\hat{\phi} x)-(1-\phi x)}{(1-\phi x) \cdot(1-\hat{\phi} x)} \\
& =\frac{1}{\sqrt{5}}\left(\frac{1}{1-\phi x}-\frac{1}{1-\hat{\phi} x}\right)
\end{aligned}
\]

\section*{[Fibonacci Numbers: closed form]}
5. Power series of \(g_{a}(x)=\frac{1}{1-a \cdot x}(a \in \mathbb{R})\) :
\[
\frac{1}{1-a \cdot x}=\sum_{i=0}^{\infty} a^{i} \cdot x^{i}
\]
E.g. Taylor series of \(g_{a}(x)\) at \(x=0\) or like this: Let \(\sum_{i=0}^{\infty} G_{i} \cdot x^{i}\) a power series of \(g\). By the identity \(g_{a}(x)(1-a \cdot x)=1\) it holds that for all \(x\) (within the radius of convergence)
\[
1=\sum_{i=0}^{\infty} G_{i} \cdot x^{i}-a \cdot \sum_{i=0}^{\infty} G_{i} \cdot x^{i+1}=G_{0}+\sum_{i=1}^{\infty}\left(G_{i}-a \cdot G_{i-1}\right) \cdot x^{i}
\]

For \(x=0\) it follows \(G_{0}=1\) and for \(x \neq 0\) it follows then that \(G_{i}=a \cdot G_{i-1} \Rightarrow\) \(G_{i}=a^{i}\).
6. Fill in the power series:
\[
\begin{aligned}
f(x) & =\frac{1}{\sqrt{5}}\left(\frac{1}{1-\phi x}-\frac{1}{1-\hat{\phi} x}\right)=\frac{1}{\sqrt{5}}\left(\sum_{i=0}^{\infty} \phi^{i} x^{i}-\sum_{i=0}^{\infty} \hat{\phi}^{i} x^{i}\right) \\
& =\sum_{i=0}^{\infty} \frac{1}{\sqrt{5}}\left(\phi^{i}-\hat{\phi}^{i}\right) x^{i}
\end{aligned}
\]

Comparison of the coefficients with \(f(x)=\sum_{i=0}^{\infty} F_{i} \cdot x^{i}\) yields
\[
F_{i}=\frac{1}{\sqrt{5}}\left(\phi^{i}-\hat{\phi}^{i}\right) .
\]

\section*{19. Quadtrees}

Quadtrees, Collision Detection, Image Segmentation

\section*{Quadtree}

A quad tree is a tree of order 4.

... and as such it is not particularly interesting except when it is used for ...

\section*{Quadtree - Interpretation und Nutzen}

Separation of a two-dimensional range into 4 equally sized parts.

[analogously in three dimensions with an octtree (tree of order 8)]

\section*{Example 1: Collision Detection}

■ Objects in the 2D-plane, e.g. particle simulation on the screen.
■ Goal: collision detection


\section*{Idea}
- Many objects: \(n^{2}\) detections (naively)

■ Improvement?


\section*{Idea}
- Many objects: \(n^{2}\) detections (naively)

■ Improvement?
■ Obviously: collision detection not required for objects far away from each other


\section*{Idea}
- Many objects: \(n^{2}\) detections (naively)
- Improvement?

■ Obviously: collision detection not required for objects far away from each other
■ What is „far away"?


\section*{Idea}

■ Many objects: \(n^{2}\) detections (naively)
■ Improvement?
■ Obviously: collision detection not required for objects far away from each other
■ What is „far away"?
- \(\operatorname{Grid}(m \times m)\)


\section*{Idea}

■ Many objects: \(n^{2}\) detections (naively)
- Improvement?

■ Obviously: collision detection not required for objects far away from each other
■ What is „far away"?
- Grid \((m \times m)\)
- Collision detection per grid cell


\section*{Grids}

■ A grid often helps, but not always
■ Improvement?


\section*{Grids}

■ A grid often helps, but not always
■ Improvement?
■ More finegrained grid?
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & & & & & & & & & & & & & & & & & & - & & \(\square\) & & \\
\hline & & & & & & & & & & & & & & & & & & \(\square\) & - & \(\square\) & & - \\
\hline & & & & & & & & & & & & & & & & & & , & & & & - \\
\hline - & & & & & & & & & & & & & & & & & & - & \(\square\) & & & \(\square\) \\
\hline - & & & & & & & & & & & & & & & & & & \(\square\) & & & & \% \\
\hline - & & & & & & & & & & & & & & & & & & \(\square\) & & & & - \\
\hline & & & & & & & & & & & & & & & & & & 4 & & & & \\
\hline & & & & & & & & & & & & & & & & & & & & & & \\
\hline & & & & & & & & & & & & & & & & & & & & & & \\
\hline & & & & & & & & & & & & & & & & & & & & & & \\
\hline & & & & & & & & & & & & & & & & & & & & & & \\
\hline & & & & & & & & & & & & & & & & & & & & & & \\
\hline & & & & & & & & & & & & & & & & & & & & & & \\
\hline & & & & & & & & & & & & & & & & & & & & & & \\
\hline & & & & & & & & & & & & & & & & & & & & & & \\
\hline & & & & & & & & & & & & & & & & & & & & & & \\
\hline & & & & & & & & & & & & & & & & & & & & & & \\
\hline & & & & & & & & & , & 7 & & & & & & & & & & & & \\
\hline & & & & & - & & & & , & & & & & &  & & & & & & & \\
\hline & & & & & & & & & - & & & & & & & & & & & & & \\
\hline & & & & & & & & & & & & & & & & & & & & & & \\
\hline & & & & & & \(\rightarrow\) & & B & [1] & & & & & & & & & & & & & \\
\hline & & & & & 4 & + & 4 & - & + & & & & & & & & & & & & & \\
\hline & & & & & & & & & - & & & & & & & & & & & & & \\
\hline & & & & & & & & & - & & & & & & & & & & & & & \\
\hline & & & & & & - & - & & & & & & & & & & & & & & & \\
\hline & & & & & & & & & & & & & & & & & & & & & & \\
\hline & & & & & & & & & & & & & & & & & & & & & & \\
\hline & & & & & & & & & & & & & & & & & & & & & & \\
\hline & & & & & & & & & & & & & & & & & & & & & & \\
\hline & & & & & & & & & & & & & & & & & & & & & & \\
\hline & & & & & & & & & & & & & & & & & & & & & & \(\square\) \\
\hline
\end{tabular}

\section*{Grids}

■ A grid often helps, but not always
■ Improvement?
■ More finegrained grid?
- Too many grid cells!
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & & & & & & & & & & & & & & & & & - & & \(\square\) & & \\
\hline & & & & & & & & & & & & & & & & & \(\square\) & & \(\square\) & & \\
\hline & & & & & & & & & & & & & & & & & & & & & \\
\hline & & & & & & & & & & & & & & & & & - & & & & \(\square\) \\
\hline & & & & & & & & & & & & & & & & & & & & & \(\square\) \\
\hline & & & & & & & & & & & & & & & & & \(\square\) & & & & \\
\hline & & & & & & & & & & & & & & & & & 4 & & & & \\
\hline & & & & & & & & & & & & & & & & & & & & & \\
\hline & & & & & & & & & & & & & & & & & & & & & \\
\hline & & & & & & & & & & & & & & & & & & & & & \\
\hline & & & & & & & & & & & & & & & & & & & & & \\
\hline & & & & & & & & & & & & & & & & & & & & & \\
\hline & & & & & & & & & & & & & & & & & & & & & \\
\hline & & & & & & & & & & & & & & & & & & & & & \\
\hline & & & & & & & & & & & & & & & & & & & & & \\
\hline & & & & & & & & & & & & & & & & & & & & & \\
\hline & & & & & & & & & & & & & & & & & & & & & \\
\hline & & & & & & & & & \(\square\) & & & & & & & & & & & & \\
\hline & & & & & & & - & - & & & & & & & & & & & & & \\
\hline & & & & & & & & - & - & & & & & & & & & & & & \\
\hline & & & & & & 11 & T & & & & & & & & & & & & & & \\
\hline & & & & & + & - & \(\bigcirc\) & [1] & & & & & & & & & & & & & \\
\hline & & & & & + & - & , & + & & & & & & & & & & & & & \\
\hline & & & & & & 7 T & , & - & & & & & & & & & & & & & \\
\hline & & & & & - & \(\square\) & & - & & & & & & & & & & & & & \\
\hline & & & & & & \(\square\) & & & & & & & & & & & & & & & \\
\hline & & & & & & & & & & & & & & & & & & & & & \\
\hline & & & & & & & & & & & & & & & & & & & & & \\
\hline & & & & & & & & & & & & & & & & & & & & & \\
\hline & & & & & & & & & & & & & & & & & & & & & \\
\hline & & & & & & & & & & & & & & & & & & & & & \\
\hline & & & & & & & & & & & & & & & & & & & & & \(\square\) \\
\hline
\end{tabular}

\section*{Adaptive Grids}

■ A grid often helps, but not always
■ Improvement?


\section*{Adaptive Grids}

■ A grid often helps, but not always
■ Improvement?
- Adaptively refine grid


\section*{Adaptive Grids}

■ A grid often helps, but not always
■ Improvement?
- Adaptively refine grid


\section*{Adaptive Grids}

■ A grid often helps, but not always
■ Improvement?
- Adaptively refine grid

■ Quadtree!


\section*{Algorithm: Insertion}

■ Quadtree starts with a single node


\section*{Algorithm: Insertion}

■ Quadtree starts with a single node
■ Objects are added to the node. When a node contains too many objects, the node is split.


\section*{Algorithm: Insertion}

■ Quadtree starts with a single node
■ Objects are added to the node. When a node contains too many objects, the node is split.


\section*{Algorithm: Insertion}

■ Quadtree starts with a single node
■ Objects are added to the node. When a node contains too many objects, the node is split.


\section*{Algorithm: Insertion}

■ Quadtree starts with a single node
■ Objects are added to the node. When a node contains too many objects, the node is split.


\section*{Algorithm: Insertion}

■ Quadtree starts with a single node
■ Objects are added to the node. When a node contains too many objects, the node is split.
- Objects that are on the boundary of the quadtree remain in the higher level node.


\section*{Algorithm: Collision Detection}
- Run through the quadtree in a recursive way. For each node test collision with all objects contained in the same or (recursively) contained nodes.


\section*{Example 2: Image Segmentation}

(Possible applications: compression, denoising, edge detection)

\section*{Quadtree on Monochrome Bitmap}


Similar procedure to generate the quadtree: split nodes recursively until each node only contains pixels of the same color.

\section*{Quadtree with Approximation}

When there are more than two color values, the quadtree can get very large. \(\Rightarrow\) Compressed representation: approximate the image piecewise constant on the rectangles of a quadtree.


\section*{Piecewise Constant Approximation}
(Grey-value) Image \(\boldsymbol{y} \in \mathbb{R}^{S}\) on pixel indices \(S\). \({ }^{27}\)
Rectangle \(r \subset S\).
Goal: determine
\[
\arg \min _{v \in \mathbb{R}} \sum_{s \in r}\left(y_{s}-v\right)^{2}
\]
\({ }^{27}\) we assume that \(S\) is a square with side length \(2^{k}\) for some \(k \geq 0\)

\section*{Piecewise Constant Approximation}
(Grey-value) Image \(\boldsymbol{y} \in \mathbb{R}^{S}\) on pixel indices \(S\). \({ }^{27}\)
Rectangle \(r \subset S\).
Goal: determine
\[
\arg \min _{v \in \mathbb{R}} \sum_{s \in r}\left(y_{s}-v\right)^{2}
\]

Solution: the arithmetic mean \(\mu_{r}=\frac{1}{|r|} \sum_{s \in r} y_{s}\)
\({ }^{27}\) we assume that \(S\) is a square with side length \(2^{k}\) for some \(k \geq 0\)

\section*{Intermediate Result}

The (w.r.t. mean squared error) best approximation
\[
\mu_{r}=\frac{1}{|r|} \sum_{s \in r} y_{s}
\]
and the corresponding error
\[
\sum_{s \in r}\left(y_{s}-\mu_{r}\right)^{2}=:\left\|\boldsymbol{y}_{r}-\boldsymbol{\mu}_{r}\right\|_{2}^{2}
\]
can be computed quickly after a \(\mathcal{O}(|S|)\) tabulation: prefix sums!

\section*{Which Quadtree?}

Conflict
■ As close as possible to the data \(\Rightarrow\) small rectangles, large quadtree . Extreme case: one node per pixel. Approximation = original
■ Small amount of nodes \(\Rightarrow\) large rectangles, small quadtree Extreme case: a single rectangle. Approximation = a single grey value.

\section*{Which Quadtree?}

Idea: choose between data fidelity and complexity with a regularisation parameter \(\gamma \geq 0\)
Choose quadtree \(T\) with leaves \({ }^{28} L(T)\) such that it minimizes the following function
\[
H_{\gamma}(T, \boldsymbol{y}):=\gamma \cdot \underbrace{|L(T)|}_{\text {Number of Leaves }}+\underbrace{\sum_{r \in L(T)}\left\|y_{r}-\mu_{r}\right\|_{2}^{2}}_{\text {Cummulative approximation error of all leaves }}
\]

\footnotetext{
\({ }^{28}\) here: leaf: node with null-children
}

\section*{Regularisation}

Let \(T\) be a quadtree over a rectangle \(S_{T}\) and let \(T_{l l}, T_{l r}, T_{u l}, T_{u r}\) be the four possible sub-trees and
\[
\widehat{H}_{\gamma}(T, y):=\min _{T} \gamma \cdot|L(T)|+\sum_{r \in L(T)}\left\|y_{r}-\mu_{r}\right\|_{2}^{2}
\]

Extreme cases:
\(\gamma=0 \Rightarrow\) original data;
\(\gamma \rightarrow \infty \Rightarrow\) a single rectangle

\section*{Observation: Recursion}

■ If the (sub-)quadtree \(T\) represents only one pixel, then it cannot be split and it holds that
\[
\widehat{H}_{\gamma}(T, \boldsymbol{y})=\gamma
\]

■ Let, otherwise,
\[
\begin{aligned}
& M_{1}:=\gamma+\left\|\boldsymbol{y}_{S_{T}}-\boldsymbol{\mu}_{S_{T}}\right\|_{2}^{2} \\
& M_{2}:=\widehat{H}_{\gamma}\left(T_{l l}, \boldsymbol{y}\right)+\widehat{H}_{\gamma}\left(T_{l r}, \boldsymbol{y}\right)+\widehat{H}_{\gamma}\left(T_{u l}, \boldsymbol{y}\right)+\widehat{H}_{\gamma}\left(T_{u r}, \boldsymbol{y}\right)
\end{aligned}
\]
then
\[
\widehat{H}_{\gamma}(T, y)=\min \{\underbrace{M_{1}(T, \gamma, \boldsymbol{y})}_{\text {no split }}, \underbrace{M_{2}(T, \gamma, \boldsymbol{y})}_{\text {split }}\}
\]

\section*{Algorithmus: Minimize \((\boldsymbol{y}, r, \gamma)\)}

Input: Image data \(\boldsymbol{y} \in \mathbb{R}^{S}\), rectangle \(r \subset S\), regularization \(\gamma>0\)
Output: \(\min _{T} \gamma|L(T)|+\left\|\boldsymbol{y}-\boldsymbol{\mu}_{L(T)}\right\|_{2}^{2}\)
if \(|r|=0\) then return 0
\(m \leftarrow \gamma+\sum_{s \in r}\left(y_{s}-\mu_{r}\right)^{2}\)
if \(|r|>1\) then
Split \(r\) into \(r_{l l}, r_{l r}, r_{u l}, r_{u r}\)
\(m_{1} \leftarrow \operatorname{Minimize}\left(\boldsymbol{y}, r_{l l}, \gamma\right) ; m_{2} \leftarrow \operatorname{Minimize}\left(\boldsymbol{y}, r_{l r}, \gamma\right)\)
\(m_{3} \leftarrow \operatorname{Minimize}\left(\boldsymbol{y}, r_{u l}, \gamma\right) ; m_{4} \leftarrow \operatorname{Minimize}\left(\boldsymbol{y}, r_{u r}, \gamma\right)\)
\(m^{\prime} \leftarrow m_{1}+m_{2}+m_{3}+m_{4}\)
else
\(L m^{\prime} \leftarrow \infty\)
if \(m^{\prime}<m\) then \(m \leftarrow m^{\prime}\)
return \(m\)

\section*{Analysis}

The minimization algorithm over dyadic partitions (quadtrees) takes \(\mathcal{O}(|S| \log |S|)\) steps.

Application:
Denoising

\[
\gamma=0.3
\]
\(\gamma=1\)
\(\gamma=3\)
\(\gamma=10\)

\section*{Extensions: Affine Regression + Wedgelets}


\section*{Other ideas}
no quadtree: hierarchical one-dimensional modell (requires dynamic programming)


\subsection*{19.1 Appendix}

\author{
Linear Regression
}

\section*{The Learning Problem}

\section*{Setup}

■ We observe \(N\) data points
■ Input examples: \(\boldsymbol{X}=\left(\boldsymbol{X}_{1}, \ldots, \boldsymbol{X}_{N}\right)^{\top}\)
■ Output examples: \(\boldsymbol{y}=\left(y_{1}, \ldots, y_{N}\right)^{\top}\)
■ Assupmtion: there is an underlying truth
\[
f: \mathcal{X} \rightarrow \mathcal{Y}
\]

Spring Data


Goal: find a good approximation \(h \approx g\) to make predictions \(h(\boldsymbol{x})\) for new data points or to explain the data in order to find a compressed representation, for instance.
Here \(\mathcal{X}=\mathbb{R}^{d} . \mathcal{Y}=\mathbb{R}\) (Regression).

\section*{Model: Linear Regression}

Assumption: The underlying truth can be represented as
\[
h_{\boldsymbol{w}}(\boldsymbol{x})=w_{0}+w_{1} x_{1}+\cdots+w_{d} x_{d}=w_{0}+\sum_{i=1}^{d} w_{i} x_{i} .
\]
\(\Rightarrow\) We search for \(\boldsymbol{w}\) (sometimes also \(d\) ).



\section*{Trick for simplified notation}
\[
\begin{aligned}
& \boldsymbol{x}=\left(x_{1}, \ldots, x_{d}\right) \rightarrow(\underbrace{x_{0}}_{\equiv 1}, x_{1}, \ldots, x_{d}) \\
& \begin{aligned}
h_{\boldsymbol{w}}(\boldsymbol{x}) & =w_{0} x_{0}+w_{1} x_{1}+\cdots+w_{d} x_{d} \\
& =\sum_{i=0}^{d} w_{i} x_{i} \\
& =\boldsymbol{w}^{\top} \boldsymbol{x}
\end{aligned}
\end{aligned}
\]

\section*{Data matrix}
\[
\begin{gathered}
\equiv 1 \\
\boldsymbol{X}=\left[\begin{array}{c}
\boldsymbol{X}_{1} \\
\boldsymbol{X}_{2} \\
\vdots \\
\boldsymbol{X}_{n}
\end{array}\right]=\left[\begin{array}{ccccc}
X_{1,0} & X_{1,1} & X_{1,2} & \ldots & X_{1, d} \\
X_{2,0} & X_{2,1} & X_{2,2} & \ldots & X_{2, d} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
X_{n, 0} & X_{n, 1} & X_{n, 2} & \ldots & X_{n, d}
\end{array}\right], \quad \boldsymbol{y}=\left[\begin{array}{c}
y_{1} \\
y_{2} \\
\vdots \\
y_{n}
\end{array}\right], \quad \boldsymbol{w}=\left[\begin{array}{c}
w_{1} \\
\vdots \\
w_{d}
\end{array}\right]
\end{gathered}
\]
\(\boldsymbol{X} \boldsymbol{w} \approx \boldsymbol{y}\) ?

\section*{Imprecise observations}

Reality: the data are imprecise or the model is only a model.



What to do?

\section*{Error function}
\[
E(\boldsymbol{w})=\sum_{i=1}^{N}\left(h_{\boldsymbol{w}}\left(\boldsymbol{X}_{i}\right)-y_{i}\right)^{2}
\]

Want a \(\widehat{\boldsymbol{w}}\) that minimizes \(E\)
Linarity of \(h_{\boldsymbol{w}}\) in \(\boldsymbol{w} \Rightarrow\) solution with linear algebra.



\section*{Solution from Linear Algebra}
\[
\widehat{\boldsymbol{w}}=\underbrace{\left(\boldsymbol{X}^{\top} \boldsymbol{X}\right)^{-1} \boldsymbol{X}^{\top}}_{=: \boldsymbol{X}^{\dagger}} \boldsymbol{y}
\]
\(\boldsymbol{X}^{\dagger}\) : Moore-Penroe Pseudo-Inverse

\section*{Fitting Polynomials}

Also works with linear regression.
\[
h_{\boldsymbol{w}}(x)=w_{0}+w_{1} x^{1}+w_{2} x^{2}+\cdots+w_{d} x^{d}=w_{0}+\sum_{i=1}^{d} w_{i} x^{i} .
\]
because \(h_{\boldsymbol{w}}(x)\) remains being linear in \(\boldsymbol{w}\) !
\[
\boldsymbol{X}=\left[\begin{array}{ccccc}
1 & x_{1} & \left(x_{1}\right)^{2} & \ldots & \left(x_{1}\right)^{d} \\
1 & x_{2} & \left(x_{2}\right)^{2} & \ldots & \left(x_{2}\right)^{d} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
1 & x_{n} & \left(x_{n}\right)^{2} & \ldots & \left(x_{n}\right)^{d}
\end{array}\right], \quad \boldsymbol{y}=\left[\begin{array}{c}
y_{1} \\
y_{2} \\
\vdots \\
y_{n}
\end{array}\right], \quad \boldsymbol{w}=\left[\begin{array}{c}
w_{0} \\
\vdots \\
w_{d}
\end{array}\right]
\]
\[
\begin{gathered}
\boldsymbol{X}=\left[\begin{array}{c}
1 \\
1 \\
\vdots \\
1
\end{array}\right], \quad \boldsymbol{y}=\left[\begin{array}{c}
y_{1} \\
y_{2} \\
\vdots \\
y_{n}
\end{array}\right], \quad \boldsymbol{w}=\left[w_{0}\right] \\
\widehat{\boldsymbol{w}}=\left(\boldsymbol{X}^{\top} \boldsymbol{X}\right)^{-1} \boldsymbol{X}^{\top} \boldsymbol{y}=\left[\frac{1}{n} \sum y_{i}\right] .
\end{gathered}
\]

\section*{Example: Linear Approximation}
\[
\begin{gathered}
\boldsymbol{X}=\left[\begin{array}{ccc}
1 & x_{1}^{(1)} & x_{1}^{(2)} \\
1 & x_{2}^{(1)} & x_{2}^{(2)} \\
\vdots & & \\
1 & x_{n}^{(1)} & x_{n}^{(2)}
\end{array}\right], \quad \boldsymbol{y}=\left[\begin{array}{c}
y_{1} \\
y_{2} \\
\vdots \\
y_{n}
\end{array}\right], \quad \boldsymbol{w}=\left[w_{0}\right] \\
\widehat{\boldsymbol{w}}=\left(\boldsymbol{X}^{\top} \boldsymbol{X}\right)^{-1} \boldsymbol{X}^{\top} \boldsymbol{y}=\left[\begin{array}{ccc}
N & \sum x_{i}^{(1)} & \sum x_{i}^{(2)} \\
\sum x_{i}^{(1)} & \sum\left(x_{i}^{(1)}\right)^{2} & \sum x_{i}^{(1)} \cdot x_{i}^{(2)} \\
\sum x_{i}^{(2)} & \sum x_{i}^{(1)} \cdot x_{i}^{(2)} & \sum\left(x_{i}^{(2)}\right)^{2}
\end{array}\right]^{-1} \cdot\left[\begin{array}{c}
\sum y_{i} \\
\sum y_{i} \cdot x_{i}^{(1)} \\
\sum y_{i} \cdot x_{i}^{(2)}
\end{array}\right]
\end{gathered}
\]

\section*{20. Dynamic Programming I}

Memoization, Optimal Substructure, Overlapping Sub-Problems, Dependencies, General Procedure. Examples: Fibonacci, Rod Cutting, Longest Ascending Subsequence, Longest Common Subsequence, Edit Distance, Matrix Chain Multiplication (Strassen)
[Ottman/Widmayer, Kap. 1.2.3, 7.1, 7.4, Cormen et al, Kap. 15]

\section*{Fibonacci Numbers}
(again)
\[
F_{n}:= \begin{cases}n & \text { if } n<2 \\ F_{n-1}+F_{n-2} & \text { if } n \geq 2 .\end{cases}
\]

Analysis: why ist the recursive algorithm so slow?

\section*{Algorithm FibonacciRecursive( \(n\) )}
```

Input: $n \geq 0$
Output: n-th Fibonacci number
if $n<2$ then
$f \leftarrow n$
else
$f \leftarrow$ FibonacciRecursive $(n-1)+$ FibonacciRecursive $(n-2)$
return f

```

\section*{Analysis}
\(T(n)\) : Number executed operations.
■ \(n=0,1: T(n)=\Theta(1)\)

\section*{Analysis}
\(T(n)\) : Number executed operations.
- \(n=0,1: T(n)=\Theta(1)\)

■ \(n \geq 2: T(n)=T(n-2)+T(n-1)+c\).

\section*{Analysis}
\(T(n)\) : Number executed operations.
- \(n=0,1: T(n)=\Theta(1)\)

■ \(n \geq 2: T(n)=T(n-2)+T(n-1)+c\).
\[
T(n)=T(n-2)+T(n-1)+c \geq 2 T(n-2)+c \geq 2^{n / 2} c^{\prime}=(\sqrt{2})^{n} c^{\prime}
\]

\section*{Analysis}
\(T(n)\) : Number executed operations.
■ \(n=0,1: T(n)=\Theta(1)\)
■ \(n \geq 2: T(n)=T(n-2)+T(n-1)+c\).
\[
T(n)=T(n-2)+T(n-1)+c \geq 2 T(n-2)+c \geq 2^{n / 2} c^{\prime}=(\sqrt{2})^{n} c^{\prime}
\]

Algorithm is exponential in \(n\).


Nodes with same values are evaluated (too) often.

\section*{Memoization}

Memoization (sic) saving intermediate results.
- Before a subproblem is solved, the existence of the corresponding intermediate result is checked.
- If an intermediate result exists then it is used.

■ Otherwise the algorithm is executed and the result is saved accordingly.


Rectangular nodes have been computed before.

\section*{Algorithm FibonacciMemoization( \(n\) )}
```

Input: $n \geq 0$
Output: n-th Fibonacci number
if $n \leq 2$ then
$f \leftarrow 1$
else if $\exists \mathrm{memo}[n]$ then
$f \leftarrow \operatorname{memo}[n]$
else
$f \leftarrow$ FibonacciMemoization $(n-1)+$ FibonacciMemoization $(n-2)$
memo $[n] \leftarrow f$
return f

```

\section*{Analysis}

Computational complexity:
\[
T(n)=T(n-1)+c=\ldots=\mathcal{O}(n)
\]
because after the call to \(f(n-1), f(n-2)\) has already been computed. A different argument: \(f(n)\) is computed exactly once recursively for each \(n\). Runtime costs: \(n\) calls with \(\Theta(1)\) costs per call \(n \cdot c \in \Theta(n)\). The recursion vanishes from the running time computation. Algorithm requires \(\Theta(n)\) memory. \({ }^{29}\)

\footnotetext{
\({ }^{29}\) But the naive recursive algorithm also requires \(\Theta(n)\) memory implicitly.
}

\section*{Looking closer ...}
... the algorithm computes the values of \(F_{1}, F_{2}, F_{3}, \ldots\) in the top-down approach of the recursion.
Can write the algorithm bottom-up. This is characteristic for dynamic programming.

\section*{Algorithm FibonacciBottomUp(n)}

Input: \(n \geq 0\)
Output: \(n\)-th Fibonacci number
```

$F[1] \leftarrow 1$
$F[2] \leftarrow 1$
for $i \leftarrow 3, \ldots, n$ do
$F[i] \leftarrow F[i-1]+F[i-2]$
return $F[n]$

```

\section*{Dynamic Programming: Idea}

■ Divide a complex problem into a reasonable number of sub-problems
■ The solution of the sub-problems will be used to solve the more complex problem
■ Identical problems will be computed only once

\section*{Dynamic Programming Consequence}

Identical problems will be computed only once
\(\Rightarrow \quad\) Results are saved

Arbeitsspeicher

192.-

HyperX Fury (2x, 8GB,
DDR4-2400, DIMM 288)

\section*{Dynamic Programming = Divide-And-Conquer ?}

■ In both cases the original problem can be solved (more easily) by utilizing the solutions of sub-problems. The problem provides optimal substructure.
■ Classical Divide-And-Conquer algorithms (such as Mergesort): sub-problems are independent; their solutions are required only once in the algorithm.
- DP: sub-problems are dependent. The problem is said to have overlapping sub-problems that are required multiple-times in the algorithm.
■ In order to avoid redundant computations, results are tabulated. For sub-problems there must not be any circular dependencies.

\section*{Dynamic Programming: Description}
1. Use a DP-table with information to the subproblems.

Dimension of the table? Semantics of the entries?
2. Computation of the base cases.

Which entries do not depend on others?
3. Determine computation order.

In which order can the entries be computed such that dependencies are fulfilled?
4. Read-out the solution

How can the solution be read out from the table?
Runtime (typical) = number entries of the table times required operations per entry.

\section*{Dynamic Programing: Description (Fibonacci)}

Dimension of the table? Semantics of the entries?
1.

Which entries do not depend on other entries?
2.

Computation order?
3.

Reconstruction of a solution?
4.

\section*{Dynamic Programing: Description (Fibonacci)}

Dimension of the table? Semantics of the entries?
1.
\(n \times 1\) table. \(n\)th entry contains \(n\)th Fibonacci number.
Which entries do not depend on other entries?
2.

Computation order?
3.

Reconstruction of a solution?
4.


\section*{Dynamic Programing: Description (Fibonacci)}

Dimension of the table? Semantics of the entries?
1.
\(n \times 1\) table. \(n\)th entry contains \(n\)th Fibonacci number.
Which entries do not depend on other entries?
2.

Values \(F_{1}\) and \(F_{2}\) can be computed easily and independently.
Computation order?
3.

Reconstruction of a solution?
4.


\section*{Dynamic Programing: Description (Fibonacci)}

Dimension of the table? Semantics of the entries?
1.
\(n \times 1\) table. \(n\)th entry contains \(n\)th Fibonacci number.
Which entries do not depend on other entries?
2.

Values \(F_{1}\) and \(F_{2}\) can be computed easily and independently.
Computation order?
3.
\(F_{i}\) with increasing \(i\).
Reconstruction of a solution?
4.


\section*{Dynamic Programing: Description (Fibonacci)}

Dimension of the table? Semantics of the entries?
1.
\(n \times 1\) table. \(n\)th entry contains \(n\)th Fibonacci number.
Which entries do not depend on other entries?
2.

Values \(F_{1}\) and \(F_{2}\) can be computed easily and independently.
Computation order?
3.
\(F_{i}\) with increasing \(i\).
Reconstruction of a solution?
4.
\(F_{n}\) is the \(n\)-th Fibonacci number.

\section*{Rod Cutting}

■ Rods (metal sticks) are cut and sold.
■ Rods of length \(n \in \mathbb{N}\) are available. A cut does not provide any costs.
■ For each length \(l \in \mathbb{N}, l \leq n\) known is the value \(v_{l} \in \mathbb{R}^{+}\)
■ Goal: cut the rods such (into \(k \in \mathbb{N}\) pieces) that
\[
\sum_{i=1}^{k} v_{l_{i}} \text { is maximized subject to } \sum_{i=1}^{k} l_{i}=n \text {. }
\]

\section*{Rod Cutting: Example}


Possibilities to cut a rod of length 4 (without permutations)
\begin{tabular}{|l|l|l|l|l|l|}
\hline Length & 0 & 1 & 2 & 3 & 4 \\
\hline Price & 0 & 2 & 3 & 8 & 9 \\
\hline
\end{tabular}\(\Rightarrow\) Best cut: \(3+1\) with value 10.

\section*{How to Find the DP Algorithm.}
0. Exact formulation of the wanted solution
1. Define sub-problems, reformulate (0.) as sub-problem
2. Recursion: relate subproblems by enumerating of local properties
3. Determine the dependencies of the sub-problems
4. Solve the problem

Running time \(=\) \#sub-problems \(\times\) time/sub-problem

\section*{Structure of the problem}

0 . Wanted: \(r_{n}=\) maximal value of rod (cut or as a whole) with length \(n\).
1. sub-problems: maximal value \(r_{k}\) for each \(0 \leq k<n\)
2. Local property: length of the first piece

Recursion
\[
\begin{aligned}
& r_{k}=\max \left\{v_{i}+r_{k-i}: 0<i \leq k\right\}, \quad k>0 \\
& r_{0}=0
\end{aligned}
\]
3. Dependency: \(r_{k}\) depends (only) on values \(v_{i}, 1 \leq i \leq k\) and the optimal cuts \(r_{i}, i<k\).
4. Solution in \(r_{n}\). DP running time: \(\Theta\left(n^{2}\right)\)

\section*{Algorithm RodCut \((v, n)\) (without memoization)}

Input: \(n \geq 0\), Prices \(v\)
Output: best value
```

$q \leftarrow 0$
if $n>0$ then

$$
\begin{aligned}
\text { for } & i \leftarrow 1, \ldots, n \text { do } \\
L & \leftarrow \leftarrow \max \left\{q, v_{i}+\operatorname{RodCut}(v, n-i)\right\} ;
\end{aligned}
$$

```

\section*{return \(q\)}

Running time \(T(n)=\sum_{i=0}^{n-1} T(i)+c \quad \Rightarrow^{30} \quad T(n) \in \Theta\left(2^{n}\right)\)
\[
{ }^{30} T(n)=T(n-1)+\sum_{i=0}^{n-2} T(i)+c=T(n-1)+(T(n-1)-c)+c=2 T(n-1) \quad(n>0)
\]

\section*{Recursion Tree}


\section*{Algorithm RodCutMemoized ( \(m, v, n\) )}

Input: \(n \geq 0\), Prices \(v\), Memoization Table \(m\)
Output: best value
```

$q \leftarrow 0$
if $n>0$ then
if $\exists m[n]$ then
$q \leftarrow m[n]$
else
for $i \leftarrow 1, \ldots, n$ do
$\left\llcorner q \leftarrow \max \left\{q, v_{i}+\operatorname{RodCutMemoized}(m, v, n-i)\right\} ;\right.$
$m[n] \leftarrow q$
return q
Running time $\sum_{i=1}^{n} i=\Theta\left(n^{2}\right)$

```

\section*{Subproblem-Graph}

Describes the mutual dependencies of the subproblems

and must not contain cycles

\section*{Construction of the Optimal Cut}

■ During the (recursive) computation of the optimal solution for each \(k \leq n\) the recursive algorithm determines the optimal length of the first rod

■ Store the lenght of the first rod in a separate table of length \(n\)

\section*{Bottom-up Description with the example}

Dimension of the table? Semantics of the entries?
1.

Which entries do not depend on other entries?
2.

Computation order?
3.

Reconstruction of a solution?
4.

\section*{Bottom-up Description with the example}

Dimension of the table? Semantics of the entries?
1.
\(n \times 1\) table. \(n\)th entry contains the best value of a rod of length \(n\).
Which entries do not depend on other entries?
2.

Computation order?
3.

Reconstruction of a solution?
4.

\section*{Bottom-up Description with the example}

Dimension of the table? Semantics of the entries?
1.
\(n \times 1\) table. \(n\)th entry contains the best value of a rod of length \(n\).
Which entries do not depend on other entries?
2.

Value \(r_{0}\) is 0
Computation order?
3.

Reconstruction of a solution?
4.

\section*{Bottom-up Description with the example}

Dimension of the table? Semantics of the entries?
1.
\(n \times 1\) table. \(n\)th entry contains the best value of a rod of length \(n\).
Which entries do not depend on other entries?
2.

Value \(r_{0}\) is 0
Computation order?
3.
\[
r_{i}, i=1, \ldots, n .
\]

Reconstruction of a solution?
4.

\section*{Bottom-up Description with the example}

Dimension of the table? Semantics of the entries?
1.
\(n \times 1\) table. \(n\)th entry contains the best value of a rod of length \(n\).
Which entries do not depend on other entries?
2.

Value \(r_{0}\) is 0
Computation order?
3.
\[
r_{i}, i=1, \ldots, n .
\]

Reconstruction of a solution?
4.
\(r_{n}\) is the best value for the rod of length \(n\).

\section*{Rabbit!}

A rabbit sits on cite \((1,1)\) of an \(n \times n\) grid. It can only move to east or south. On each pathway there is a number of carrots. How many carrots does the rabbit collect maximally?


\section*{Rabbit!}

Number of possible paths?
■ Choice of \(n-1\) ways to south out of \(2 n-2\) ways overal.


The path 100011
(1:to south, 0 : to east)

\section*{Rabbit!}

Number of possible paths?
- Choice of \(n-1\) ways to south out of \(2 n-2\) ways overal.
\[
\binom{2 n-2}{n-1} \in \Omega\left(2^{n}\right)
\]


The path 100011
(1:to south, 0: to east)

\section*{Recursion}

Wanted: \(T_{1,1}=\) maximal number carrots from \((1,1)\) to \((n, n)\). Let \(w_{(i, j)-\left(i^{\prime}, j^{\prime}\right)}\) number of carrots on egde from \((i, j)\) to \(\left(i^{\prime}, j^{\prime}\right)\). Recursion (maximal number of carrots from \((i, j)\) to \((n, n)\)
\[
T_{i j}= \begin{cases}\max \left\{w_{(i, j)-(i, j+1)}+T_{i, j+1}, w_{(i, j)-(i+1, j)}+T_{i+1, j}\right\}, & i<n, j<n \\ w_{(i, j)-(i, j+1)}+T_{i, j+1}, & i=n, j<n \\ w_{(i, j)-(i+1, j)}+T_{i+1, j}, & i<n, j=n \\ 0 & i=j=n\end{cases}
\]

\section*{Graph of Subproblem Dependencies}


\section*{Bottom-up Description with the example}

Dimension of the table? Semantics of the entries?
1.

Table \(T\) with size \(n \times n\). Entry at \(i, j\) provides the maximal number of carrots from \((i, j)\) to \((n, n)\).

\section*{Which entries do not depend on other entries?}
2.

Value \(T_{n, n}\) is 0

\section*{Computation order?}
3.
\(T_{i, j}\) with \(i=n \searrow 1\) and for each \(i: j=n \searrow 1\), (or vice-versa: \(j=n \searrow 1\) and for each \(j: i=n \searrow 1\) ).

Reconstruction of a solution?
4.
\(T_{1,1}\) provides the maximal number of carrots.

\section*{Longest Ascending Sequence (LAS)}
\[
\begin{aligned}
& \begin{array}{lllllll}
1 & 2 & 3 & 4 & 5 & 6 & 7 \\
\hline & & 0 & & 0 & 0 & \\
\hline
\end{array} \\
& \begin{array}{lllllll}
1 & 2 & 3 & 4 & 5 & 6 & 7 \\
\hline & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline
\end{array} \\
& \begin{array}{|ccccccc|}
\hline \bigcirc & \bigcirc & \bigcirc & \bigcirc & \bigcirc & \bigcirc & \bigcirc \\
\hline 3 & 2 & 4 & 6 & 5 & 7 & 1
\end{array} \\
& \begin{array}{|ccccccc|}
\hline \bigcirc & \bigcirc & \bigcirc & \bigcirc & \bigcirc & \bigcirc & \bigcirc \\
\hline 3 & 2 & 4 & 6 & 5 & 7 & 1
\end{array}
\end{aligned}
\]

Connect as many as possible fitting ports without lines crossing.

\section*{Longest Ascending Sequence (LAS)}


Connect as many as possible fitting ports without lines crossing.

\section*{Longest Ascending Sequence (LAS)}


Connect as many as possible fitting ports without lines crossing.

\section*{Longest Ascending Sequence (LAS)}


Connect as many as possible fitting ports without lines crossing.

\section*{Formally}

■ Consider Sequence \(A_{n}=\left(a_{1}, \ldots, a_{n}\right)\).
■ Search for a longest increasing subsequence of \(A_{n}\).
■ Examples of increasing subsequences: \((3,4,5)\), \((2,4,5,7),(3,4,5,7),(3,7)\).


\section*{Formally}

■ Consider Sequence \(A_{n}=\left(a_{1}, \ldots, a_{n}\right)\).
■ Search for a longest increasing subsequence of \(A_{n}\).
■ Examples of increasing subsequences: \((3,4,5)\), \((2,4,5,7),(3,4,5,7),(3,7)\).


Generalization: allow any numbers, even with duplicates (still only strictly increasing subsequences permitted). Example: (2, 3, 3, 3,5,1) with increasing subsequence \((2,3,5)\).

\section*{First idea (Greedy)}

Let \(L_{i}=\) longest ascending subsequence of \(A_{i}(1 \leq i \leq n)\)
Assumption: LAS \(L_{k}\) of \(A_{k}\) known. Compute \(L_{k+1}\) for \(A_{k+1}\).

\section*{First idea (Greedy)}

Let \(L_{i}=\) longest ascending subsequence of \(A_{i}(1 \leq i \leq n)\)
Assumption: LAS \(L_{k}\) of \(A_{k}\) known. Compute \(L_{k+1}\) for \(A_{k+1}\).
Idea
\[
L_{k+1}= \begin{cases}L_{k} \oplus a_{k+1} & \text { if } a_{k}>\max \left(L_{k}\right) \\ L_{k} & \text { otherwise? }\end{cases}
\]

\section*{First idea (Greedy)}

Let \(L_{i}=\) longest ascending subsequence of \(A_{i}(1 \leq i \leq n)\)
Assumption: LAS \(L_{k}\) of \(A_{k}\) known. Compute \(L_{k+1}\) for \(A_{k+1}\).
Idea
\[
L_{k+1}= \begin{cases}L_{k} \oplus a_{k+1} & \text { if } a_{k}>\max \left(L_{k}\right) \\ L_{k} & \text { otherwise } ?\end{cases}
\]

Counterexample
\[
\begin{aligned}
& A_{5}=(1,2,5,3,4) . \\
& A_{3}=(1,2,5) \text { with } L_{3}=A_{3} \text { and } L_{4}=A_{3} .
\end{aligned}
\]

\section*{First idea (Greedy)}

Let \(L_{i}=\) longest ascending subsequence of \(A_{i}(1 \leq i \leq n)\)
Assumption: LAS \(L_{k}\) of \(A_{k}\) known. Compute \(L_{k+1}\) for \(A_{k+1}\).
Idea
\[
L_{k+1}= \begin{cases}L_{k} \oplus a_{k+1} & \text { if } a_{k}>\max \left(L_{k}\right) \\ L_{k} & \text { otherwise } ?\end{cases}
\]

\section*{Counterexample}
\[
\begin{aligned}
& A_{5}=(1,2,5,3,4) \\
& A_{3}=(1,2,5) \text { with } L_{3}=A_{3} \text { and } L_{4}=A_{3} .
\end{aligned}
\]

Greedy idea fails here: we cannot directly infer \(L_{k+1}\) from \(L_{k}\).

\section*{Second idea. (Prefix)}

Let \(L_{i}=\) longest ascending subsequence of \(A_{i}(1 \leq i \leq n)\)
Assumption: a LAS \(L_{j}\) that ends in \(a_{j}\) is known for each \(j \leq k\). Now compute LAS \(L_{k+1}\) for \(k+1\).

\section*{Second idea. (Prefix)}

Let \(L_{i}=\) longest ascending subsequence of \(A_{i}(1 \leq i \leq n)\)
Assumption: a LAS \(L_{j}\) that ends in \(a_{j}\) is known for each \(j \leq k\). Now compute LAS \(L_{k+1}\) for \(k+1\).

Look at all fitting \(L_{k+1}=L_{j} \oplus a_{k+1}(j \leq k)\) and choose a longest sequence.

\section*{Second idea. (Prefix)}

\section*{Let \(L_{i}=\) longest ascending subsequence of \(A_{i}(1 \leq i \leq n)\)}

Assumption: a LAS \(L_{j}\) that ends in \(a_{j}\) is known for each \(j \leq k\). Now compute LAS \(L_{k+1}\) for \(k+1\).

Look at all fitting \(L_{k+1}=L_{j} \oplus a_{k+1}(j \leq k)\) and choose a longest sequence.

\section*{Example}
\[
\begin{aligned}
& A_{5}=(1,2,5,3,4) \\
& L_{1}=(1), L_{2}=(1,2), L_{3}=(1,2,5), L_{4}=(1,2,3), L_{5}=(1,2,3,4)
\end{aligned}
\]

This works with running time \(n^{2}\) (and requires access to all sequences \(L_{i}\).

\section*{Third approach}

Let \(M_{n, i}=\) longest ascending subsequence of \(A_{i}(1 \leq i \leq n)\) Assumption: the LAS \(M_{j}\) for \(A_{k}\), that end with smallest element are known for each of the lengths \(1 \leq j \leq k\).

\section*{Third approach}

Let \(M_{n, i}=\) longest ascending subsequence of \(A_{i}(1 \leq i \leq n)\)
Assumption: the LAS \(M_{j}\) for \(A_{k}\), that end with smallest element are known for each of the lengths \(1 \leq j \leq k\).
Consider all fitting \(M_{k, j} \oplus a_{k+1}(j \leq k)\) and update the table of the LAS,that end with smallest possible element.

\section*{Third approach Example}
\begin{tabular}{ll} 
& Example: \(A=(1,1000,1001,4,5,2,6,7)\) \\
\hline\(A\) & LAT \(M_{k,}\) \\
\hline 1 & \((\mathbf{1})\)
\end{tabular}

\section*{Third approach Example}
\begin{tabular}{l}
\multicolumn{3}{c}{ Example: \(A=(1,1000,1001,4,5,2,6,7)\)} \\
\hline\(A\) \\
\hline 1 \\
\hline+1000 \\
\hline
\end{tabular}

\section*{Third approach Example}

Example: \(A=(1,1000,1001,4,5,2,6,7)\)
\begin{tabular}{ll}
\hline\(A\) & LAT \(M_{k, \cdot}\) \\
\hline 1 & \((\mathbf{1})\) \\
+1000 & \((1),(1, \mathbf{1 0 0 0})\) \\
+1001 & \((1),(1,1000),(1,1000, \mathbf{1 0 0 1})\)
\end{tabular}

\section*{Third approach Example}

Example: \(A=(1,1000,1001,4,5,2,6,7)\)
\begin{tabular}{ll}
\hline\(A\) & LAT \(M_{k,}\) \\
\hline 1 & \((\mathbf{1})\) \\
+1000 & \((1),(1, \mathbf{1 0 0 0})\) \\
+1001 & \((1),(1,1000),(1,1000, \mathbf{1 0 0 1})\) \\
+4 & \((1),(1, \mathbf{4}),(1,1000,1001)\)
\end{tabular}

\section*{Third approach Example}

Example: \(A=(1,1000,1001,4,5,2,6,7)\)
\begin{tabular}{ll}
\hline\(A\) & LAT \(M_{k, \cdot}\) \\
\hline 1 & \((\mathbf{1})\) \\
+1000 & \((1),(1, \mathbf{1 0 0 0})\) \\
+1001 & \((1),(1,1000),(1,1000, \mathbf{1 0 0 1})\) \\
+4 & \((1),(1, \mathbf{4}),(1,1000,1001)\) \\
+5 & \((1),(1,4),(1,4, \mathbf{5})\)
\end{tabular}

\section*{Third approach Example}
\[
\text { Example: } A=(1,1000,1001,4,5,2,6,7)
\]
\begin{tabular}{ll}
\hline\(A\) & LAT \(M_{k,}\) \\
\hline 1 & \((\mathbf{1})\) \\
+1000 & \((1),(1, \mathbf{1 0 0 0})\) \\
+1001 & \((1),(1,1000),(1,1000, \mathbf{1 0 0 1})\) \\
+4 & \((1),(1, \mathbf{4}),(1,1000,1001)\) \\
+5 & \((1),(1,4),(1,4, \mathbf{5})\) \\
+2 & \((1),(1, \mathbf{2}),(1,4,5)\)
\end{tabular}

\section*{Third approach Example}

Example: \(A=(1,1000,1001,4,5,2,6,7)\)
\begin{tabular}{ll}
\hline\(A\) & LAT \(M_{k,}\) \\
\hline 1 & \((\mathbf{1})\) \\
+1000 & \((1),(1, \mathbf{1 0 0 0})\) \\
+1001 & \((1),(1,1000),(1,1000, \mathbf{1 0 0 1})\) \\
+4 & \((1),(1,4),(1,1000,1001)\) \\
+5 & \((1),(1,4),(1,4, \mathbf{5})\) \\
+2 & \((1),(1, \mathbf{2}),(1,4,5)\) \\
+6 & \((1),(1,2),(1,4,5),(1,4,5, \mathbf{6})\)
\end{tabular}

\section*{Third approach Example}

Example: \(A=(1,1000,1001,4,5,2,6,7)\)
\begin{tabular}{ll}
\hline\(A\) & LAT \(M_{k,}\) \\
\hline 1 & \((\mathbf{1})\) \\
+1000 & \((1),(1, \mathbf{1 0 0 0})\) \\
+1001 & \((1),(1,1000),(1,1000, \mathbf{1 0 0 1})\) \\
+4 & \((1),(1, \mathbf{4}),(1,1000,1001)\) \\
+5 & \((1),(1,4),(1,4, \mathbf{5})\) \\
+2 & \((1),(1, \mathbf{2}),(1,4,5)\) \\
+6 & \((1),(1,2),(1,4,5),(1,4,5, \mathbf{6})\) \\
+7 & \((1),(1,2),(1,4,5),(1,4,5,6),(1,4,5,6, \mathbf{7})\) \\
\hline
\end{tabular}

\section*{DP Table}

■ Idea: save the last element of the increasing sequence \(M_{k, j}\) at slot \(j\).

\section*{DP Table}

■ Idea: save the last element of the increasing sequence \(M_{k, j}\) at slot \(j\).
- Example:
\(\begin{array}{llllll}13 & 12 & 15 & 11 & 16 & 14\end{array}\)
\begin{tabular}{l|l|l|l|l|l|l}
\(i\) & 1 & 2 & 3 & 4 & 5 & 6 \\
\hline value \(a_{i}\) & 13 & 12 & 15 & 11 & 16 & 14
\end{tabular}

\section*{DP Table}

■ Idea: save the last element of the increasing sequence \(M_{k, j}\) at slot \(j\).
- Example:
\(\begin{array}{llllll}13 & 12 & 15 & 11 & 16 & 14\end{array}\)
\begin{tabular}{l|l|l|l|l|l|l}
\(i\) & 1 & 2 & 3 & 4 & 5 & 6 \\
\hline value \(a_{i}\) & 13 & 12 & 15 & 11 & 16 & 14
\end{tabular}
\begin{tabular}{l|c|c|c|c|c|c}
\(j\) & 0 & 1 & 2 & 3 & 4 & \(\ldots\) \\
\hline\(\left(L_{j}\right)_{j}\) & \(-\infty\) & \(\infty\) & \(\infty\) & \(\infty\) & \(\infty\) &
\end{tabular}

\section*{DP Table}

■ Idea: save the last element of the increasing sequence \(M_{k, j}\) at slot \(j\).
- Example:
\(\begin{array}{llllll}13 & 12 & 15 & 11 & 16 & 14\end{array}\)
\begin{tabular}{l|l|l|l|l|l|l}
\(i\) & 1 & 2 & 3 & 4 & 5 & 6 \\
\hline value \(a_{i}\) & 13 & 12 & 15 & 11 & 16 & 14
\end{tabular}
\begin{tabular}{l|c|c|c|c|c|c}
\(j\) & 0 & 1 & 2 & 3 & 4 & \(\ldots\) \\
\hline\(\left(L_{j}\right)_{j}\) & \(-\infty\) & 13 & \(\infty\) & \(\infty\) & \(\infty\) &
\end{tabular}

\section*{DP Table}

■ Idea: save the last element of the increasing sequence \(M_{k, j}\) at slot \(j\).
- Example:
\(\begin{array}{llllll}13 & 12 & 15 & 11 & 16 & 14\end{array}\)
\begin{tabular}{l|l|l|l|l|l|l}
\(i\) & 1 & 2 & 3 & 4 & 5 & 6 \\
\hline value \(a_{i}\) & 13 & 12 & 15 & 11 & 16 & 14
\end{tabular}
\begin{tabular}{l|c|c|c|c|c|l}
\(j\) & 0 & 1 & 2 & 3 & 4 & \(\ldots\) \\
\hline\(\left(L_{j}\right)_{j}\) & \(-\infty\) & 12 & \(\infty\) & \(\infty\) & \(\infty\) &
\end{tabular}

\section*{DP Table}

■ Idea: save the last element of the increasing sequence \(M_{k, j}\) at slot \(j\).
- Example:
\(\begin{array}{llllll}13 & 12 & 15 & 11 & 16 & 14\end{array}\)
\begin{tabular}{l|l|l|l|l|l|l}
\(i\) & 1 & 2 & 3 & 4 & 5 & 6 \\
\hline value \(a_{i}\) & 13 & 12 & 15 & 11 & 16 & 14
\end{tabular}
\begin{tabular}{l|c|c|c|c|c|l}
\(j\) & 0 & 1 & 2 & 3 & 4 & \(\ldots\) \\
\hline\(\left(L_{j}\right)_{j}\) & \(-\infty\) & 12 & 15 & \(\infty\) & \(\infty\) &
\end{tabular}

\section*{DP Table}

■ Idea: save the last element of the increasing sequence \(M_{k, j}\) at slot \(j\).
- Example:
\(\begin{array}{llllll}13 & 12 & 15 & 11 & 16 & 14\end{array}\)
\begin{tabular}{l|l|l|l|l|l|l}
\(i\) & 1 & 2 & 3 & 4 & 5 & 6 \\
\hline value \(a_{i}\) & 13 & 12 & 15 & 11 & 16 & 14
\end{tabular}
\begin{tabular}{l|c|c|c|c|c|l}
\(j\) & 0 & 1 & 2 & 3 & 4 & \(\ldots\) \\
\hline\(\left(L_{j}\right)_{j}\) & \(-\infty\) & 11 & 15 & \(\infty\) & \(\infty\) &
\end{tabular}

\section*{DP Table}

■ Idea: save the last element of the increasing sequence \(M_{k, j}\) at slot \(j\).
- Example:
\(\begin{array}{llllll}13 & 12 & 15 & 11 & 16 & 14\end{array}\)
\begin{tabular}{l|l|l|l|l|l|l}
\(i\) & 1 & 2 & 3 & 4 & 5 & 6 \\
\hline value \(a_{i}\) & 13 & 12 & 15 & 11 & 16 & 14
\end{tabular}
\begin{tabular}{l|c|c|c|c|c|l}
\(j\) & 0 & 1 & 2 & 3 & 4 & \(\ldots\) \\
\hline\(\left(L_{j}\right)_{j}\) & \(-\infty\) & 11 & 15 & 16 & \(\infty\) &
\end{tabular}

\section*{DP Table}

■ Idea: save the last element of the increasing sequence \(M_{k, j}\) at slot \(j\).
- Example: \(\begin{array}{llllll}13 & 12 & 15 & 11 & 16 & 14\end{array}\)
■ Problem: Table does not contain the subsequence, only the last value.
\begin{tabular}{l|l|l|l|l|l|l}
\(i\) & 1 & 2 & 3 & 4 & 5 & 6 \\
\hline value \(a_{i}\) & 13 & 12 & 15 & 11 & 16 & 14
\end{tabular}
\begin{tabular}{l|c|c|c|c|c|l}
\(j\) & 0 & 1 & 2 & 3 & 4 & \(\ldots\) \\
\hline\(\left(L_{j}\right)_{j}\) & \(-\infty\) & 11 & 14 & 16 & \(\infty\) &
\end{tabular}

\section*{DP Table}

■ Idea: save the last element of the increasing sequence \(M_{k, j}\) at slot \(j\).
- Example:
\[
\begin{array}{llllll}
13 & 12 & 15 & 11 & 16 & 14
\end{array}
\]
\begin{tabular}{l|l|l|l|l|l|l}
\(i\) & 1 & 2 & 3 & 4 & 5 & 6 \\
\hline value \(a_{i}\) & 13 & 12 & 15 & 11 & 16 & 14
\end{tabular}

■ Problem: Table does not contain the subsequence, only the last value.
■ Solution: second table with
\begin{tabular}{l|c|c|c|c|c|l}
\(j\) & 0 & 1 & 2 & 3 & 4 & \(\ldots\) \\
\hline\(\left(L_{j}\right)_{j}\) & \(-\infty\) & 11 & 14 & 16 & \(\infty\) &
\end{tabular} the values of the predecessors.

\section*{DP Table}

■ Idea: save the last element of the increasing sequence \(M_{k, j}\) at slot \(j\).
■ Example:
\begin{tabular}{llllll}
13 & 12 & 15 & 11 & 16 & 14
\end{tabular}
- Problem: Table does not contain the subsequence, only the last value.
■ Solution: second table with
\begin{tabular}{l|l|l|l|l|l|l}
\(i\) & 1 & 2 & 3 & 4 & 5 & 6 \\
\hline value \(a_{i}\) & 13 & 12 & 15 & 11 & 16 & 14 \\
Predecessor & \(-\infty\) & \(-\infty\) & 12 & \(-\infty\) & 15 & 11
\end{tabular}
\begin{tabular}{l|c|c|c|c|c|l}
\(j\) & 0 & 1 & 2 & 3 & 4 & \(\ldots\) \\
\hline\(\left(L_{j}\right)_{j}\) & \(-\infty\) & 11 & 14 & 16 & \(\infty\) &
\end{tabular} the values of the predecessors.

\section*{Dynamic Programming Algorithm LAS}

\section*{Table dimension? Semantics?}

Two tables \(T[0, \ldots, n]\) and \(V[1, \ldots, n]\). \(T[j]\) : last Element of the increasing subequence \(M_{n, j}\)
\(V[j]\) : Value of the predecessor of \(a_{j}\).
Start with \(T[0] \leftarrow-\infty, T[i] \leftarrow \infty \forall i>1\)

\section*{Computation of an entry}
2.

Entries in \(T\) sorted in ascending order. For each new entry \(a_{k}\) binary search for \(l\), such that \(T[l]<a_{k}<T[l+1]\). Set \(T[l+1] \leftarrow a_{k}\). Set \(V[k]=T[l]\).

\section*{Dynamic Programming algorithm LAS}

\section*{Computation order}
3.

Traverse the list anc compute \(T[k]\) and \(V[k]\) with ascending \(k\)
Reconstruction of a solution?
4. Search the largest \(l\) with \(T[l]<\infty . l\) is the last index of the LAS. Starting at \(l\) search for the index \(i<l\) such that \(V[l]=a_{i}, i\) is the predecessor of \(l\). Repeat with \(l \leftarrow i\) until \(T[l]=-\infty\)

\section*{Analysis}
- Computation of the table:
- Initialization: \(\Theta(n)\) Operations

■ Computation of the \(k\) th entry: binary search on positions \(\{1, \ldots, k\}\) plus constant number of assignments.
\[
\sum_{k=1}^{n}(\log k+\mathcal{O}(1))=\mathcal{O}(n)+\sum_{k=1}^{n} \log (k)=\Theta(n \log n)
\]

■ Reconstruction: traverse \(A\) from right to left: \(\mathcal{O}(n)\).
Overal runtime:
\[
\Theta(n \log n) .
\]
20.7 Editing Distance

\section*{Minimal Editing Distance}

Editing distance of two sequences \(A_{n}=\left(a_{1}, \ldots, a_{n}\right), B_{m}=\left(b_{1}, \ldots, b_{m}\right)\).

\section*{Editing operations:}
- Insertion of a character
- Deletion of a character

■ Replacement of a character
Question: how many editing operations at least required in order to transform string \(A\) into string \(B\).
\[
\text { TIGER } \rightarrow \text { ZIGER } \rightarrow \text { ZIEGER } \rightarrow \text { ZIEGE }
\]

\section*{Minimal Editing Distance}

Wanted: cheapest character-wise transformation \(A_{n} \rightarrow B_{m}\) with costs
\begin{tabular}{l|c|c|c} 
operation & Levenshtein & \(\mathrm{LCS}^{31}\) & general \\
\hline Insert \(c\) & 1 & 1 & ins \((c)\) \\
Delete \(c\) & 1 & 1 & \(\operatorname{del}(c)\) \\
Replace \(c \rightarrow c^{\prime}\) & \(\mathbb{1}\left(c \neq c^{\prime}\right)\) & \(\infty \cdot \mathbb{1}\left(c \neq c^{\prime}\right)\) & \(\operatorname{repl}\left(c, c^{\prime}\right)\) \\
\hline
\end{tabular}

Beispiel
\begin{tabular}{llllllllllllll}
\(T\) & \(G\) & \(E\) & \(R\) & \(T\) & I & \(G\) & \(E\) & \(R\) & \(T \rightarrow Z\) & \(+E\) & \(-R\) \\
\(Z\) & \(I\) & \(E\) & \(G\) & \(E\) & \(Z\) & I & \(E\) & \(G\) & \(E\) & - & \(Z \rightarrow T\) & \(-E\) & \(+R\)
\end{tabular}
\({ }^{31}\) Longest common subsequence - A special case of an editing problem

\section*{Idea}

\section*{ZIEGE \(\rightarrow\) TIGER}

Possibilities
1.
\[
\begin{gathered}
c\left(\text { ' } \mathrm{ZIEG}^{\prime} \rightarrow{ }^{\prime} \mathrm{TIGE}{ }^{\prime}\right)+c\left(\text { ' }^{\prime} \rightarrow^{\prime} \mathrm{R}^{\prime}\right) \\
\mathrm{Z}|\mathrm{EG} \mathbf{E} \rightarrow \mathrm{~T}| \mathrm{GE} \mathbf{R}
\end{gathered}
\]
2.
\[
\begin{gathered}
c\left(\text { ' }^{\text {ZIEGE' }} \rightarrow \text { 'TIGE' }\right)+c\left(\text { ins }\left(' \mathrm{R}^{\prime}\right)\right) \\
\text { Z I E GE } \rightarrow \text { TIGE } \boldsymbol{+} \mathbf{R}
\end{gathered}
\]
3.
\[
\begin{gathered}
c\left(\text { ' }_{\text {ZIEG' }}{ }^{\prime} \text { 'TIGER' }\right)+c(\text { del('E' }) ~ \\
\text { ZIEGE-E } \rightarrow \text { TIGER }
\end{gathered}
\]
0. \(E(n, m)=\) mimimum number edit operations (ED cost) \(a_{1 \ldots n} \rightarrow b_{1 \ldots m}\)
1. Subproblems \(E(i, j)=\) ED of \(a_{1 \ldots i}, b_{1 \ldots j}\).
\#SP \(=n \cdot m\)
2. Guess
- \(a_{1 . . i} \rightarrow a_{1 . . . i-1}\) (delete)
- \(a_{1 . . i} \rightarrow a_{1 . . .} b_{j}\) (insert)
- \(a_{1 . . i} \rightarrow a_{1 . . . i-1} b_{j}\) (replace)
3. Rekursion
\[
E(i, j)=\min \left\{\begin{array}{l}
\operatorname{del}\left(a_{i}\right)+E(i-1, j), \\
\operatorname{ins}\left(b_{j}\right)+E(i, j-1), \\
\operatorname{repl}\left(a_{i}, b_{j}\right)+E(i-1, j-1)
\end{array}\right.
\]
4. Dependencies
\(\Rightarrow\) Computation from left top to bottom right. Row- or column-wise.
5. Solution in \(E(n, m)\)

\section*{Example (Levenshtein Distance)}
\[
E[i, j] \leftarrow \min \left\{E[i-1, j]+1, E[i, j-1]+1, E[i-1, j-1]+\mathbb{1}\left(a_{i} \neq b_{j}\right)\right\}
\]
\begin{tabular}{c|cccccc} 
& \(\emptyset\) & Z & I & E & G & E \\
\hline\(\emptyset\) & 0 & 1 & 2 & 3 & 4 & 5 \\
T & 1 & 1 & 2 & 3 & 4 & 5 \\
I & 2 & 2 & 1 & 2 & 3 & 4 \\
G & 3 & 3 & 2 & 2 & 2 & 3 \\
E & 4 & 4 & 3 & 2 & 3 & 2 \\
R & 5 & 5 & 4 & 3 & 3 & 3
\end{tabular}

Editing steps: from bottom right to top left, following the recursion.

\section*{Bottom-Up DP algorithm ED}

\section*{Dimension of the table? Semantics?}
1.

Table \(E[0, \ldots, m][0, \ldots, n]\). \(E[i, j]\) : minimal edit distance of the strings \(\left(a_{1}, \ldots, a_{i}\right)\) and \(\left(b_{1}, \ldots, b_{j}\right)\)

\section*{Computation of an entry}
2. \(E[0, i] \leftarrow i \forall 0 \leq i \leq m, E[j, 0] \leftarrow i \forall 0 \leq j \leq n\). Computation of \(E[i, j]\) otherwise via \(E[i, j]=\min \left\{\operatorname{del}\left(a_{i}\right)+E(i-1, j), \operatorname{ins}\left(b_{j}\right)+E(i, j-1)\right.\), repl \(\left(a_{i}, b_{j}\right)+\) \(E(i-1, j-1)\}\)

\section*{Bottom-Up DP algorithm ED}

\section*{Computation order}
3.

Rows increasing and within columns increasing (or the other way round).

\section*{Reconstruction of a solution?}

Start with \(j=m, i=n\). If \(E[i, j]=\operatorname{repl}\left(a_{i}, b_{j}\right)+E(i-1, j-1)\) then output
4. \(\quad a_{i} \rightarrow b_{j}\) and continue with \((j, i) \leftarrow(j-1, i-1)\); otherwise, if \(E[i, j]=\) \(\operatorname{del}\left(a_{i}\right)+E(i-1, j)\) output \(\operatorname{del}\left(a_{i}\right)\) and continue with \(j \leftarrow j-1\) otherwise, if \(E[i, j]=\operatorname{ins}\left(b_{j}\right)+E(i, j-1)\), continue with \(i \leftarrow i-1\). Terminate for \(i=0\) and \(j=0\).

\section*{Analysis ED}

■ Number table entries: \((m+1) \cdot(n+1)\).
- Constant number of assignments and comparisons each. Number steps: \(\mathcal{O}(m n)\)
■ Determination of solition: decrease \(i\) or \(j\). Maximally \(\mathcal{O}(n+m)\) steps.
Runtime overal:
\[
\mathcal{O}(m n) .
\]

\section*{Matrix-Chain-Multiplication}

Task: Computation of the product \(A_{1} \cdot A_{2} \cdot \ldots \cdot A_{n}\) of matrices \(A_{1}, \ldots, A_{n}\). Matrix multiplication is associative, i.e. the order of evaluation can be chosen arbitrarily
Goal: efficient computation of the product.
Assumption: multiplication of an \((r \times s)\)-matrix with an \((s \times u)\)-matrix provides costs \(r \cdot s \cdot u\).

Does it matter?


Does it matter?


\section*{Does it matter?}


\section*{Recursion}

■ Assume that the best possible computation of \(\left(A_{1} \cdot A_{2} \cdots A_{i}\right)\) and \(\left(A_{i+1} \cdot A_{i+2} \cdots A_{n}\right)\) is known for each \(i\).
■ Compute best \(i\), done.
\(n \times n\)-table \(M\). entry \(M[p, q]\) provides costs of the best possible bracketing \(\left(A_{p} \cdot A_{p+1} \cdots A_{q}\right)\).
\[
M[p, q] \leftarrow \min _{p \leq i<q}(M[p, i]+M[i+1, q]+\text { costs of the last multiplication })
\]

\section*{Computation of the DP-table}
- Base cases \(M[p, p] \leftarrow 0\) for all \(1 \leq p \leq n\).

■ Computation of \(M[p, q]\) depends on \(M[i, j]\) with \(p \leq i \leq j \leq q\), \((i, j) \neq(p, q)\).
In particular \(M[p, q]\) depends at most from entries \(M[i, j]\) with \(i-j<q-p\).
Consequence: fill the table from the diagonal.

\section*{Analysis}

DP-table has \(n^{2}\) entries. Computation of an entry requires considering up to \(n-1\) other entries.
Overal runtime \(\mathcal{O}\left(n^{3}\right)\).

Readout the order from \(M\) : exercise!

\section*{Digression: matrix multiplication}

Consider the multiplication of two \(n \times n\) matrices.
Let
\[
\begin{aligned}
& A=\left(a_{i j}\right)_{1 \leq i, j \leq n}, B=\left(b_{i j}\right)_{1 \leq i, j \leq n}, C=\left(c_{i j}\right)_{1 \leq i, j \leq n} \\
& C=A \cdot B
\end{aligned}
\]
then
\[
c_{i j}=\sum_{k=1}^{n} a_{i k} b_{k j} .
\]

Naive algorithm requires \(\Theta\left(n^{3}\right)\) elementary multiplications.

\section*{Divide and Conquer}


\section*{Divide and Conquer}
- Assumption \(n=2^{k}\).

■ Number of elementary multiplications:
\(M(n)=8 M(n / 2), M(1)=1\).
■ yields \(M(n)=8^{\log _{2} n}=n^{\log _{2} 8}=n^{3}\). No advantage \()\)
\begin{tabular}{|c|c|}
\hline\(a\) & \(b\) \\
\hline\(c\) & \(d\) \\
\hline\(e a+f c\) & \(e b+f d\) \\
\hline\(g a+h c\) & \(g b+h d\) \\
\hline
\end{tabular}

\section*{Strassen's Matrix Multiplication}

■ Nontrivial observation by Strassen (1969): It suffices to compute the seven products
\(A=(e+h) \cdot(a+d), B=(g+h) \cdot a, C=e \cdot(b-d)\),
\(D=h \cdot(c-a), E=(e+f) \cdot d, F=(g-e) \cdot(a+b)\),
\(G=(f-h) \cdot(c+d)\). Because:
\(e a+f c=A+D-E+G, e b+f d=C+E\),
\(g a+h c=B+D, g b+h d=A-B+C+F\).
■ This yields \(M^{\prime}(n)=7 M(n / 2), M^{\prime}(1)=1\).
Thus \(M^{\prime}(n)=7^{\log _{2} n}=n^{\log _{2} 7} \approx n^{2.807}\).
\begin{tabular}{|c|c||c|c|}
\hline\(e\) & \(f\) & \(e a+f c\) & \(e b+f d\) \\
\hline\(g\) & \(h\) & \(g a+h c\) & \(g b+h d\) \\
\hline & & \begin{tabular}{ll}
\hline & \\
\hline
\end{tabular} \\
\hline
\end{tabular}

■ Fastest currently known algorithm: \(\mathcal{O}\left(n^{2.37}\right)\)

\section*{21. Dynamic Programming II}

Subset sum problem, knapsack problem, greedy algorithm vs dynamic programming [Ottman/Widmayer, Kap. 7.2, 7.3, 5.7, Cormen et al, Kap. 15,35.5]

\section*{Task}


Partition the set of the "item" above into two set such that both sets have the same value.

\section*{Task}


Partition the set of the "item" above into two set such that both sets have the same value.
A solution:


\section*{Subset Sum Problem}

Consider \(n \in \mathbb{N}\) numbers \(a_{1}, \ldots, a_{n} \in \mathbb{N}\).
Goal: decide if a selection \(I \subseteq\{1, \ldots, n\}\) exists such that
\[
\sum_{i \in I} a_{i}=\sum_{i \in\{1, \ldots, n\} \backslash I} a_{i} .
\]

\section*{Naive Algorithm}

Check for each bit vector \(b=\left(b_{1}, \ldots, b_{n}\right) \in\{0,1\}^{n}\), if
\[
\sum_{i=1}^{n} b_{i} a_{i} \stackrel{?}{=} \sum_{i=1}^{n}\left(1-b_{i}\right) a_{i}
\]

\section*{Naive Algorithm}

Check for each bit vector \(b=\left(b_{1}, \ldots, b_{n}\right) \in\{0,1\}^{n}\), if
\[
\sum_{i=1}^{n} b_{i} a_{i} \stackrel{?}{=} \sum_{i=1}^{n}\left(1-b_{i}\right) a_{i}
\]

Worst case: \(n\) steps for each of the \(2^{n}\) bit vectors \(b\). Number of steps: \(\mathcal{O}\left(n \cdot 2^{n}\right)\).

\section*{Algorithm with Partition}
- Partition the input into two equally sized parts \(a_{1}, \ldots, a_{n / 2}\) and \(a_{n / 2+1}, \ldots, a_{n}\).

\section*{Algorithm with Partition}
- Partition the input into two equally sized parts \(a_{1}, \ldots, a_{n / 2}\) and \(a_{n / 2+1}, \ldots, a_{n}\).
■ Iterate over all subsets of the two parts and compute partial sum \(S_{1}^{k}, \ldots, S_{2^{n / 2}}^{k}(k=1,2)\).

\section*{Algorithm with Partition}
- Partition the input into two equally sized parts \(a_{1}, \ldots, a_{n / 2}\) and \(a_{n / 2+1}, \ldots, a_{n}\).
■ Iterate over all subsets of the two parts and compute partial sum \(S_{1}^{k}, \ldots, S_{2^{n / 2}}^{k}(k=1,2)\).
■ Sort the partial sums: \(S_{1}^{k} \leq S_{2}^{k} \leq \cdots \leq S_{2^{n / 2}}^{k}\).

\section*{Algorithm with Partition}
- Partition the input into two equally sized parts \(a_{1}, \ldots, a_{n / 2}\) and \(a_{n / 2+1}, \ldots, a_{n}\).
■ Iterate over all subsets of the two parts and compute partial sum \(S_{1}^{k}, \ldots, S_{2^{n / 2}}^{k}(k=1,2)\).
■ Sort the partial sums: \(S_{1}^{k} \leq S_{2}^{k} \leq \cdots \leq S_{2^{n / 2}}^{k}\).
■ Check if there are partial sums such that \(S_{i}^{1}+S_{j}^{2}=\frac{1}{2} \sum_{i=1}^{n} a_{i}=: h\)

\section*{Algorithm with Partition}
- Partition the input into two equally sized parts \(a_{1}, \ldots, a_{n / 2}\) and \(a_{n / 2+1}, \ldots, a_{n}\).
■ Iterate over all subsets of the two parts and compute partial sum \(S_{1}^{k}, \ldots, S_{2^{n / 2}}^{k}(k=1,2)\).
■ Sort the partial sums: \(S_{1}^{k} \leq S_{2}^{k} \leq \cdots \leq S_{2^{n / 2}}^{k}\).
- Check if there are partial sums such that \(S_{i}^{1}+S_{j}^{2}=\frac{1}{2} \sum_{i=1}^{n} a_{i}=: h\)
- Start with \(i=1, j=2^{n / 2}\).

\section*{Algorithm with Partition}
- Partition the input into two equally sized parts \(a_{1}, \ldots, a_{n / 2}\) and \(a_{n / 2+1}, \ldots, a_{n}\).
■ Iterate over all subsets of the two parts and compute partial sum \(S_{1}^{k}, \ldots, S_{2^{n / 2}}^{k}(k=1,2)\).
■ Sort the partial sums: \(S_{1}^{k} \leq S_{2}^{k} \leq \cdots \leq S_{2^{n / 2}}^{k}\).
■ Check if there are partial sums such that \(S_{i}^{1}+S_{j}^{2}=\frac{1}{2} \sum_{i=1}^{n} a_{i}=: h\)
- Start with \(i=1, j=2^{n / 2}\).
- If \(S_{i}^{1}+S_{j}^{2}=h\) then finished

\section*{Algorithm with Partition}
- Partition the input into two equally sized parts \(a_{1}, \ldots, a_{n / 2}\) and \(a_{n / 2+1}, \ldots, a_{n}\).
■ Iterate over all subsets of the two parts and compute partial sum \(S_{1}^{k}, \ldots, S_{2^{n / 2}}^{k}(k=1,2)\).
■ Sort the partial sums: \(S_{1}^{k} \leq S_{2}^{k} \leq \cdots \leq S_{2^{n / 2}}^{k}\).
■ Check if there are partial sums such that \(S_{i}^{1}+S_{j}^{2}=\frac{1}{2} \sum_{i=1}^{n} a_{i}=: h\)
- Start with \(i=1, j=2^{n / 2}\).
- If \(S_{i}^{1}+S_{j}^{2}=h\) then finished

■ If \(S_{i}^{1}+S_{j}^{2}>h\) then \(j \leftarrow j-1\)

\section*{Algorithm with Partition}
- Partition the input into two equally sized parts \(a_{1}, \ldots, a_{n / 2}\) and \(a_{n / 2+1}, \ldots, a_{n}\).
- Iterate over all subsets of the two parts and compute partial sum \(S_{1}^{k}, \ldots, S_{2^{n / 2}}^{k}(k=1,2)\).
■ Sort the partial sums: \(S_{1}^{k} \leq S_{2}^{k} \leq \cdots \leq S_{2^{n / 2}}^{k}\).
■ Check if there are partial sums such that \(S_{i}^{1}+S_{j}^{2}=\frac{1}{2} \sum_{i=1}^{n} a_{i}=: h\)
- Start with \(i=1, j=2^{n / 2}\).
- If \(S_{i}^{1}+S_{j}^{2}=h\) then finished

■ If \(S_{i}^{1}+S_{j}^{2}>h\) then \(j \leftarrow j-1\)
- If \(S_{i}^{1}+S_{j}^{2}<h\) then \(i \leftarrow i+1\)

\section*{Example}

Set \(\{1,6,2,3,4\}\) with value sum 16 has 32 subsets.

\section*{Example}

Set \(\{1,6,2,3,4\}\) with value sum 16 has 32 subsets.
Partitioning into \(\{1,6\},\{2,3,4\}\) yields the following 12 subsets with value sums:

\section*{Example}

Set \(\{1,6,2,3,4\}\) with value sum 16 has 32 subsets.
Partitioning into \(\{1,6\},\{2,3,4\}\) yields the following 12 subsets with value sums:
\begin{tabular}{ccc|cccccccc}
\multicolumn{9}{|c|}{1,6} & \multicolumn{8}{c}{\(2,3,4\)} \\
\(\}\) & \(\{1\}\) & \(\{6\}\) & \(\{1,6\}\) & \(\}\) & \(\{2\}\) & \(\{3\}\) & \(\{4\}\) & \(\{2,3\}\) & \(\{2,4\}\) & \(\{3,4\}\) \\
0 & 1 & 6 & 7 & 0 & 2 & 3 & 4 & 5 & 6 & 7 \\
9
\end{tabular}

\section*{Example}

Set \(\{1,6,2,3,4\}\) with value sum 16 has 32 subsets.
Partitioning into \(\{1,6\},\{2,3,4\}\) yields the following 12 subsets with value sums:
\begin{tabular}{ccc|cccccccc}
\multicolumn{9}{|c|}{1,6} \\
\(\{1\) & \(\{1\}\) & \(\{6\}\) & \(\{1,6\}\) & \(\}\) & \(\{2\}\) & \(\{3\}\) & \(\{4\}\) & \(\{2,3\}\) & \(\{2,4\}\) & \(\{3,4\}\)
\end{tabular}\(\{2,3,4\}\)

\section*{Example}

Set \(\{1,6,2,3,4\}\) with value sum 16 has 32 subsets.
Partitioning into \(\{1,6\},\{2,3,4\}\) yields the following 12 subsets with value sums:
\begin{tabular}{ccc|cccccccc}
\multicolumn{9}{|c|}{1,6} \\
\(\{1\) & \(\{1\}\) & \(\{6\}\) & \(\{1,6\}\) & \(\}\) & \(\{2\}\) & \(\{3\}\) & \(\{4\}\) & \(\{2,3\}\) & \(\{2,4\}\) & \(\{3,4\}\) \\
\(\{2\) & \(\{2,3,4\}\) \\
\hline 0 & 1 & 6 & 7 & 0 & 2 & 3 & 4 & 5 & 6 & 7 \\
9
\end{tabular}

\section*{Example}

Set \(\{1,6,2,3,4\}\) with value sum 16 has 32 subsets.
Partitioning into \(\{1,6\},\{2,3,4\}\) yields the following 12 subsets with value sums:
\begin{tabular}{cccc|cc|cccccccc}
\multicolumn{9}{|c|}{1,6} & & \multicolumn{7}{c}{\(2,3,4\)} \\
\(\}\) & \(\{1\}\) & \(\{6\}\) & \(\{1,6\}\) & \(\}\) & \(\{2\}\) & \(\{3\}\) & \(\{4\}\) & \(\{2,3\}\) & \(\{2,4\}\) & \(\{3,4\}\) & \(\{2,3,4\}\) \\
0 & 1 & 6 & 7 & 0 & 2 & 3 & 4 & 5 & 6 & 7 & 9
\end{tabular}

\section*{Example}

Set \(\{1,6,2,3,4\}\) with value sum 16 has 32 subsets.
Partitioning into \(\{1,6\},\{2,3,4\}\) yields the following 12 subsets with value sums:
\begin{tabular}{cccc|cccccccc}
\multicolumn{9}{|c|}{1,6} \\
\(\}\) & \(\{1\}\) & \(\{6\}\) & \(\{1,6\}\) & \(\}\) & \(\{2\}\) & \(\{3\}\) & \(\{4\}\) & \(\{2,3\}\) & \(\{2,4\}\) & \(\{3,4\}\) & \(\{2,3,4\}\) \\
0 & 1 & 6 & 7 & 0 & 2 & 3 & 4 & 5 & 6 & 7 & 9
\end{tabular}
\(\Leftrightarrow\) One possible solution: \(\{1,3,4\}\)

\section*{Analysis}

■ Generate partial sums for each part: \(\mathcal{O}\left(2^{n / 2} \cdot n\right)\).
■ Each sorting: \(\mathcal{O}\left(2^{n / 2} \log \left(2^{n / 2}\right)\right)=\mathcal{O}\left(n 2^{n / 2}\right)\).
- Merge: \(\mathcal{O}\left(2^{n / 2}\right)\)

Overal running time
\[
\mathcal{O}\left(n \cdot 2^{n / 2}\right)=\mathcal{O}\left(n(\sqrt{2})^{n}\right)
\]

Substantial improvement over the naive method but still exponential!

\section*{Dynamic programming}

Task: let \(z=\frac{1}{2} \sum_{i=1}^{n} a_{i}\). Find a selection \(I \subset\{1, \ldots, n\}\), such that \(\sum_{i \in I} a_{i}=z\).

\section*{Dynamic programming}

Task: let \(z=\frac{1}{2} \sum_{i=1}^{n} a_{i}\). Find a selection \(I \subset\{1, \ldots, n\}\), such that \(\sum_{i \in I} a_{i}=z\). DP-table: \([0, \ldots, n] \times[0, \ldots, z]\)-table \(T\) with boolean entries. \(T[k, s]\) specifies if there is a selection \(I_{k} \subset\{1, \ldots, k\}\) such that \(\sum_{i \in I_{k}} a_{i}=s\).

\section*{Dynamic programming}

Task: let \(z=\frac{1}{2} \sum_{i=1}^{n} a_{i}\). Find a selection \(I \subset\{1, \ldots, n\}\), such that \(\sum_{i \in I} a_{i}=z\). DP-table: \([0, \ldots, n] \times[0, \ldots, z]\)-table \(T\) with boolean entries. \(T[k, s]\) specifies if there is a selection \(I_{k} \subset\{1, \ldots, k\}\) such that \(\sum_{i \in I_{k}} a_{i}=s\). Initialization: \(T[0,0]=\) true. \(T[0, s]=\) false for \(s>1\).

\section*{Dynamic programming}

Task: let \(z=\frac{1}{2} \sum_{i=1}^{n} a_{i}\). Find a selection \(I \subset\{1, \ldots, n\}\), such that \(\sum_{i \in I} a_{i}=z\). DP-table: \([0, \ldots, n] \times[0, \ldots, z]\)-table \(T\) with boolean entries. \(T[k, s]\) specifies if there is a selection \(I_{k} \subset\{1, \ldots, k\}\) such that \(\sum_{i \in I_{k}} a_{i}=s\). Initialization: \(T[0,0]=\) true. \(T[0, s]=\) false for \(s>1\).

\section*{Computation:}
\[
T[k, s] \leftarrow \begin{cases}T[k-1, s] & \text { if } s<a_{k} \\ T[k-1, s] \vee T\left[k-1, s-a_{k}\right] & \text { if } s \geq a_{k}\end{cases}
\]
for increasing \(k\) and then within \(k\) increasing \(s\).

\section*{Example}
\(\{1,6,2,5\}+1\left[\begin{array}{llllllllllll} \\ 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 \\ \hline\end{array}\right.\)
\(k \downarrow\)

\section*{Example}
\[
\left\{\right.
\]
\[
k \downarrow
\]

\section*{Example}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{\[
\{1,6,2,5\}
\]} & & & & & & & & & & & & \multicolumn{4}{|l|}{\(\xrightarrow{\text { summe } s}\)} \\
\hline & 1 & 2 & & & & & 7 & 8 & 9 & 10 & & & 12 & 13 & \(\xrightarrow{14}\) \\
\hline 0 & & & & & & & & & & & & & & & \\
\hline 1 & & & & & & & & & & & & & & & \\
\hline
\end{tabular}

\section*{Example}


\section*{Example}


\section*{Example}


\section*{Example}


Determination of the solution: if \(T[k, s]=T[k-1, s]\) then \(a_{k}\) unused and continue with \(T[k-1, s]\), otherwise \(a_{k}\) used and continue with \(T\left[k-1, s-a_{k}\right]\).

\section*{That is mysterious}

The algorithm requires a number of \(\mathcal{O}(n \cdot z)\) fundamental operations.

\section*{That is mysterious}

The algorithm requires a number of \(\mathcal{O}(n \cdot z)\) fundamental operations. What is going on now? Does the algorithm suddenly have polynomial running time?

\section*{That is mysterious}

The algorithm requires a number of \(\mathcal{O}(n \cdot z)\) fundamental operations. What is going on now? Does the algorithm suddenly have polynomial running time?

\section*{Explained}

The algorithm does not necessarily provide a polynomial run time. \(z\) is an number and not a quantity!

\section*{Explained}

The algorithm does not necessarily provide a polynomial run time. \(z\) is an number and not a quantity!
Input length of the algorithm \(\cong\) number bits to reasonably represent the data. With the number \(z\) this would be \(\zeta=\log z\).

\section*{Explained}

The algorithm does not necessarily provide a polynomial run time. \(z\) is an number and not a quantity!
Input length of the algorithm \(\cong\) number bits to reasonably represent the data. With the number \(z\) this would be \(\zeta=\log z\).
Consequently the algorithm requires \(\mathcal{O}\left(n \cdot 2^{\zeta}\right)\) fundamental operations and has a run time exponential in \(\zeta\).

\section*{Explained}

The algorithm does not necessarily provide a polynomial run time. \(z\) is an number and not a quantity!
Input length of the algorithm \(\cong\) number bits to reasonably represent the data. With the number \(z\) this would be \(\zeta=\log z\).
Consequently the algorithm requires \(\mathcal{O}\left(n \cdot 2^{\zeta}\right)\) fundamental operations and has a run time exponential in \(\zeta\).
If, however, \(z\) is polynomial in \(n\) then the algorithm has polynomial run time in \(n\). This is called pseudo-polynomial.

It is known that the subset-sum algorithm belongs to the class of NP-complete problems (and is thus NP-hard).

\footnotetext{
\({ }^{32}\) The most important unsolved question of theoretical computer science.
}

It is known that the subset-sum algorithm belongs to the class of NP-complete problems (and is thus NP-hard).
P: Set of all problems that can be solved in polynomial time.
NP: Set of all problems that can be solved Nondeterministically in Polynomial time.

\footnotetext{
\({ }^{32}\) The most important unsolved question of theoretical computer science.
}

It is known that the subset-sum algorithm belongs to the class of NP-complete problems (and is thus NP-hard).
P: Set of all problems that can be solved in polynomial time.
NP: Set of all problems that can be solved Nondeterministically in Polynomial time.
Implications:
- NP contains P.
- Problems can be verified in polynomial time.

■ Under the not (yet?) proven assumption \({ }^{32}\) that \(N P \neq P\), there is no algorithm with polynomial run time for the problem considered above.

\footnotetext{
\({ }^{32}\) The most important unsolved question of theoretical computer science.
}

\section*{The knapsack problem}

We pack our suitcase with ...
- toothbrush
- dumbell set
- coffee machine

■ uh oh - too heavy.

\section*{The knapsack problem}

We pack our suitcase with ...

■ toothbrush
■ dumbell set
- coffee machine

■ uh oh - too heavy.

■ Toothbrush
- Air balloon

■ Pocket knife
■ identity card
■ dumbell set
■ Uh oh - too heavy.

\section*{The knapsack problem}

We pack our suitcase with ...
- toothbrush

■ dumbell set
- coffee machine

■ uh oh - too heavy.

■ Toothbrush
- Air balloon

■ Pocket knife
■ identity card
■ dumbell set
■ Uh oh - too heavy.
- toothbrush
- coffe machine

■ pocket knife
■ identity card
■ Uh oh - too heavy.

\section*{The knapsack problem}

We pack our suitcase with ...

■ toothbrush
■ dumbell set
- coffee machine

■ uh oh - too heavy.

■ Toothbrush
- Air balloon

■ Pocket knife
■ identity card
■ dumbell set
- toothbrush

■ coffe machine
■ pocket knife
■ identity card
■ Uh oh - too heavy.

■ Uh oh - too heavy.
Aim to take as much as possible with us. But some things are more valuable than others!

\section*{Knapsack problem}

\section*{Given:}

■ set of \(n \in \mathbb{N}\) items \(\{1, \ldots, n\}\).
■ Each item \(i\) has value \(v_{i} \in \mathbb{N}\) and weight \(w_{i} \in \mathbb{N}\).
■ Maximum weight \(W \in \mathbb{N}\).
■ Input is denoted as \(E=\left(v_{i}, w_{i}\right)_{i=1, \ldots, n}\).

\section*{Knapsack problem}

\section*{Given:}

■ set of \(n \in \mathbb{N}\) items \(\{1, \ldots, n\}\).
■ Each item \(i\) has value \(v_{i} \in \mathbb{N}\) and weight \(w_{i} \in \mathbb{N}\).
■ Maximum weight \(W \in \mathbb{N}\).
■ Input is denoted as \(E=\left(v_{i}, w_{i}\right)_{i=1, \ldots, n}\).

\section*{Wanted:}
a selection \(I \subseteq\{1, \ldots, n\}\) that maximises \(\sum_{i \in I} v_{i}\) under \(\sum_{i \in I} w_{i} \leq W\).

\section*{Greedy heuristics}

Sort the items decreasingly by value per weight \(v_{i} / w_{i}\) : Permutation \(p\) with \(v_{p_{i}} / w_{p_{i}} \geq v_{p_{i+1}} / w_{p_{i+1}}\)

\section*{Greedy heuristics}

Sort the items decreasingly by value per weight \(v_{i} / w_{i}\) : Permutation \(p\) with \(v_{p_{i}} / w_{p_{i}} \geq v_{p_{i+1}} / w_{p_{i+1}}\)
Add items in this order ( \(I \leftarrow I \cup\left\{p_{i}\right\}\) ), if the maximum weight is not exceeded.

\section*{Greedy heuristics}

Sort the items decreasingly by value per weight \(v_{i} / w_{i}\) : Permutation \(p\) with \(v_{p_{i}} / w_{p_{i}} \geq v_{p_{i+1}} / w_{p_{i+1}}\)
Add items in this order ( \(I \leftarrow I \cup\left\{p_{i}\right\}\) ), if the maximum weight is not exceeded.
That is fast: \(\Theta(n \log n)\) for sorting and \(\Theta(n)\) for the selection. But is it good?

\section*{Counterexample}
\[
\begin{array}{lll}
v_{1}=1 & w_{1}=1 & v_{1} / w_{1}=1 \\
v_{2}=W-1 & w_{2}=W & v_{2} / w_{2}=\frac{W-1}{W}
\end{array}
\]

\section*{Counterexample}
\[
\begin{array}{lll}
v_{1}=1 & w_{1}=1 & v_{1} / w_{1}=1 \\
v_{2}=W-1 & w_{2}=W & v_{2} / w_{2}=\frac{W-1}{W}
\end{array}
\]

Greed algorithm chooses \(\left\{v_{1}\right\}\) with value 1. Best selection: \(\left\{v_{2}\right\}\) with value \(W-1\) and weight \(W\). Greedy heuristics can be arbitrarily bad.

\section*{Dynamic Programming}

Partition the maximum weight.

\section*{Dynamic Programming}

Partition the maximum weight.
Three dimensional table \(m[i, w, v]\) ("doable") of boolean values.

\section*{Dynamic Programming}

Partition the maximum weight.
Three dimensional table \(m[i, w, v]\) ("doable") of boolean values. \(m[i, w, v]=\) true if and only if

■ A selection of the first \(i\) parts exists \((0 \leq i \leq n)\)
■ with overal weight \(w(0 \leq w \leq W)\) and
- a value of at least \(v\left(0 \leq v \leq \sum_{i=1}^{n} v_{i}\right)\).

\section*{Computation of the DP table}

\section*{Initially}

■ \(m[i, w, 0] \leftarrow\) true für alle \(i \geq 0\) und alle \(w \geq 0\).
■ \(m[0, w, v] \leftarrow\) false für alle \(w \geq 0\) und alle \(v>0\).

\section*{Computation of the DP table}

\section*{Initially}

■ \(m[i, w, 0] \leftarrow\) true für alle \(i \geq 0\) und alle \(w \geq 0\).
■ \(m[0, w, v] \leftarrow\) false für alle \(w \geq 0\) und alle \(v>0\).
Computation
\[
m[i, w, v] \leftarrow \begin{cases}m[i-1, w, v] \vee m\left[i-1, w-w_{i}, v-v_{i}\right] & \text { if } w \geq w_{i} \text { und } v \geq v_{i} \\ m[i-1, w, v] & \text { otherwise. }\end{cases}
\]
increasing in \(i\) and for each \(i\) increasing in \(w\) and for fixed \(i\) and \(w\) increasing by \(v\).
Solution: largest \(v\), such that \(m[i, w, v]=\) true for some \(i\) and \(w\).

\section*{Observation}

The definition of the problem obviously implies that
■ for \(m[i, w, v]=\) true it holds:
\[
\begin{aligned}
& m\left[i^{\prime}, w, v\right]=\operatorname{true} \forall i^{\prime} \geq i, \\
& m\left[i, w^{\prime}, v\right]=\operatorname{true} \forall w^{\prime} \geq w, \\
& m\left[i, w, v^{\prime}\right]=\operatorname{true} \forall v^{\prime} \leq v .
\end{aligned}
\]

■ fpr \(m[i, w, v]=\) false it holds:
\[
\begin{aligned}
& m\left[i^{\prime}, w, v\right]=\text { false } \forall i^{\prime} \leq i, \\
& m\left[i, w^{\prime}, v\right]=\text { false } \forall w^{\prime} \leq w, \\
& m\left[i, w, v^{\prime}\right]=\text { false } \forall v^{\prime} \geq v .
\end{aligned}
\]

This strongly suggests that we do not need a 3d table!

\section*{2d DP table}

Table entry \(t[i, w]\) contains, instead of boolean values, the largest \(v\), that can be achieved \({ }^{33}\) with
■ items \(1, \ldots, i(0 \leq i \leq n)\)
■ at maximum weight \(w(0 \leq w \leq W)\).

\footnotetext{
\({ }^{33}\) We could have followed a similar idea in order to reduce the size of the sparse table for subset sum.
}

\section*{Computation}

Initially
- \(t[0, w] \leftarrow 0\) for all \(w \geq 0\).

We compute
\[
t[i, w] \leftarrow \begin{cases}t[i-1, w] & \text { if } w<w_{i} \\ \max \left\{t[i-1, w], t\left[i-1, w-w_{i}\right]+v_{i}\right\} & \text { otherwise. }\end{cases}
\]
increasing by \(i\) and for fixed \(i\) increasing by \(w\).
Solution is located in \(t[n, w]\)

\section*{Example}
\[
i \downarrow
\]
\[
\begin{aligned}
& E=\{(2,3),(4,5),(1,1)\} \\
& \begin{array}{llllllll}
0 & 1 & 2 & 3 & 4 & 5 & 6 & 7
\end{array}
\end{aligned}
\]

\section*{Example}
\[
E=\{(2,3),(4,5),(1,1)\}
\]
\[
\xrightarrow{w}
\]
\[
\begin{array}{llllllll}
0 & 1 & 2 & 3 & 4 & 5 & 6 & 7
\end{array}
\]
\[
\emptyset \begin{array}{lllllllll}
\emptyset & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0
\end{array}
\]
\[
i \downarrow
\]

\section*{Example}
\[
E=\{(2,3),(4,5),(1,1)\}
\]
\[
\xrightarrow{w}
\]
\[
\begin{array}{llllllll}
0 & 1 & 2 & 3 & 4 & 5 & 6 & 7
\end{array}
\]
\[
i \downarrow
\]
\[
(2,3) \quad 0 \quad 0 \quad 3 \quad 3 \quad 3 \quad 3<3<3
\]

\section*{Example}
\[
E=\{(2,3),(4,5),(1,1)\}
\]
\[
\xrightarrow{w}
\]
\[
\begin{array}{llllllll}
0 & 1 & 2 & 3 & 4 & 5 & 6 & 7
\end{array}
\]
\[
\emptyset \quad 0<0<0<0<0<0<0<0<0
\]
\[
(2,3) \quad 0<0<3<3<3<3<3<3
\]
\[
(4,5) \quad 0 \quad 0 \quad 3 \quad 3-5<5<8
\]

\section*{Example}
\[
E=\{(2,3),(4,5),(1,1)\}
\]
\[
\xrightarrow{w}
\]
\[
\begin{array}{llllllll}
0 & 1 & 2 & 3 & 4 & 5 & 6 & 7
\end{array}
\]

\section*{Example}
\[
E=\{(2,3),(4,5),(1,1)\}
\]


Reading out the solution: if \(t[i, w]=t[i-1, w]\) then item \(i\) unused and continue with \(t[i-1, w]\) otherwise used and continue with \(t\left[i-1, s-w_{i}\right]\).

\section*{Analysis}

The two algorithms for the knapsack problem provide a run time in \(\Theta\left(n \cdot W \cdot \sum_{i=1}^{n} v_{i}\right)\) (3d-table) and \(\Theta(n \cdot W)\) (2d-table) and are thus both pseudo-polynomial, but they deliver the best possible result. The greedy algorithm is very fast but can yield an arbitrarily bad result.

\section*{22. Dynamic Programming III}

Optimal Search Tree [Ottman/Widmayer, Kap. 5.7]
22.1 Optimal Search Trees

\section*{Optimal binary Search Trees}

Given: \(n\) keys \(k_{1}, k_{2} \ldots k_{n}\) (wlog \(k_{1}<k_{2}<\ldots<k_{n}\) ) with weights (search probabilities \({ }^{34}\) ) \(p_{1}, p_{2}, \ldots, p_{n}\).
Wanted: optimal search tree \(T\) with key depths \({ }^{35} \mathrm{~d}(\cdot)\), that minimizes the expected search costs
\[
C(T)=\sum_{i=1}^{n}\left(\mathrm{~d}\left(k_{i}\right)+1\right) \cdot p_{i}
\]

\footnotetext{
\({ }^{34}\) It is possible to model unsuccesful search additionally, omitted for brevity here \({ }^{35} d(k)\) : Length of the path from the root to the node \(k\)
}

\section*{Examples}
\[
2 p_{1}+p_{2}
\]
\[
p_{1}+2 p_{2}
\]

\[
p_{1}+2 p_{2}+3 p_{3} \quad p_{1}+3 p_{2}+2 p_{2} \quad 2 p_{1}+p_{2}+2 p_{3} \quad 3 p_{1}+2 p_{2}+p_{3} \quad 2 p_{1}+3 p_{3}+1 p_{3}
\]

\section*{Example}

\section*{Expected Frequencies}
\begin{tabular}{c|ccccc}
\(i\) & 1 & 2 & 3 & 4 & 5 \\
\hline\(p_{i}\) & 0.25 & 0.10 & 0.05 & 0.20 & 0.40
\end{tabular}


Search tree with expected costs 2.35

Search tree with expected costs 2.2

\section*{Sub-trees for Searching}


\section*{Sub-trees for Searching}


Greedy?

Scenario \(p_{1}=1, p_{2}=10, p_{3}=8, p_{4}=9\)

Greedy?

Scenario \(p_{1}=1, p_{2}=10, p_{3}=8, p_{4}=9\)


\section*{Greedy?}

Scenario \(p_{1}=1, p_{2}=10, p_{3}=8, p_{4}=9\)


\(c(T)=49\)

\section*{Structure of a optimal binary search tree}

■ Consider all subtrees with roots \(k_{r}\) and optimal subtrees for keys \(k_{i}, \ldots, k_{r-1}\) and \(k_{r+1}, \ldots, k_{j}\)
■ Subtrees with keys \(k_{i}, \ldots, k_{r-1}\) and \(k_{r+1}, \ldots, k_{j}\) must be optimal for the respective sub-problems. \({ }^{36}\)
\[
E(i, j)=\text { Costs of optimal search tree with nodes } k_{i}, k_{i+1}, \ldots, k_{j}
\]

\footnotetext{
\({ }^{36}\) The usual argument: if it was not optimal, it could be replaced by a better solution improving the overal solution.
}

\section*{Rekursion}

With
\[
p(i, j):=p_{i}+p_{i+1}+\cdots+p_{j} \quad i \leq j
\]
it holds that
\[
E(i, j)= \begin{cases}0 & \text { if } i>j \\ p(i) & \text { if } i=j \\ p(i, j)+\min \{E(i, k-1)+E(k+1, j), i \leq k \leq j\} & \text { otherwise }\end{cases}
\]
0. \(E(1, n)\) : Costs of optimal search tree with nodes \(k_{1}, \ldots, k_{n}\) with search frequencies \(p_{1}, \ldots, p_{n}\)
1. \(E(i, j), 1 \leq i \leq j \leq n\)
\[
\text { \# sub-problems } \Theta\left(n^{2}\right)
\]
2. Enumerate roots of subtree of \(k_{i}, \ldots, k_{j}\), \# possibilities: \(j-i+1\)
3. Dependencies \(E(i, j)\) depend on \(E(i, k), E(k, j) i<k<j\). Computation of the off-diagonals of \(E\), starting with the diagonal of \(E\)
4. Solution is in \(E(1, n)\), Reconstruction: store the arg-mins of the recursion in a separate table \(V\).
5. Running time \(\Theta\left(n^{3}\right)\). Memory \(\Theta\left(n^{2}\right)\).

\section*{Example}
\begin{tabular}{c|ccccc}
\(i\) & 1 & 2 & 3 & 4 & 5 \\
\hline\(p_{i}\) & 0.25 & 0.10 & 0.05 & 0.20 & 0.40
\end{tabular}
\begin{tabular}{cc|c|c|c|c|}
\hline\(i\) & \multicolumn{6}{c}{\(p\)} \\
\hline 1 & 0.25 & 0.35 & 0.40 & 0.60 & 1.00 \\
\hline 2 & & 0.10 & 0.15 & 0.35 & 0.75 \\
\hline 3 & & & 0.05 & 0.25 & 0.65 \\
\hline 4 & & & & 0.20 & 0.60 \\
\hline 5 & & & & & 0.40 \\
& 1 & 2 & 3 & 4 & 5
\end{tabular}
\begin{tabular}{c|c|c|c|c|c|c|}
\hline\(i\) & \multicolumn{7}{c}{\(E\)} \\
1 & 0 & 0.25 & 0.45 & 0.60 & 1.15 & 2.00 \\
\hline 2 & & 0 & 0.10 & 0.20 & 0.55 & 1.30 \\
\hline 3 & & & 0 & 0.05 & 0.30 & 0.95 \\
\hline 4 & & & & 0 & 0.20 & 0.80 \\
\hline 5 & & & & & 0 & 0.40 \\
\hline 6 & & & & & & 0 \\
& 0 & 1 & 2 & 3 & 4 & 5
\end{tabular}\(j\)

\section*{23. Greedy Algorithms}

Fractional Knapsack Problem, Huffman Coding [Cormen et al, Kap. 16.1, 16.3]

\section*{Greedy Choice}

A problem with a recursive solution can be solved with a greedy algorithm if it has the following properties:
■ The problem has optimal substructure: the solution of a problem can be constructed with a combination of solutions of sub-problems.
■ The problem has the greedy choice property: The solution to a problem can be constructed, by using a local criterion that is not depending on the solution of the sub-problems.

Examples: fractional knapsack, Huffman-Coding (below)
Counter-Example: knapsack problem, Optimal Binary Search Tree

\section*{Huffman-Codes}

Goal: memory-efficient saving of a sequence of characters using a binary code with code words..

\section*{Huffman-Codes}

Goal: memory-efficient saving of a sequence of characters using a binary code with code words..

Example
File consisting of 100.000 characters from the alphabet \(\{a, \ldots, f\}\).
\begin{tabular}{lcccccc} 
& a & b & c & d & e & f \\
\hline Frequency (Thousands) & 45 & 13 & 12 & 16 & 9 & 5 \\
Code word with fix length & 000 & 001 & 010 & 011 & 100 & 101 \\
Code word variable length & 0 & 101 & 100 & 111 & 1101 & 1100
\end{tabular}

\section*{Huffman-Codes}

Goal: memory-efficient saving of a sequence of characters using a binary code with code words..

Example
File consisting of 100.000 characters from the alphabet \(\{a, \ldots, f\}\).
\begin{tabular}{lcccccc} 
& a & b & c & d & e & f \\
\hline Frequency (Thousands) & 45 & 13 & 12 & 16 & 9 & 5 \\
Code word with fix length & 000 & 001 & 010 & 011 & 100 & 101 \\
Code word variable length & 0 & 101 & 100 & 111 & 1101 & 1100
\end{tabular}

File size (code with fix length): 300.000 bits. File size (code with variable length): 224.000 bits.

\section*{Huffman-Codes}

■ Consider prefix-codes: no code word can start with a different codeword.

\section*{Huffman-Codes}

■ Consider prefix-codes: no code word can start with a different codeword.
■ Prefix codes can, compared with other codes, achieve the optimal data compression (without proof here).

\section*{Huffman-Codes}

■ Consider prefix-codes: no code word can start with a different codeword.
■ Prefix codes can, compared with other codes, achieve the optimal data compression (without proof here).
■ Encoding: concatenation of the code words without stop character (difference to morsing).
affe \(\rightarrow 0 \cdot 1100 \cdot 1100 \cdot 1101 \rightarrow 0110011001101\)

\section*{Huffman-Codes}

■ Consider prefix-codes: no code word can start with a different codeword.
■ Prefix codes can, compared with other codes, achieve the optimal data compression (without proof here).
■ Encoding: concatenation of the code words without stop character (difference to morsing).
affe \(\rightarrow 0 \cdot 1100 \cdot 1100 \cdot 1101 \rightarrow 0110011001101\)
- Decoding simple because prefixcode \(0110011001101 \rightarrow 0 \cdot 1100 \cdot 1100 \cdot 1101 \rightarrow\) affe

\section*{Code trees}


\section*{Properties of the Code Trees}
- An optimal coding of a file is alway represented by a complete binary tree: every inner node has two children.

\section*{Properties of the Code Trees}
- An optimal coding of a file is alway represented by a complete binary tree: every inner node has two children.
- Let \(C\) be the set of all code words, \(f(c)\) the frequency of a codeword \(c\) and \(d_{T}(c)\) the depth of a code word in tree \(T\). Define the cost of a tree as
\[
B(T)=\sum_{c \in C} f(c) \cdot d_{T}(c) .
\]
(cost = number bits of the encoded file)

\section*{Properties of the Code Trees}
- An optimal coding of a file is alway represented by a complete binary tree: every inner node has two children.
- Let \(C\) be the set of all code words, \(f(c)\) the frequency of a codeword \(c\) and \(d_{T}(c)\) the depth of a code word in tree \(T\). Define the cost of a tree as
\[
B(T)=\sum_{c \in C} f(c) \cdot d_{T}(c) .
\]
(cost = number bits of the encoded file)
In the following a code tree is called optimal when it minimizes the costs.

\section*{Probabilitiy Distributions}

The sum to be minimized
\[
\sum_{c \in C} f(c) \cdot d_{T}(c)
\]
can be written as
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|c|}{1} \\
\hline / & \\
\hline \(\frac{1}{2}\) & \(\frac{1}{2}\) \\
\hline 11 & ハ \\
\hline \(\frac{1}{4} \frac{1}{4}\) & \(\frac{1}{4} \frac{1}{4}\) \\
\hline
\end{tabular}
\[
-\sum_{c \in C} f(c) \cdot \log _{2} g_{T}(c), \text { where } g_{T}(\cdot):=2^{-d_{T}(\cdot)} . \quad \begin{aligned}
& \frac{1}{8} \frac{1}{8}
\end{aligned}
\]
\(g_{T}(\cdot)\) can be understood as discrete probability distribution because it holds that \(\sum_{c} g_{T}(c)=1\). That is a property of a complete binary tree because each inner node has two child nodes.

\section*{Probabilitiy Distributions}

For two discrete proability distributions \(f\) and \(g\) over \(C\) the Gibbs inequality holds
\[
\underbrace{-\sum_{c \in C} f(c) \log f(c)}_{\text {Entropy of } f} \leq-\sum_{c \in C} f(x) \log g(c)
\]
with equality if and only if \(f(c)=g(c)\) for each \(c \in C\).

\section*{Probabilitiy Distributions}

For two discrete proability distributions \(f\) and \(g\) over \(C\) the Gibbs inequality holds
\[
\underbrace{-\sum_{c \in C} f(c) \log f(c)}_{\text {Entropy of } f} \leq-\sum_{c \in C} f(x) \log g(c)
\]
with equality if and only if \(f(c)=g(c)\) for each \(c \in C\).

Consequence if \(f(c) \in\left\{2^{-k}, k \in \mathbb{N}\right\}\) for all \(c \in C\), then the optimal code tree can be formed easily with \(d_{T}(c)=-\log _{2} f(c)\).

\section*{Shannon Fano Coding}

\section*{Approximative algorithm of Shannon and Fano}
1. Sort the keys by frequency, wlog \(p_{1} \leq p_{2} \leq \ldots \leq p_{n}\)
2. Partition the keys into two sets of almost equal weight, i.e. into sets \(A=\{1, \ldots, k\}\) and \(B=\{k+1, \ldots, n\}\) such that \(\sum_{i \in A} p_{i} \approx \sum_{i \in B} p_{i}\). Recursion until all sets contain a single element.
Running Time:

\section*{Shannon Fano Coding}

\section*{Approximative algorithm of Shannon and Fano}
1. Sort the keys by frequency, wlog \(p_{1} \leq p_{2} \leq \ldots \leq p_{n}\)
2. Partition the keys into two sets of almost equal weight, i.e. into sets \(A=\{1, \ldots, k\}\) and \(B=\{k+1, \ldots, n\}\) such that \(\sum_{i \in A} p_{i} \approx \sum_{i \in B} p_{i}\). Recursion until all sets contain a single element.
Running Time: \(\Theta(n \log n)\)

\section*{Shannon Fano Coding}
\(45,16,13,12,9,5\)

\section*{Shannon Fano Coding}
\(45,16,13,12,9,5\)

\section*{Shannon Fano Coding}


\section*{Shannon Fano Coding}


\section*{Shannon Fano Coding}




\section*{Problem}

The approximate algorithm of Shannon and Fano does not always provide the optimal result
Example \(\{14,7,5,5,4\}\) with lower bound (entropy) \(B(T) \geq 75.35\)

\section*{Problem}

The approximate algorithm of Shannon and Fano does not always provide the optimal result
Example \(\{14,7,5,5,4\}\) with lower bound (entropy) \(B(T) \geq 75.35\)


Shannon-Fano Coding, \(B(T)=79\)

\section*{Problem}

The approximate algorithm of Shannon and Fano does not always provide the optimal result
Example \(\{14,7,5,5,4\}\) with lower bound (entropy) \(B(T) \geq 75.35\)


Shannon-Fano Coding, \(B(T)=79\)


Optimal, \(B(T)=77\)

\section*{Huffman's Idea}

Tree construction bottom up
- Start with the set \(C\) of code words
\[
\begin{array}{llllll}
\text { a:45 } & \text { b:13 } & \mathrm{c}: 12 & \mathrm{~d}: 16 & \mathrm{e}: 9 & \mathrm{f}: 5
\end{array}
\]

\section*{Huffman's Idea}

Tree construction bottom up
- Start with the set \(C\) of code words
■ Replace iteriatively the two nodes with smallest frequency by a new parent node.


\section*{Huffman's Idea}

Tree construction bottom up
- Start with the set \(C\) of code words
■ Replace iteriatively the two nodes with smallest frequency by a new parent node.


\section*{Huffman's Idea}

Tree construction bottom up
- Start with the set \(C\) of code words
- Replace iteriatively the two nodes with smallest frequency by a new parent node.


\section*{Huffman's Idea}

Tree construction bottom up
- Start with the set \(C\) of code words
- Replace iteriatively the two nodes with smallest frequency by a new parent node.


\section*{Huffman's Idea}

Tree construction bottom up
■ Start with the set \(C\) of code words
■ Replace iteriatively the two nodes with smallest frequency by a new parent node.


\section*{Algorithm Huffman( \(C\) )}

Input: code words \(c \in C\)
Output: Root of an optimal code tree
\(n \leftarrow|C|\)
\(Q \leftarrow C\)
for \(i=1\) to \(n-1\) do
allocate a new node \(z\)
z. left \(\leftarrow \operatorname{ExtractMin}(Q)\)
\(z\).right \(\leftarrow \operatorname{ExtractMin}(Q)\)
\(z\).freq \(\leftarrow z\).left.freq \(+z\).right.freq Insert \((Q, z)\)
return ExtractMin(Q)

\section*{Analyse}

Use a heap: build Heap in \(\mathcal{O}(n)\). Extract-Min in \(O(\log n)\) for \(n\) Elements. Yields a runtime of \(O(n \log n)\).

\section*{The greedy approach is correct}

\section*{Theorem 20}

Let \(x, y\) be two symbols with smallest frequencies in \(C\) and let \(T^{\prime}\left(C^{\prime}\right)\) be an optimal code tree to the alphabet \(C^{\prime}=C-\{x, y\}+\{z\}\) with a new symbol \(z\) with \(f(z)=f(x)+f(y)\). Then the tree \(T(C)\) that is constructed from \(T^{\prime}\left(C^{\prime}\right)\) by replacing the node \(z\) by an inner node with children \(x\) and \(y\) is an optimal code tree for the alphabet \(C\).

\section*{Proof}

It holds that
\(f(x) \cdot d_{T}(x)+f(y) \cdot d_{T}(y)=(f(x)+f(y)) \cdot\left(d_{T^{\prime}}(z)+1\right)=f(z) \cdot d_{T^{\prime}}(x)+f(x)+f(y)\).
Thus \(B\left(T^{\prime}\right)=B(T)-f(x)-f(y)\).
Assumption: \(T\) is not optimal. Then there is an optimal tree \(T^{\prime \prime}\) with \(B\left(T^{\prime \prime}\right)<B(T)\). We assume that \(x\) and \(y\) are brothers in \(T^{\prime \prime}\). Let \(T^{\prime \prime \prime}\) be the tree where the inner node with children \(x\) and \(y\) is replaced by \(z\). Then it holds that \(B\left(T^{\prime \prime \prime}\right)=B\left(T^{\prime \prime}\right)-f(x)-f(y)<B(T)-f(x)-f(y)=B\left(T^{\prime}\right)\).
Contradiction to the optimality of \(T^{\prime}\).
The assumption that \(x\) and \(y\) are brothers in \(T^{\prime \prime}\) can be justified because a swap of elements with smallest frequency to the lowest level of the tree can at most decrease the value of \(B\).

\section*{Recursive Problem-Solving Strategies}
\begin{tabular}{l|l|l|l|l|}
\hline \begin{tabular}{l} 
Brute Force \\
Enumeration
\end{tabular} & Backtracking & \begin{tabular}{l} 
Divide and \\
Conquer
\end{tabular} & \begin{tabular}{l} 
Dynamic \\
Programming
\end{tabular} & Greedy \\
\hline
\end{tabular}

\section*{Recursive Problem-Solving Strategies}
\begin{tabular}{|l|l|l|l|l} 
Brute Force \\
Enumeration
\end{tabular}\(\quad\) Backtracking \(\quad\)\begin{tabular}{l} 
Divide and \\
Conquer
\end{tabular}\(\quad\)\begin{tabular}{l} 
Dynamic \\
Programming
\end{tabular}\(\quad\) Greedy \begin{tabular}{l} 
Recursive Enu- \\
\begin{tabular}{l} 
Constraint Satis- \\
merability
\end{tabular} \\
\begin{tabular}{l} 
faction, Partial \\
Validation
\end{tabular}
\end{tabular} \begin{tabular}{l} 
Optimal \\
Substructure
\end{tabular}\(\quad\)\begin{tabular}{l} 
Optimal \\
Substructure, \\
Overlapping \\
Subproblems
\end{tabular}\(\quad\)\begin{tabular}{l} 
Optimal \\
Substructure, \\
Greedy Choice \\
Property
\end{tabular}

\section*{Recursive Problem-Solving Strategies}
\begin{tabular}{|c|c|c|c|c|}
\hline Brute Force Enumeration & Backtracking & Divide and Conquer & Dynamic Programming & Greedy \\
\hline Recursive Enumerability & Constraint Satisfaction, Partial Validation & Optimal Substructure & Optimal Substructure, Overlapping Subproblems & \begin{tabular}{l}
Optimal \\
Substructure, Greedy Choice Property
\end{tabular} \\
\hline DFS, BFS, all Permutations, Tree Traversal & n-Queen, Sudoku, m-Coloring, SATSolving, naive TSP & \begin{tabular}{l}
Binary Search, \\
Mergesort, \\
Quicksort, \\
Hanoi Towers, \\
FFT
\end{tabular} & Bellman Ford, Warshall, RodCutting, LAS, Editing Distance, Knapsack Problem DP & Dijkstra, Kruskal, Huffmann Coding \\
\hline
\end{tabular}

\section*{24. Geometric Algorithms}

Properties of Line Segments, Intersection of Line Segments, Convex Hull, Closest Point Pair [Ottman/Widmayer, Kap. 8.2,8.3,8.8.2, Cormen et al, Kap. 33]

\subsection*{24.1 Properties of Line Segments}

\section*{Properties of line segments.}

Cross-Product of two vectors \(p_{1}=\left(x_{1}, y_{1}\right)\), \(p_{2}=\left(x_{2}, y_{2}\right)\) in the plane
\[
p_{1} \times p_{2}=\operatorname{det}\left[\begin{array}{ll}
x_{1} & x_{2} \\
y_{1} & y_{2}
\end{array}\right]=x_{1} y_{2}-x_{2} y_{1}
\]

Signed area of the parallelogram


\section*{Turning direction}

nach links:
\(\left(p_{1}-p_{0}\right) \times\left(p_{2}-p_{0}\right)>0\)
nach rechts:
\(\left(p_{1}-p_{0}\right) \times\left(p_{2}-p_{0}\right)<0\)

\section*{Intersection of two line segments}


Intersection: \(\quad p_{1}\) and \(p_{2}\) opposite w.r.t \(\overline{p_{3} p_{4}}\) and \(p_{3}, p_{4}\) opposite w.r.t. \(\overline{p_{1} p_{2}}\)

No intersection: \(p_{1}\) and \(p_{2}\) on the same side of \(\overline{p_{3} p_{4}}\)

No intersection: \(p_{3}\) Intersection: \(p_{1}\) on and \(p_{4}\) on the same \(\overline{p_{3} p_{4}}\) side of \(\overline{p_{1} p_{2}}\)
24.2 Convex Hull

\section*{Convex Hull}

Subset \(S\) of a real vector space is called convex, if for all \(a, b \in S\) and all \(\lambda \in[0,1]\) :
\[
\lambda a+(1-\lambda) b \in S
\]


\section*{Convex Hull}

Convex Hull \(H(Q)\) of a set \(Q\) of points: smallest convex polygon \(P\) such that each point of \(Q\) is on \(P\) or in the interior of \(P\).


\section*{Convex Hull}

Convex Hull \(H(Q)\) of a set \(Q\) of points: smallest convex polygon \(P\) such that each point of \(Q\) is on \(P\) or in the interior of \(P\).


\section*{Convex Hull}

Identify segments of \(P\)


\section*{Convex Hull}

Identify segments of \(P\)


Observation: for a a segment \(s\) of \(P\) it holds that all points of \(Q\) not on the line through \(s\) are either on the left or on the right of \(s\).

\section*{Jarvis Marsch / Gift Wrapping algorithm}
1. Start with an extremal point (e.g. lowest point) \(p=p_{0}\)
2. Search point \(q\), such that \(\overline{p q}\) is a line to the right of all other points (or other points are on this line closer to \(p\).
3. Continue with \(p \leftarrow q\) at (2) until \(p=p_{0}\).

Illustration Jarvis
\[
\begin{aligned}
& \stackrel{p_{1}}{p_{0}}
\end{aligned}
\]

Illustration Jarvis


\section*{Analysis Gift-Wrapping}
- Let \(h\) be the number of corner points of the convex hull.
- Runtime of the algorithm \(\mathcal{O}(h \cdot n)\).

\section*{Convex Hull}

Identify segments of \(P\)


\section*{Convex Hull}

Identify segments of \(P\)


Observation: if the points of the polygon are ordered anti-clockwise then subsequent segments of the polygon \(P\) only make left turns.

\section*{Algorithm Graham-Scan}

Input: Set of points \(Q\)
Output: Stack \(S\) of points of the convex hull of \(Q\)
\(p_{0}\) : point with minimal \(y\) coordinate (if required, additionally minimal \(x\)-) coordinate
\(\left(p_{1}, \ldots, p_{m}\right)\) remaining points sorted by polar angle counter-clockwise in relation to \(p_{0}\); if points with same polar angle available, discard all except the one with maximal distance from \(p_{0}\)
\(S \leftarrow \emptyset\)
if \(m<2\) then return \(S\)
Push \(\left(S, p_{0}\right) ; \operatorname{Push}\left(S, p_{1}\right) ; \operatorname{Push}\left(S, p_{2}\right)\)
for \(i \leftarrow 3\) to \(m\) do
while Winkel \(\left(\operatorname{Next} \operatorname{ToTop}(S), \operatorname{Top}(S), p_{i}\right)\) nicht nach links gerichtet do \(\operatorname{Pop}(S)\);
\(\operatorname{Push}\left(S, p_{i}\right)\)
return \(S\)

\section*{Illustration Graham-Scan}


\section*{Stack: \\ \(p_{0}\)}

\section*{Illustration Graham-Scan}


Stack:
\(p_{1}\)
\(p_{0}\)

\section*{Illustration Graham-Scan}


Stack:
\(p_{2}\)
\(p_{1}\)
\(p_{0}\)

\section*{Illustration Graham-Scan}

Stack:
\(p_{3}\)
\(p_{2}\)
\(p_{1}\)
\(p_{0}\)

\section*{Illustration Graham-Scan}


\section*{Stack: \\ \(p_{4}\) \\ \(p_{2}\) \\ \(p_{1}\) \\ \(p_{0}\)}

\section*{Illustration Graham-Scan}

Stack:
\(p_{5}\)
\(p_{4}\)
\(p_{2}\)
\(p_{1}\)
\(p_{0}\)

\section*{Illustration Graham-Scan}


\section*{Stack: \\ \(p_{4}\) \\ \(p_{2}\) \\ \(p_{1}\) \\ \(p_{0}\)}

\section*{Illustration Graham-Scan}


\section*{Stack: \\ \(p_{6}\) \\ \(p_{2}\) \\ \(p_{1}\) \\ \(p_{0}\)}

\section*{Illustration Graham-Scan}


Stack:
\(p_{7}\)
\(p_{6}\)
\(p_{2}\)
\(p_{1}\)
\(p_{0}\)

\section*{Illustration Graham-Scan}


Stack:
\(p_{8}\)
\(p_{6}\)
\(p_{2}\)
\(p_{1}\)
\(p_{0}\)

\section*{Illustration Graham-Scan}

Stack:
\(p_{9}\)
\(p_{6}\)
\(p_{2}\)
\(p_{1}\)
\(p_{0}\)

\section*{Illustration Graham-Scan}

Stack:
\(p_{10}\)
\(p_{9}\)
\(p_{6}\)
\(p_{2}\)
\(p_{1}\)
\(p_{0}\)

\section*{Illustration Graham-Scan}

Stack:
\(p_{11}\)
\(p_{9}\)
\(p_{6}\)
\(p_{2}\)
\(p_{1}\)
\(p_{0}\)

\section*{Illustration Graham-Scan}

Stack:
\(p_{12}\)
\(p_{11}\)
\(p_{9}\)
\(p_{6}\)
\(p_{2}\)
\(p_{1}\)
\(p_{0}\)

\section*{Illustration Graham-Scan}

Stack:
\(p_{13}\)
\(p_{11}\)
\(p_{9}\)
\(p_{6}\)
\(p_{2}\)
\(p_{1}\)
\(p_{0}\)

\section*{Illustration Graham-Scan}


Stack:
\(p_{11}\)
\(p_{9}\)
\(p_{6}\)
\(p_{2}\)
\(p_{1}\)
\(p_{0}\)

\section*{Illustration Graham-Scan}


Stack:
\(p_{14}\)
\(p_{9}\)
\(p_{6}\)
\(p_{2}\)
\(p_{1}\)
\(p_{0}\)

\section*{Illustration Graham-Scan}

Stack:
\(p_{15}\)
\(p_{14}\)
\(p_{9}\)
\(p_{6}\)
\(p_{2}\)
\(p_{1}\)
\(p_{0}\)

\section*{Illustration Graham-Scan}

Stack:
\(p_{15}\)
\(p_{14}\)
\(p_{9}\)
\(p_{6}\)
\(p_{2}\)
\(p_{1}\)
\(p_{0}\)

\section*{Analysis}

Runtime of the algorithm Graham-Scan
- Sorting \(\mathcal{O}(n \log n)\)
- \(n\) Iterations of the for-loop
- Amortized analysis of the multipop on a stack: amortized constant runtime of mulitpop, same here: amortized constant runtime of the While-loop.
Overal \(\mathcal{O}(n \log n)\)

\subsection*{24.3 Intersection of Line Segments}

\section*{Preparation: Overlapping Intervals}


Questions:
■ How many intervals overlap maximally?

\section*{Preparation: Overlapping Intervals}


Questions:
- How many intervals overlap maximally?

■ Which intervals (don't) get wet?

\section*{Preparation: Overlapping Intervals}


Questions:
■ How many intervals overlap maximally?
- Which intervals (don't) get wet?

■ Which intervals are directly on top of each other?

\section*{Preparation: Overlapping Intervals}


Idea of a sweep line: vertical line, moving in \(x\)-direction, observes the geometric objects.

\section*{Preparation: Overlapping Intervals}


Event list: list of points where the state observed by the sweepline changes.

\section*{Preparation: Overlapping Intervals}


Q: How many intervals overlap maximally?

\section*{Preparation: Overlapping Intervals}


Q: How many intervals overlap maximally?

Sweep line controls a counter that is incremented (decremented) at the left (right) end point of an interval.

\section*{Preparation: Overlapping Intervals}


Q: How many intervals overlap maximally?

Sweep line controls a counter that is incremented (decremented) at the left (right) end point of an interval.

A: maximum counter value

\section*{Preparation: Overlapping Intervals}


\section*{Q: Which intervals get wet?}

\section*{Preparation: Overlapping Intervals}


Q: Which intervals get wet?

Sweep line controls a binary search tree that comprises the intervals according to their vertical ordering.

\section*{Preparation: Overlapping Intervals}


Q: Which intervals get wet?

Sweep line controls a binary search tree that comprises the intervals according to their vertical ordering.
A: intervalls on the very left of the tree.

\section*{Preparation: Overlapping Intervals}


Q: Which intervals are neighbours?

\section*{Preparation: Overlapping Intervals}


Q: Which intervals are neighbours?

A: intervalls on the very left of the tree.

Cutting many line segments


\section*{Sweepline Principle}


\section*{Simplifying Assumptions}

■ No vertical line segments
■ Each intersection is formed by at most two line segments.

\section*{(Vertical) Ordering line segments}


Preorder (partial order without anti-symmetry)
\[
\begin{aligned}
& s_{2} \prec_{h_{1}} s_{1} \\
& s_{1} \prec_{h_{2}} s_{2} \\
& s_{2} \prec_{h_{2}} s_{1} \\
& s_{3} \prec_{h_{2}} s_{2}
\end{aligned}
\]
W.r.t. \(h_{3}\) the line segments are uncomparable.

\footnotetext{
\({ }^{37}\) No anti-symmetry: \(s \prec t \wedge t \prec s \nRightarrow s=t\)
}

\section*{Observation: two cases}

(a) Intersecting line segments are neighbours w.r.t. quasi-order from above directly from the start.

(b) Intersecting line segments are neighbours w.r.t. quasi-order from above after the last segment between them ends.

\section*{Observation: possible misunderstanding}


It does not suffice to compare the \(y\)-coordinates of starting points of lines. Positions on the sweep line have to be compared.

\section*{Moving the sweepline}

■ Sweep-Line Status : Relationship of all objects intersected by sweep-line
■ Event List : Series of event positions, sorted by \(x\)-coordinate. Sweep-line travels from left to right and stops at each event position.

\section*{Sweep-Line Status}

Preorder \(T\) of the intersected line segments
Required operations:
■ Insert( \(T, s\) ) Insert line segment \(s\) in \(T\)
■ Delete \((T, s)\) Remove \(s\) from \(T\)
■ Above( \(T, s\) ) Return line segment immediately above of \(s\) in \(T\)
■ Below( \(T, s\) ) Return line segment immediately below of \(s\) in \(T\)
Possible Implementation:

\section*{Sweep-Line Status}

Preorder \(T\) of the intersected line segments
Required operations:
■ Insert( \(T, s\) ) Insert line segment \(s\) in \(T\)
■ Delete( \(T, s\) ) Remove \(s\) from \(T\)
■ Above( \(T, s\) ) Return line segment immediately above of \(s\) in \(T\)
■ Below( \(T, s\) ) Return line segment immediately below of \(s\) in \(T\)
Possible Implementation: Blanced tree (AVL-Tree, Red-Black Tree etc.)

\section*{Algorithm Any-Segments-Intersect(S)}

Input: List of \(n\) line segments \(S\)
Output: Returns if \(S\) contains intersecting segments
\(T \leftarrow \emptyset\)
Sort endpoints of line segments in \(S\) from left to right (left before right and lower before upper)
for Sorted end points \(p\) do
if \(p\) left end point of a segment \(s\) then
Insert \((T, s)\)
if \(\operatorname{Above}(T, s) \cap s \neq \emptyset \vee \operatorname{Below}(T, s) \cap s \neq \emptyset\) then return true
if \(p\) right end point of a segment \(s\) then
if \(\operatorname{Above}(T, s) \cap \operatorname{Below}(T, s) \neq \emptyset\) then return true
Delete \((T, s)\)
return false;

Illustration


\section*{Analysis}

Runtime of the algorithm Any-Segments-Intersect
- Sorting \(\mathcal{O}(n \log n)\)

■ \(2 n\) iterations of the for loop. Each operation on the balanced tree \(\mathcal{O}(\log n)\)
Overal \(\mathcal{O}(n \log n)\)
24.4 Closest Point Pair

\section*{Closest Point Pair}

Euclidean Distance \(d(s, t)\) of two points \(s\) and \(t\) :
\[
\begin{aligned}
d(s, t) & =\|s-t\|_{2} \\
& =\sqrt{\left(s_{x}-t_{x}\right)^{2}+\left(s_{y}-t_{y}\right)^{2}}
\end{aligned}
\]

Problem: Find points \(p\) and \(q\) from \(Q\) for which
\[
d(p, q) \leq d(s, t) \forall s, t \in Q, s \neq t
\]

\section*{Closest Point Pair}

Euclidean Distance \(d(s, t)\) of two points \(s\) and \(t\) :
\[
\begin{aligned}
d(s, t) & =\|s-t\|_{2} \\
& =\sqrt{\left(s_{x}-t_{x}\right)^{2}+\left(s_{y}-t_{y}\right)^{2}}
\end{aligned}
\]

Problem: Find points \(p\) and \(q\) from \(Q\) for which
\[
d(p, q) \leq d(s, t) \forall s, t \in Q, s \neq t
\]

Naive: all \(\binom{n}{2}=\Theta\left(n^{2}\right)\) point pairs.

\section*{Closest Point Pair}

Euclidean Distance \(d(s, t)\) of two points \(s\) and \(t\) :
\[
\begin{aligned}
d(s, t) & =\|s-t\|_{2} \\
& =\sqrt{\left(s_{x}-t_{x}\right)^{2}+\left(s_{y}-t_{y}\right)^{2}}
\end{aligned}
\]

Problem: Find points \(p\) and \(q\) from \(Q\) for which
\[
d(p, q) \leq d(s, t) \forall s, t \in Q, s \neq t
\]

Naive: all \(\binom{n}{2}=\Theta\left(n^{2}\right)\) point pairs.

\section*{Divide And Conquer}

■ Set of points \(P\), starting with \(P \leftarrow Q\)

\section*{Divide And Conquer}
- Set of points \(P\), starting with \(P \leftarrow Q\)
- Arrays \(X\) and \(Y\), containing the elements of \(P\), sorted by \(x\) - and \(y\)-coordinate, respectively.


\section*{Divide And Conquer}
- Set of points \(P\), starting with \(P \leftarrow Q\)
- Arrays \(X\) and \(Y\), containing the elements of \(P\), sorted by \(x\) - and \(y\)-coordinate, respectively.
- Partition point set into two (approximately) equally sized sets \(P_{L}\) and \(P_{R}\), separated by a vertical line through a point of \(P\).


\section*{Divide And Conquer}

■ Set of points \(P\), starting with \(P \leftarrow Q\)
- Arrays \(X\) and \(Y\), containing the elements of \(P\), sorted by \(x\) - and \(y\)-coordinate, respectively.
- Partition point set into two (approximately) equally sized sets \(P_{L}\) and \(P_{R}\), separated by a vertical line through a point of \(P\).
- Split arrays \(X\) and \(Y\) accrodingly in \(X_{L}\), \(X_{R} . Y_{L}\) and \(Y_{R}\).


\section*{Divide And Conquer}

■ Recursive call with \(P_{L}, X_{L}, Y_{L}\) and \(P_{R}, X_{R}, Y_{R}\). Yields minimal distances \(\delta_{L}\), \(\delta_{R}\).


\section*{Divide And Conquer}

■ Recursive call with \(P_{L}, X_{L}, Y_{L}\) and \(P_{R}, X_{R}, Y_{R}\). Yields minimal distances \(\delta_{L}\), \(\delta_{R}\).


\section*{Divide And Conquer}

■ Recursive call with \(P_{L}, X_{L}, Y_{L}\) and \(P_{R}, X_{R}, Y_{R}\). Yields minimal distances \(\delta_{L}\), \(\delta_{R}\).
■ (If only \(k \leq 3\) points: compute the minimal distance directly)

\section*{Divide And Conquer}

■ Recursive call with \(P_{L}, X_{L}, Y_{L}\) and \(P_{R}, X_{R}, Y_{R}\). Yields minimal distances \(\delta_{L}\), \(\delta_{R}\).
■ (If only \(k \leq 3\) points: compute the minimal distance directly)
- After recursive call \(\delta=\min \left(\delta_{L}, \delta_{R}\right)\). Combine (next slides) and return best result.


\section*{Combine}

■ Generate an array \(Y^{\prime}\) holding \(y\)-sorted points from \(Y\), that are located within a \(2 \delta\) band around the dividing line


\section*{Combine}

■ Generate an array \(Y^{\prime}\) holding \(y\)-sorted points from \(Y\), that are located within a \(2 \delta\) band around the dividing line
- Consider for each point \(p \in Y^{\prime}\) the maximally seven points after \(p\) with \(y\)-coordinate distance less than \(\delta\). Compute minimal distance \(\delta^{\prime}\).


\section*{Combine}

■ Generate an array \(Y^{\prime}\) holding \(y\)-sorted points from \(Y\), that are located within a \(2 \delta\) band around the dividing line
- Consider for each point \(p \in Y^{\prime}\) the maximally seven points after \(p\) with \(y\)-coordinate distance less than \(\delta\). Compute minimal distance \(\delta^{\prime}\).
■ If \(\delta^{\prime}<\delta\), then a closer pair in \(P\) than in \(P_{L}\) and \(P_{R}\) found. Return minimal distance.


\section*{Maximum number of points in the \(2 \delta\)-rectangle}


Two points in the \(\delta / 2 \times \delta / 2\)-rectangle have maximum distance \(\frac{\sqrt{2}}{2} \delta<\delta\). \(\Rightarrow\) Square with side length \(\delta / 2\) contains a maximum of one point. Eight non-overlapping \(\delta / 2 \times \delta / 2\)-Rectangles span the \(2 \delta \times \delta\) rectangle.

\section*{Implementation}

■ Goal: recursion equation (runtime) \(T(n)=2 \cdot T\left(\frac{n}{2}\right)+\mathcal{O}(n)\).
■ Consequence: forbidden to sort in each steps of the recursion.
■ Non-trivial: only arrays \(Y\) and \(Y^{\prime}\)
■ Idea: merge reversed: run through \(Y\) that is presorted by \(y\)-coordinate. For each element follow the selection criterion of the \(x\)-coordinate and append the element either to \(Y_{L}\) or \(Y_{R}\). Same procedure for \(Y^{\prime}\). Runtime \(\mathcal{O}(|Y|)\).
Overal runtime: \(\mathcal{O}(n \log n)\).

\section*{25. Graphs}

Notation, Representation, Graph Traversal (DFS, BFS), Topological Sorting , Reflexive transitive closure, Connected components [Ottman/Widmayer, Kap. 9.1-9.4,Cormen et al, Kap. 22]

\section*{Königsberg 1736}


\section*{Königsberg 1736}


Königsberg 1736

[Multi]Graph

[Multi]Graph


\section*{Cycles}

■ Is there a cycle through the town (the graph) that uses each bridge (each edge) exactly once?


\section*{Cycles}

■ Is there a cycle through the town (the graph) that uses each bridge (each edge) exactly once?
■ Euler (1736): no.


\section*{Cycles}

■ Is there a cycle through the town (the graph) that uses each bridge (each edge) exactly once?
■ Euler (1736): no.
■ Such a cycle is called Eulerian path.


\section*{Cycles}
- Is there a cycle through the town (the graph) that uses each bridge (each edge) exactly once?

■ Euler (1736): no.
- Such a cycle is called Eulerian path.
- Eulerian path \(\Leftrightarrow\) each node provides an even number of edges (each node is of an even degree).
' \(\Rightarrow\) " is straightforward, " \(\Leftarrow\) " ist a bit more difficult but


\section*{Notation}

undirected
\[
\begin{aligned}
V= & \{1,2,3,4,5\} \\
E= & \{\{1,2\},\{1,3\},\{2,3\},\{2,4\}, \\
& \{2,5\},\{3,4\},\{3,5\},\{4,5\}\}
\end{aligned}
\]

directed
\[
\begin{aligned}
V= & \{1,2,3,4,5\} \\
E= & \{(1,3),(2,1),(2,5),(3,2), \\
& (3,4),(4,2),(4,5),(5,3)\}
\end{aligned}
\]

\section*{Notation}

A directed graph consists of a set \(V=\left\{v_{1}, \ldots, v_{n}\right\}\) of nodes (Vertices) and a set \(E \subseteq V \times V\) of Edges. The same edges may not be contained more than once.


\section*{Notation}

An undirected graph consists of a set \(V=\left\{v_{1}, \ldots, v_{n}\right\}\) of nodes a and a set \(E \subseteq\{\{u, v\} \mid u, v \in V\}\) of edges. Edges may not be contained more than once. \({ }^{38}\)

\({ }^{38}\) As opposed to the introductory example - it is then called multi-graph.

\section*{Notation}

An undirected graph \(G=(V, E)\) without loops where \(E\) comprises all edges between pairwise different nodes is called complete.

a complete undirected graph

\section*{Notation}

For directed graphs \(G=(V, E)\)
■ \(w \in V\) is called adjacent to \(v \in V\), if \((v, w) \in E\)

\section*{Notation}

For directed graphs \(G=(V, E)\)
■ \(w \in V\) is called adjacent to \(v \in V\), if \((v, w) \in E\)
■ Predecessors of \(v \in V: N^{-}(v):=\{u \in V \mid(u, v) \in E\}\). Successors: \(N^{+}(v):=\{u \in V \mid(v, u) \in E\}\)


\section*{Notation}

For directed graphs \(G=(V, E)\)
■ In-Degree: \(\operatorname{deg}^{-}(v)=\left|N^{-}(v)\right|\), Out-Degree: \(\operatorname{deg}^{+}(v)=\left|N^{+}(v)\right|\)

\[
\operatorname{deg}^{-}(v)=3, \operatorname{deg}^{+}(v)=2 \quad \operatorname{deg}^{-}(w)=1, \operatorname{deg}^{+}(w)=1
\]


\section*{Notation}

For undirected graphs \(G=(V, E)\) :
■ \(w \in V\) is called adjacent to \(v \in V\), if \(\{v, w\} \in E\)

\section*{Notation}

For undirected graphs \(G=(V, E)\) :
■ \(w \in V\) is called adjacent to \(v \in V\), if \(\{v, w\} \in E\)
■ Neighbourhood of \(v \in V: N(v)=\{w \in V \mid\{v, w\} \in E\}\)

\section*{Notation}

For undirected graphs \(G=(V, E)\) :
■ \(w \in V\) is called adjacent to \(v \in V\), if \(\{v, w\} \in E\)
■ Neighbourhood of \(v \in V: N(v)=\{w \in V \mid\{v, w\} \in E\}\)
■ Degree of \(v: \operatorname{deg}(v)=|N(v)|\) with a special case for the loops: increase the degree by 2 .

\[
\operatorname{deg}(v)=5
\]

\[
\operatorname{deg}(w)=2
\]

\section*{Node Degrees \(\leftrightarrow\) Number of Edges}

\section*{Handshaking Lemma:}

For each graph \(G=(V, E)\) it holds
1. \(\sum_{v \in V} \operatorname{deg}^{-}(v)=\sum_{v \in V} \operatorname{deg}^{+}(v)=|E|\), for \(G\) directed
2. \(\sum_{v \in V} \operatorname{deg}(v)=2|E|\), for \(G\) undirected.

\section*{Paths}

■ Path: a sequence of nodes \(\left\langle v_{1}, \ldots, v_{k+1}\right\rangle\) such that for each \(i \in\{1 \ldots k\}\) there is an edge from \(v_{i}\) to \(v_{i+1}\).

\section*{Paths}

■ Path: a sequence of nodes \(\left\langle v_{1}, \ldots, v_{k+1}\right\rangle\) such that for each \(i \in\{1 \ldots k\}\) there is an edge from \(v_{i}\) to \(v_{i+1}\).
■ Length of a path: number of contained edges \(k\).

\section*{Paths}

■ Path: a sequence of nodes \(\left\langle v_{1}, \ldots, v_{k+1}\right\rangle\) such that for each \(i \in\{1 \ldots k\}\) there is an edge from \(v_{i}\) to \(v_{i+1}\).
■ Length of a path: number of contained edges \(k\).
■ Simple path: path without repeating vertices

\section*{Connectedness}

■ An undirected graph is called connected, if for each pair \(v, w \in V\) there is a connecting path.
■ A directed graph is called strongly connected, if for each pair \(v, w \in V\) there is a connecting path.
■ A directed graph is called weakly connected, if the corresponding undirected graph is connected.

\section*{Simple Observations}

■ generally: \(0 \leq|E| \in \mathcal{O}\left(|V|^{2}\right)\)
- connected graph: \(|E| \in \Omega(|V|)\)
- complete graph: \(|E|=\frac{|V| \cdot(|V|-1)}{2}\) (undirected)

■ Maximally \(|E|=|V|^{2}\) (directed) \(|E|=\frac{|V| \cdot(|V|+1)}{2}\) (undirected)

\section*{Cycles}

■ Cycle: path \(\left\langle v_{1}, \ldots, v_{k+1}\right\rangle\) with \(v_{1}=v_{k+1}\)
■ Simple cycle: Cycle with pairwise different \(v_{1}, \ldots, v_{k}\), that does not use an edge more than once.
■ Acyclic: graph without any cycles.
Conclusion: undirected graphs cannot contain cycles with length 2 (loops have length 1)

\section*{Representation using a Matrix}

Graph \(G=(V, E)\) with nodes \(v_{1} \ldots, v_{n}\) stored as adjacency matrix \(A_{G}=\left(a_{i j}\right)_{1 \leq i, j \leq n}\) with entries from \(\{0,1\} . a_{i j}=1\) if and only if edge from \(v_{i}\) to \(v_{j}\).

\[
\left(\begin{array}{lllll}
0 & 1 & 1 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 1 & 1 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 1
\end{array}\right)
\]

Memory consumption

\section*{Representation using a Matrix}

Graph \(G=(V, E)\) with nodes \(v_{1} \ldots, v_{n}\) stored as adjacency matrix \(A_{G}=\left(a_{i j}\right)_{1 \leq i, j \leq n}\) with entries from \(\{0,1\} . a_{i j}=1\) if and only if edge from \(v_{i}\) to \(v_{j}\).

\[
\left(\begin{array}{lllll}
0 & 1 & 1 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 1 & 1 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 1
\end{array}\right)
\]

Memory consumption \(\Theta\left(|V|^{2}\right)\). \(A_{G}\) is symmetric, if \(G\) undirected.

\section*{Representation with a List}

Many graphs \(G=(V, E)\) with nodes \(v_{1}, \ldots, v_{n}\) provide much less than \(n^{2}\) edges. Representation with adjacency list: Array \(A[1], \ldots, A[n]\), \(A_{i}\) comprises a linked list of nodes in \(N^{+}\left(v_{i}\right)\).


Memory Consumption

\section*{Representation with a List}

Many graphs \(G=(V, E)\) with nodes \(v_{1}, \ldots, v_{n}\) provide much less than \(n^{2}\) edges. Representation with adjacency list: Array \(A[1], \ldots, A[n]\), \(A_{i}\) comprises a linked list of nodes in \(N^{+}\left(v_{i}\right)\).


Memory Consumption \(\Theta(|V|+|E|)\).

\section*{Operation}

Matrix List
Find neighbours/successors of \(v \in V\) find \(v \in V\) without neighbour/successor \((v, u) \in E\) ?

Insert edge
Delete edge \((v, u)\)


Depth First Search


\section*{Graph Traversal: Depth First Search}

Follow the path into its depth until nothing is left to visit.

adjacency list


\section*{Graph Traversal: Depth First Search}

Follow the path into its depth until nothing is left to visit.

adjacency list


\section*{Graph Traversal: Depth First Search}

Follow the path into its depth until nothing is left to visit.

adjacency list


\section*{Graph Traversal: Depth First Search}

Follow the path into its depth until nothing is left to visit.

adjacency list


\section*{Graph Traversal: Depth First Search}

Follow the path into its depth until nothing is left to visit.

adjacency list


\section*{Graph Traversal: Depth First Search}

Follow the path into its depth until nothing is left to visit.

adjacency list


\section*{Graph Traversal: Depth First Search}

Follow the path into its depth until nothing is left to visit.

adjacency list


\section*{Graph Traversal: Depth First Search}

Follow the path into its depth until nothing is left to visit.

adjacency list


\section*{Graph Traversal: Depth First Search}

Follow the path into its depth until nothing is left to visit.

adjacency list


\section*{Graph Traversal: Depth First Search}

Follow the path into its depth until nothing is left to visit.

adjacency list


\section*{Graph Traversal: Depth First Search}

Follow the path into its depth until nothing is left to visit.

adjacency list


\section*{Graph Traversal: Depth First Search}

Follow the path into its depth until nothing is left to visit.

adjacency list


\section*{Graph Traversal: Depth First Search}

Follow the path into its depth until nothing is left to visit.

adjacency list


\section*{Graph Traversal: Depth First Search}

Follow the path into its depth until nothing is left to visit.

adjacency list


\section*{Graph Traversal: Depth First Search}

Follow the path into its depth until nothing is left to visit.

adjacency list


\section*{Graph Traversal: Depth First Search}

Follow the path into its depth until nothing is left to visit.

adjacency list


\section*{Graph Traversal: Depth First Search}

Follow the path into its depth until nothing is left to visit.

adjacency list


\section*{Graph Traversal: Depth First Search}

Follow the path into its depth until nothing is left to visit.

adjacency list


\section*{Graph Traversal: Depth First Search}

Follow the path into its depth until nothing is left to visit.

adjacency list


\section*{Graph Traversal: Depth First Search}

Follow the path into its depth until nothing is left to visit.

adjacency list


\section*{Graph Traversal: Depth First Search}

Follow the path into its depth until nothing is left to visit.

adjacency list


\section*{Colors}

Conceptual coloring of nodes
■ white: node has not been discovered yet.
■ grey: node has been discovered and is marked for traversal / being processed.
■ black: node was discovered and entirely processed.

\section*{Algorithm Depth First visit DFS-Visit \((G, v)\)}

Input: graph \(G=(V, E)\), Knoten \(v\).
\(v\). color \(\leftarrow\) grey
// visit \(v\)
foreach \(w \in N^{+}(v)\) do
if \(w . c o l o r=\) white then DFS-Visit \((G, w)\)
v.color \(\leftarrow\) black

Depth First Search starting from node \(v\). Running time (without recursion):

\section*{Algorithm Depth First visit DFS-Visit \((G, v)\)}

Input: graph \(G=(V, E)\), Knoten \(v\).
\(v\). color \(\leftarrow\) grey
// visit \(v\)
foreach \(w \in N^{+}(v)\) do if \(w . c o l o r=\) white then DFS-Visit \((G, w)\)
v.color \(\leftarrow\) black

Depth First Search starting from node \(v\). Running time (without recursion): \(\Theta\left(\operatorname{deg}^{+} v\right)\)

\section*{Algorithm Depth First visit DFS-Visit(G)}

Input: graph \(G=(V, E)\)
foreach \(v \in V\) do
v.color \(\leftarrow\) white
foreach \(v \in V\) do
if \(v\). color \(=\) white then
DFS-Visit(G,v)

Depth First Search for all nodes of a graph. Running time:

\section*{Algorithm Depth First visit DFS-Visit(G)}

Input: graph \(G=(V, E)\)
foreach \(v \in V\) do v.color \(\leftarrow\) white
foreach \(v \in V\) do
if \(v\). color \(=\) white then
DFS-Visit(G,v)

Depth First Search for all nodes of a graph. Running time: \(\Theta\left(|V|+\sum_{v \in V}\left(\operatorname{deg}^{+}(v)+1\right)\right)=\Theta(|V|+|E|)\).

\section*{Interpretation of the Colors}

When traversing the graph, a tree (or Forest) is built. When nodes are discovered there are three cases

■ White node: new tree edge
■ Grey node: cycle ("back-edge")
■ Black node: forward- / cross edge

\section*{Breadth First Search}


\section*{Graph Traversal: Breadth First Search}

Follow the path in breadth and only then descend into depth.


Adjacency List


\section*{Graph Traversal: Breadth First Search}

Follow the path in breadth and only then descend into depth.


Adjacency List


\section*{Graph Traversal: Breadth First Search}

Follow the path in breadth and only then descend into depth.


Adjacency List


\section*{Graph Traversal: Breadth First Search}

Follow the path in breadth and only then descend into depth.


Adjacency List


\section*{Graph Traversal: Breadth First Search}

Follow the path in breadth and only then descend into depth.


Adjacency List


\section*{Graph Traversal: Breadth First Search}

Follow the path in breadth and only then descend into depth.


Adjacency List


\section*{Graph Traversal: Breadth First Search}

Follow the path in breadth and only then descend into depth.


Adjacency List


\section*{Graph Traversal: Breadth First Search}

Follow the path in breadth and only then descend into depth.


Adjacency List


\section*{Graph Traversal: Breadth First Search}

Follow the path in breadth and only then descend into depth.


Adjacency List


\section*{Graph Traversal: Breadth First Search}

Follow the path in breadth and only then descend into depth.


Adjacency List


\section*{Graph Traversal: Breadth First Search}

Follow the path in breadth and only then descend into depth.


Adjacency List


\section*{Graph Traversal: Breadth First Search}

Follow the path in breadth and only then descend into depth.


Adjacency List


\section*{Graph Traversal: Breadth First Search}

Follow the path in breadth and only then descend into depth.


Adjacency List


\section*{Graph Traversal: Breadth First Search}

Follow the path in breadth and only then descend into depth.


Adjacency List


\section*{Graph Traversal: Breadth First Search}

Follow the path in breadth and only then descend into depth.


Adjacency List


\section*{Graph Traversal: Breadth First Search}

Follow the path in breadth and only then descend into depth.


Adjacency List


\section*{Graph Traversal: Breadth First Search}

Follow the path in breadth and only then descend into depth.


Adjacency List


\section*{Graph Traversal: Breadth First Search}

Follow the path in breadth and only then descend into depth.


Adjacency List


\section*{Graph Traversal: Breadth First Search}

Follow the path in breadth and only then descend into depth.


Adjacency List


\section*{Graph Traversal: Breadth First Search}

Follow the path in breadth and only then descend into depth.


Adjacency List


\section*{Graph Traversal: Breadth First Search}

Follow the path in breadth and only then descend into depth.


Adjacency List


\section*{(Iterative) BFS-Visit( \(G, v\) )}

Input: graph \(G=(V, E)\)
Queue \(Q \leftarrow \emptyset\)
enqueue \((Q, v)\)
\(v\).visited \(\leftarrow\) true
while \(Q \neq \emptyset\) do
\(w \leftarrow\) dequeue \((Q)\)
// visit \(w\)
foreach \(c \in N^{+}(w)\) do if \(c\). visited \(=\) false then
\(c\).visited \(\leftarrow\) true
enqueue \((Q, c)\)

Algorithm requires extra space of \(\mathcal{O}(|V|)\).

\section*{Main program BFS-Visit \((G)\)}

Input: graph \(G=(V, E)\)
foreach \(v \in V\) do
\(v\).visited \(\leftarrow\) false
foreach \(v \in V\) do
if \(v . v i s i t e d=\) false then BFS-Visit(G,v)

Breadth First Search for all nodes of a graph. Running time: \(\Theta(|V|+|E|)\).

\section*{Topological Sorting}


Evaluation Order?

\section*{Topological Sorting}

Topological Sorting of an acyclic directed graph \(G=(V, E)\) :
Bijective mapping
\[
\text { ord : } V \rightarrow\{1, \ldots,|V|\}
\]
such that
\[
\operatorname{ord}(v)<\operatorname{ord}(w) \forall(v, w) \in E .
\]

Identify \(i\) with Element \(v_{i}:=\operatorname{ord}^{1}(i)\). Topological sorting \(\hat{=}\left\langle v_{1}, \ldots, v_{|V|}\right\rangle\).

\section*{(Counter-)Examples}


Cyclic graph: cannot be sorted topo- A possible toplogical sorting of the graph: logically. shoes

\section*{Observation}

\section*{Theorem 21}

A directed graph \(G=(V, E)\) permits a topological sorting if and only if it is acyclic.

\section*{Algorithm Topological-Sort( \(G\) )}

Input: graph \(G=(V, E)\).
Output: Topological sorting ord
Stack \(S \leftarrow \emptyset\)
foreach \(v \in V\) do \(A[v] \leftarrow 0\)
foreach \((v, w) \in E\) do \(A[w] \leftarrow A[w]+1 / /\) Compute in-degrees
foreach \(v \in V\) with \(A[v]=0\) do \(\operatorname{push}(S, v) / /\) Memorize nodes with in-degree 0
\(i \leftarrow 1\)
while \(S \neq \emptyset\) do
\(v \leftarrow \operatorname{pop}(S) ; \operatorname{ord}[v] \leftarrow i ; i \leftarrow i+1 / /\) Choose node with in-degree 0 foreach \((v, w) \in E\) do // Decrease in-degree of successors
\(A[w] \leftarrow A[w]-1\) if \(A[w]=0\) then \(\operatorname{push}(S, w)\)
if \(i=|V|+1\) then return ord else return "Cycle Detected"

\section*{Algorithm Correctness}

Theorem 22
Let \(G=(V, E)\) be a directed acyclic graph. Algorithm
TopologicalSort( \(G\) ) computes a topological sorting ord for \(G\) with runtime \(\Theta(|V|+|E|)\).

\section*{Algorithm Correctness}

Theorem 23
Let \(G=(V, E)\) be a directed graph containing a cycle. Algorithm TopologicalSort terminates within \(\Theta(|V|+|E|)\) steps and detects a cycle.

\section*{26. Shortest Paths}

Motivation, Universal Algorithm, Dijkstra's algorithm on distance graphs, Bellman-Ford Algorithm, Floyd-Warshall Algorithm, Johnson Algorithm [Ottman/Widmayer, Kap. 9.5 Cormen et al, Kap. 24.1-24.3, 25.2-25.3]

\section*{Route Finding}

Provided cities A-Z and distances between cities

\section*{Route Finding}

Provided cities A-Z and distances between cities


\section*{Route Finding}

Provided cities A-Z and distances between cities


What is the shortest path from A to Z ?

\section*{Notation}

A weighted graph \(G=(V, E, c)\) is a graph \(G=(V, E)\) with an edge weight function \(c: E \rightarrow \mathbb{R} . c(e)\) is called weight of the edge \(e\).


\section*{Weighted Paths}

Given: \(G=(V, E, c), c: E \rightarrow \mathbb{R}, s, t \in V\).
Path: \(p=\left\langle s=v_{0}, v_{1}, \ldots, v_{k}=t\right\rangle,\left(v_{i}, v_{i+1}\right) \in E(0 \leq i<k)\)
Weight: \(c(p):=\sum_{i=0}^{k-1} c\left(\left(v_{i}, v_{i+1}\right)\right)\).


\section*{Shortest Paths}

Notation: we write
\[
u \stackrel{p}{\rightsquigarrow} v \quad \text { oder } \quad p: u \rightsquigarrow v
\]
and mean a path \(p\) from \(u\) to \(v\)
Wanted: \(\delta(u, v)=\) minimal weight of a path from \(u\) to \(v\) :
\[
\delta(u, v)= \begin{cases}\infty & \text { no path from } u \text { to } v \\ \min \{c(p): u \stackrel{p}{\rightsquigarrow} v\} & \text { otherwise }\end{cases}
\]

In the following we call a path with minimal weight simply a shortest path.

Trivial algorithm?

\section*{Trivial algorithm?}

Try out all paths?

\section*{Trivial algorithm?}

Try out all paths?


\section*{Trivial algorithm?}

Try out all paths?


\section*{Trivial algorithm?}

Try out all paths?

(at least \(2^{|V| / 2}\) paths from \(s\) to \(t\) )

\section*{Trivial algorithm?}

Try out all paths?

(at least \(2^{|V| / 2}\) paths from \(s\) to \(t\) )
\(\Rightarrow\) Inefficient. There can be exponentially many paths.

\section*{Simplest Case}

\section*{Simplest Case}

Constant edge weight (every edge has weight 1)

\section*{Simplest Case}

Constant edge weight (every edge has weight 1)


\section*{Simplest Case}

Constant edge weight (every edge has weight 1)

\(\Rightarrow\) Solution: Breadth First Search

\section*{Simplest Case}

Constant edge weight (every edge has weight 1)

\(\Rightarrow\) Solution: Breadth First Search

\section*{Simplest Case}

Constant edge weight (every edge has weight 1)

\(\Rightarrow\) Solution: Breadth First Search

\section*{Simplest Case}

Constant edge weight (every edge has weight 1)

\(\Rightarrow\) Solution: Breadth First Search

\section*{Simplest Case}

Constant edge weight (every edge has weight 1)

\(\Rightarrow\) Solution: Breadth First Search

\section*{Simplest Case}

Constant edge weight (every edge has weight 1)

\(\Rightarrow\) Solution: Breadth First Search

\section*{Simplest Case}

Constant edge weight (every edge has weight 1)

\(\Rightarrow\) Solution: Breadth First Search

\section*{Simplest Case}

Constant edge weight (every edge has weight 1)

\(\Rightarrow\) Solution: Breadth First Search \(\mathcal{O}(|V|+|E|)\)

Dijkstra's Algorithm: Observation

\section*{Dijkstra's Algorithm: Observation}
important assumption: all weights are positive.

\section*{Dijkstra's Algorithm: Observation}
important assumption: all weights are positive.


\section*{Dijkstra's Algorithm: Observation}
important assumption: all weights are positive.


Shortest path \(s \rightsquigarrow u\) has length \(l\) (exactly).

\section*{Dijkstra's Algorithm: Observation}
important assumption: all weights are positive.

(u) Shortest path \(s \rightsquigarrow u\) has length \(l\) (exactly).


Upper bound:
Shortest path \(s \rightsquigarrow u\) has length at most \(l\).

\section*{Dijkstra's Algorithm: Observation}
important assumption: all weights are positive.




Upper bound:
Shortest path \(s \rightsquigarrow u\) has length at most \(l\).

Observation: Shortest outgoing edge \((s, u)\) is the shortest path from \(s\) to this node \(u\).

\section*{Dijkstra's Algorithm: Observation}
important assumption: all weights are positive.




Upper bound:
Shortest path \(s \rightsquigarrow u\) has length at most \(l\).

Observation: Shortest outgoing edge \((s, u)\) is the shortest path from \(s\) to this node \(u\).

\section*{Dijkstra's Algorithm: Observation}
important assumption: all weights are positive.




Upper bound:
Shortest path \(s \rightsquigarrow u\) has length at most \(l\).

Observation: Shortest outgoing edge \((s, u)\) is the shortest path from \(s\) to this node \(u\).

\section*{Dijkstra's Algorithm: Observation}
important assumption: all weights are positive.


Shortest path \(s \rightsquigarrow u\) has length \(l\) (exactly).

Upper bound:
Shortest path \(s \rightsquigarrow u\) has length at most \(l\).

General Observation: The smallest upper bound of a(n orange) node \(u\) constitutes the exact length of the shortest path from \(s\) to \(u\).

Dijkstra's Algorithm: Basic Idea (Greedy)


\section*{Dijkstra's Algorithm: Basic Idea (Greedy)}
\(V\) is split into:


\section*{Dijkstra’s Algorithm: Basic Idea (Greedy)}
\(V\) is split into:
■ K: nodes with known shortest path


\section*{Dijkstra’s Algorithm: Basic Idea (Greedy)}
\(V\) is split into:
■ K: nodes with known shortest path
■ \(\mathbf{N}=\bigcup_{v \in K} N^{+}(v) \backslash K\) : successors of \(K\) \(\Rightarrow\) an upper bound is known


\section*{Dijkstra’s Algorithm: Basic Idea (Greedy)}
\(V\) is split into:
■ K: nodes with known shortest path
■ \(\mathbf{N}=\bigcup_{v \in K} N^{+}(v) \backslash K\) : successors of \(K\) \(\Rightarrow\) an upper bound is known
■ \(\mathrm{R}=V \backslash(K \cup N)\) : remaining nodes \(\Rightarrow\) nothing is known yet


\section*{Dijkstra’s Algorithm: Basic Idea (Greedy)}
\(V\) is split into:
■ K: nodes with known shortest path
■ \(\mathbf{N}=\bigcup_{v \in K} N^{+}(v) \backslash K\) : successors of \(K\) \(\Rightarrow\) an upper bound is known
■ \(\mathbb{R}=V \backslash(K \cup N)\) : remaining nodes \(\Rightarrow\) nothing is known yet

\section*{Greedy:}

Starting with \(\mathbf{N}=\{s\}\), until \(\mathbf{N}=\emptyset\) : node from \(\mathbf{N}\) with smallest upper bound joins \(\mathbf{K}\), and its neighbors join \(\mathbf{N}\).

\section*{Dijkstra’s Algorithm: Basic Idea (Greedy)}
\(V\) is split into:
■ K: nodes with known shortest path
■ \(\mathbf{N}=\bigcup_{v \in K} N^{+}(v) \backslash K\) : successors of \(K\) \(\Rightarrow\) an upper bound is known
\(\square \mathbb{R}=V \backslash(K \cup N)\) : remaining nodes \(\Rightarrow\) nothing is known yet


\section*{Greedy:}

Starting with \(\mathbf{N}=\{s\}\), until \(\mathbf{N}=\emptyset\) : node from \(\mathbf{N}\) with smallest upper bound joins \(\mathbf{K}\), and its neighbors join \(\mathbf{N}\).

\section*{Invariants:}

■ after \(i\) steps: shortest paths to \(i\) nodes known \((|K|=i)\).

\section*{Dijkstra’s Algorithm: Basic Idea (Greedy)}
\(V\) is split into:
■ K: nodes with known shortest path
■ \(\mathbf{N}=\bigcup_{v \in K} N^{+}(v) \backslash K\) : successors of \(K\) \(\Rightarrow\) an upper bound is known
\(\square \mathbb{R}=V \backslash(K \cup N)\) : remaining nodes \(\Rightarrow\) nothing is known yet


\section*{Greedy:}

Starting with \(\mathbf{N}=\{s\}\), until \(\mathbf{N}=\emptyset\) : node from \(\mathbf{N}\) with smallest upper bound joins \(\mathbf{K}\), and its neighbors join \(\mathbf{N}\).

\section*{Invariants:}

■ after \(i\) steps: shortest paths to \(i\) nodes known \((|K|=i)\).
\(\square\) for all nodes in \(\mathbf{v} \in N\) : the upper bound is the (exact) length of shortest path \(\mathrm{s} \rightsquigarrow \bullet \rightarrow v\) from s to v with nodes only from \(\mathrm{K} \cup\{\mathrm{v}\}\).

Quiz

\section*{Quiz}

Is the following constellation of upper bounds possible?

\section*{Quiz}

Is the following constellation of upper bounds possible?


Example


\section*{Example}


K
N
R

\section*{Example}

\[
\begin{aligned}
& \mathbf{K}=\{ \} \\
& \mathbf{N}=\{s\} \\
& \mathbf{R}=\{a, b, c, d, e, f, t\}
\end{aligned}
\]

\section*{Example}

\section*{Known shortest paths from \(s\) :}

\[
s \rightsquigarrow s: 0
\]
\[
\begin{aligned}
& \mathbf{K}=\{s\} \\
& \mathbf{N}=\{ \} \\
& \mathbf{R}=\{a, b, c, d, e, f, t\}
\end{aligned}
\]

\section*{Example}

\section*{Known shortest paths from \(s\) :}

\[
s \rightsquigarrow s: 0
\]

\section*{Outgoing edges:}
\[
\begin{aligned}
& s \rightarrow a: 4 \\
& s \rightarrow b: 2 \\
& s \rightarrow c: 5
\end{aligned}
\]
\[
\begin{aligned}
& \mathbf{K}=\{s\} \\
& \mathbf{N}=\{a, b, c\} \\
& \mathbf{R}=\{d, e, f, t\}
\end{aligned}
\]

\section*{Example}

\section*{Known shortest paths from \(s\) :}

\[
\begin{aligned}
& s \rightsquigarrow s: 0 \\
& s \rightsquigarrow b: 2
\end{aligned}
\]

\section*{Outgoing edges:}
\[
\begin{aligned}
& s \rightarrow a: 4 \\
& s \rightarrow b: 2 \\
& s \rightarrow c: 5
\end{aligned}
\]
\[
\begin{aligned}
& \mathbf{K}=\{s, b\} \\
& \mathbf{N}=\{a, c\} \\
& \mathbf{R}=\{d, e, f, t\}
\end{aligned}
\]

\section*{Example}

\section*{Known shortest paths from \(s\) :}

\[
\begin{aligned}
& s \rightsquigarrow s: 0 \\
& s \rightsquigarrow b: 2
\end{aligned}
\]

\section*{Outgoing edges:}
\[
\begin{aligned}
& \mathbf{K}=\{s, b\} \\
& \mathbf{N}=\{a, c, e\} \\
& \mathbf{R}=\{d, f, t\}
\end{aligned}
\]
\[
\begin{aligned}
& s \rightarrow a: 4 \\
& s \rightarrow c: 5 \\
& s \rightarrow b \rightarrow a: 3 \\
& s \rightarrow b \rightarrow e: 11 \\
& s \rightarrow b \rightarrow c: 6
\end{aligned}
\]

\section*{Example}

\section*{Known shortest paths from \(s\) :}

\[
\begin{aligned}
& s \rightsquigarrow s: 0 \\
& s \rightsquigarrow b: 2
\end{aligned}
\]

\section*{Outgoing edges:}
\[
\begin{aligned}
& s \rightarrow c: 5 \\
& s \rightarrow b \rightarrow a: 3 \\
& s \rightarrow b \rightarrow e: 11
\end{aligned}
\]
\[
\begin{aligned}
& \mathbf{K}=\{s, b\} \\
& \mathbf{N}=\{a, c, e\} \\
& \mathbf{R}=\{d, f, t\}
\end{aligned}
\]

\section*{Example}

\section*{Known shortest paths from \(s\) :}

\[
\begin{aligned}
& s \rightsquigarrow s: 0 \\
& s \rightsquigarrow b: 2 \\
& s \rightsquigarrow a: 3
\end{aligned}
\]

\section*{Outgoing edges:}
\[
\begin{aligned}
& s \rightarrow c: 5 \\
& s \rightarrow b \rightarrow a: 3 \\
& s \rightarrow b \rightarrow e: 11
\end{aligned}
\]
\[
\begin{aligned}
& \mathbf{K}=\{s, b, a\} \\
& \mathbf{N}=\{c, e\} \\
& \mathbf{R}=\{d, f, t\}
\end{aligned}
\]

\section*{Example}


\section*{Known shortest paths from \(s\) :}
\[
\begin{aligned}
& s \rightsquigarrow s: 0 \\
& s \rightsquigarrow b: 2 \\
& s \rightsquigarrow a: 3
\end{aligned}
\]

\section*{Outgoing edges:}
\[
\begin{aligned}
& s \rightarrow c: 5 \\
& s \rightarrow b \rightarrow a \rightarrow d: 6 \\
& s \rightarrow b \rightarrow e: 11
\end{aligned}
\]
\[
\begin{aligned}
& \mathbf{K}=\{s, b, a\} \\
& \mathbf{N}=\{c, e, d\} \\
& \mathbf{R}=\{f, t\}
\end{aligned}
\]

\section*{Example}


\section*{Known shortest paths from \(s\) :}
\[
\begin{aligned}
& s \rightsquigarrow s: 0 \\
& s \rightsquigarrow b: 2 \\
& s \rightsquigarrow a: 3 \\
& s \rightsquigarrow c: 5
\end{aligned}
\]

Outgoing edges:
\[
\begin{aligned}
& s \rightarrow c: 5 \\
& s \rightarrow b \rightarrow a \rightarrow d: 6 \\
& s \rightarrow b \rightarrow e: 11
\end{aligned}
\]
\[
\begin{aligned}
& \mathbf{K}=\{s, b, a, c\} \\
& \mathbf{N}=\{e, d, f\} \\
& \mathbf{R}=\{f, t\}
\end{aligned}
\]

\section*{Example}


\section*{Known shortest paths from \(s\) :}
\[
\begin{aligned}
& s \rightsquigarrow s: 0 \\
& s \rightsquigarrow b: 2 \\
& s \rightsquigarrow a: 3 \\
& s \rightsquigarrow c: 5
\end{aligned}
\]

Outgoing edges:
\[
\begin{aligned}
& s \rightarrow b \rightarrow a \rightarrow d: 6 \\
& s \rightarrow b \rightarrow e: 11 \\
& s \rightarrow c \rightarrow f: 7
\end{aligned}
\]
\[
\begin{aligned}
& \mathbf{K}=\{s, b, a, c\} \\
& \mathbf{N}=\{e, d, f\} \\
& \mathbf{R}=\{t\}
\end{aligned}
\]

\section*{Example}


\section*{Known shortest paths from \(s\) :}
\[
\begin{aligned}
& s \leadsto s: 0 \quad s \rightsquigarrow d: 6 \\
& s \leadsto b: 2 \\
& s \rightsquigarrow a: 3 \\
& s \rightsquigarrow c: 5
\end{aligned}
\]

Outgoing edges:
\[
\begin{aligned}
& s \rightarrow b \rightarrow a \rightarrow d: 6 \\
& s \rightarrow b \rightarrow e: 11 \\
& s \rightarrow c \rightarrow f: 7
\end{aligned}
\]
\[
\begin{aligned}
& \mathbf{K}=\{s, b, a, c, d\} \\
& \mathbf{N}=\{e, f\} \\
& \mathbf{R}=\{t\}
\end{aligned}
\]

\section*{Example}

\section*{Known shortest paths from \(s\) :}

\[
\begin{aligned}
& s \rightsquigarrow s: 0 \quad s \rightsquigarrow d: 6 \\
& s \rightsquigarrow b: 2 \\
& s \rightsquigarrow a: 3 \\
& s \rightsquigarrow c: 5
\end{aligned}
\]

Outgoing edges:
\[
\begin{aligned}
& s \rightarrow b \rightarrow a \rightarrow d \rightarrow e: 10 \\
& s \rightarrow b \rightarrow e: 11 \\
& s \rightarrow c \rightarrow f: 7
\end{aligned}
\]
\(\mathbf{K}=\{s, b, a, c, d\}\)
\(\mathbf{N}=\{e, f\}\)
\(R=\{t\}\)

\section*{Example}


\section*{Known shortest paths from \(s\) :}
\[
\begin{aligned}
& s \rightsquigarrow s: 0 \quad s \rightsquigarrow d: 6 \\
& s \rightsquigarrow b: 2 \\
& s \rightsquigarrow a: 3 \\
& s \rightsquigarrow c: 5
\end{aligned}
\]

\section*{Outgoing edges:}
\[
\begin{aligned}
& s \rightarrow b \rightarrow a \rightarrow d \rightarrow e: 10 \\
& s \rightarrow c \rightarrow f: 7
\end{aligned}
\]
\[
\begin{aligned}
& \mathbf{K}=\{s, b, a, c, d\} \\
& \mathbf{N}=\{e, f\} \\
& \mathbf{R}=\{t\}
\end{aligned}
\]

\section*{Example}


\section*{Known shortest paths from \(s\) :}
\[
\begin{array}{ll}
s \rightsquigarrow s: 0 & s \rightsquigarrow d: 6 \\
s \rightsquigarrow b: 2 & s \rightsquigarrow f: 7 \\
s \rightsquigarrow a: 3 & \\
s \rightsquigarrow c: 5 &
\end{array}
\]

\section*{Outgoing edges:}
\[
\begin{aligned}
& s \rightarrow b \rightarrow a \rightarrow d \rightarrow e: 10 \\
& s \rightarrow c \rightarrow f: 7
\end{aligned}
\]
\[
\begin{aligned}
& \mathbf{K}=\{s, b, a, c, d, f\} \\
& \mathbf{N}=\{e\} \\
& \mathbf{R}=\{t\}
\end{aligned}
\]

\section*{Example}

\section*{Known shortest paths from \(s\) :}

\[
\begin{array}{ll}
s \rightsquigarrow s: 0 & s \rightsquigarrow d: 6 \\
s \rightsquigarrow b: 2 & s \rightsquigarrow f: 7 \\
s \rightsquigarrow a: 3 & \\
s \rightsquigarrow c: 5 &
\end{array}
\]

\section*{Outgoing edges:}
\[
\begin{aligned}
& s \rightarrow b \rightarrow a \rightarrow d \rightarrow e: 10 \\
& s \rightarrow c \rightarrow f \rightarrow t: 18
\end{aligned}
\]
\[
\begin{aligned}
& \mathbf{K}=\{s, b, a, c, d, f\} \\
& \mathbf{N}=\{e, t\} \\
& \mathbf{R}=\{ \}
\end{aligned}
\]

\section*{Example}


\section*{Known shortest paths from \(s\) :}
\[
\begin{array}{ll}
s \rightsquigarrow s: 0 & s \rightsquigarrow d: 6 \\
s \rightsquigarrow b: 2 & s \rightsquigarrow f: 7 \\
s \rightsquigarrow a: 3 & s \rightsquigarrow e: 10 \\
s \rightsquigarrow c: 5 &
\end{array}
\]

\section*{Outgoing edges:}
\[
\begin{aligned}
& s \rightarrow b \rightarrow a \rightarrow d \rightarrow e: 10 \\
& s \rightarrow c \rightarrow f \rightarrow t: 18
\end{aligned}
\]
\[
\begin{aligned}
& \mathbf{K}=\{s, b, a, c, d, f, e\} \\
& \mathbf{N}=\{t\} \\
& \mathbf{R}=\{ \}
\end{aligned}
\]

\section*{Example}


\section*{Known shortest paths from \(s\) :}
\[
\begin{array}{ll}
s \rightsquigarrow s: 0 & s \rightsquigarrow d: 6 \\
s \rightsquigarrow b: 2 & s \rightsquigarrow f: 7 \\
s \rightsquigarrow a: 3 & s \rightsquigarrow e: 10 \\
s \rightsquigarrow c: 5 &
\end{array}
\]

\section*{Outgoing edges:}
\[
\begin{aligned}
& s \rightarrow b \rightarrow a \rightarrow d \rightarrow e \rightarrow t: 11 \\
& s \rightarrow c \rightarrow f \rightarrow t: 18
\end{aligned}
\]
\[
\begin{aligned}
& \mathbf{K}=\{s, b, a, c, d, f, e\} \\
& \mathbf{N}=\{t\} \\
& \mathbf{R}=\{ \}
\end{aligned}
\]

\section*{Example}

\section*{Known shortest paths from \(s\) :}

\[
\begin{array}{ll}
s \rightsquigarrow s: 0 & s \rightsquigarrow d: 6 \\
s \rightsquigarrow b: 2 & s \rightsquigarrow f: 7 \\
s \rightsquigarrow a: 3 & s \rightsquigarrow e: 10 \\
s \rightsquigarrow c: 5 &
\end{array}
\]

\section*{Outgoing edges:}
\[
s \rightarrow b \rightarrow a \rightarrow d \rightarrow e \rightarrow t: 11
\]
\(\mathbf{K}=\{s, b, a, c, d, f, e\}\)
\(\mathbf{N}=\{t\}\)
\(R=\{ \}\)

\section*{Example}

\section*{Known shortest paths from \(s\) :}

\[
\begin{array}{ll}
s \rightsquigarrow s: 0 & s \rightsquigarrow d: 6 \\
s \rightsquigarrow b: 2 & s \rightsquigarrow f: 7 \\
s \rightsquigarrow a: 3 & s \rightsquigarrow e: 10 \\
s \rightsquigarrow c: 5 & s \rightsquigarrow t: 11
\end{array}
\]

\section*{Outgoing edges:}
\[
s \rightarrow b \rightarrow a \rightarrow d \rightarrow e \rightarrow t: 11
\]
\(\mathbf{K}=\{s, b, a, c, d, f, e, t\}\)
\(\mathbf{N}=\{ \}\)
\(R=\{ \}\)

\section*{Example}


\section*{Known shortest paths from \(s\) :}
\begin{tabular}{ll}
\(s \rightsquigarrow s: 0\) & \(s \rightsquigarrow d: 6\) \\
\(s \rightsquigarrow b: 2\) & \(s \rightsquigarrow f: 7\) \\
\(s \rightsquigarrow a: 3\) & \(s \rightsquigarrow e: 10\) \\
\(s \rightsquigarrow c: 5\) & \(s \rightsquigarrow t: 11\)
\end{tabular}

Outgoing edges:
\[
\begin{aligned}
& \mathbf{K}=\{s, b, a, c, d, f, e, t\} \\
& \mathbf{N}=\{ \} \\
& \mathbf{R}=\{ \}
\end{aligned}
\]

Quiz

\section*{Quiz}


Which nodes are in \(K\) (known shortest paths) after six steps of Dijkstra's algorithm with starting node A?

\section*{Ingredients of an Algorithm}

Wanted: shortest paths from a starting node \(s\).
- Weight of the shortest path found so far
\[
d_{s}: V \rightarrow \mathbb{R}
\]

At the beginning: \(d_{s}[v]=\infty\) for all \(v \in V\). Goal: \(d_{s}[v]=\delta(s, v)\) for all \(v \in V\).
- Predecessor of a node
\[
\pi_{s}: V \rightarrow V
\]

Initially \(\pi_{s}[v]\) undefined for each node \(v \in V\)

Algorithm: Dijkstra( \(G, s\) )

\section*{Algorithm: \(\operatorname{Dijkstra}(G, s)\)}

Input: Positively weighted Graph \(G=(V, E, c)\), starting point \(s \in V\),

\section*{Algorithm: Dijkstra( \(G, s\) )}

Input: Positively weighted Graph \(G=(V, E, c)\), starting point \(s \in V\),
Output: Length \(d_{s}\) of the shortest paths from \(s\) and predecessor \(\pi_{s}\) for each node

\section*{Algorithm: Dijkstra( \(G, s\) )}

Input: Positively weighted Graph \(G=(V, E, c)\), starting point \(s \in V\),
Output: Length \(d_{s}\) of the shortest paths from \(s\) and predecessor \(\pi_{s}\) for each node

\section*{foreach \(u \in V\) do}
\(\left\lfloor d_{s}[u] \leftarrow \infty ; \pi_{s}[u] \leftarrow\right.\) null

\section*{Algorithm: Dijkstra \((G, s)\)}

Input: Positively weighted Graph \(G=(V, E, c)\), starting point \(s \in V\),
Output: Length \(d_{s}\) of the shortest paths from \(s\) and predecessor \(\pi_{s}\) for each node
\[
\begin{aligned}
& \text { foreach } u \in V \text { do } \\
& L d_{s}[u] \leftarrow \infty ; \pi_{s}[u] \leftarrow \text { null } \\
& d_{s}[s] \leftarrow 0 ; N \leftarrow\{s\}
\end{aligned}
\]

\section*{Algorithm: \(\operatorname{Dijkstra(~} G, s\) )}

Input: Positively weighted Graph \(G=(V, E, c)\), starting point \(s \in V\),
Output: Length \(d_{s}\) of the shortest paths from \(s\) and predecessor \(\pi_{s}\) for each node
foreach \(u \in V\) do
\(\left\lfloor d_{s}[u] \leftarrow \infty ; \pi_{s}[u] \leftarrow\right.\) null
\(d_{s}[s] \leftarrow 0 ; N \leftarrow\{s\}\)
while \(N \neq \emptyset\) do

\section*{Algorithm: \(\operatorname{Dijkstra}(G, s)\)}

Input: Positively weighted Graph \(G=(V, E, c)\), starting point \(s \in V\),
Output: Length \(d_{s}\) of the shortest paths from \(s\) and predecessor \(\pi_{s}\) for each node
```

foreach $u \in V$ do
$\left\llcorner d_{s}[u] \leftarrow \infty ; \pi_{s}[u] \leftarrow\right.$ null
$d_{s}[s] \leftarrow 0 ; N \leftarrow\{s\}$
while $N \neq \emptyset$ do
$u \leftarrow \arg \min _{u \in N} d_{s}[u] ; N \leftarrow N \backslash\{u\}$

```

\section*{Algorithm: \(\operatorname{Dijkstra}(G, s)\)}

Input: Positively weighted Graph \(G=(V, E, c)\), starting point \(s \in V\),
Output: Length \(d_{s}\) of the shortest paths from \(s\) and predecessor \(\pi_{s}\) for each node
foreach \(u \in V\) do
\(\left\lfloor d_{s}[u] \leftarrow \infty ; \pi_{s}[u] \leftarrow\right.\) null
\(d_{s}[s] \leftarrow 0 ; N \leftarrow\{s\}\)
while \(N \neq \emptyset\) do
\(u \leftarrow \arg \min _{u \in N} d_{s}[u] ; N \leftarrow N \backslash\{u\}\)
foreach \(v \in N^{+}(u)\) do


\section*{Algorithm: \(\operatorname{Dijkstra}(G, s)\)}

Input: Positively weighted Graph \(G=(V, E, c)\), starting point \(s \in V\),
Output: Length \(d_{s}\) of the shortest paths from \(s\) and predecessor \(\pi_{s}\) for each node
foreach \(u \in V\) do
\(\left\lfloor d_{s}[u] \leftarrow \infty ; \pi_{s}[u] \leftarrow\right.\) null
\(d_{s}[s] \leftarrow 0 ; N \leftarrow\{s\}\)
while \(N \neq \emptyset\) do
\(u \leftarrow \arg \min _{u \in N} d_{s}[u] ; N \leftarrow N \backslash\{u\}\)
foreach \(v \in N^{+}(u)\) do if \(d_{s}[u]+c(u, v)<d_{s}[v]\) then


\section*{Algorithm: \(\operatorname{Dijkstra}(G, s)\)}

Input: Positively weighted Graph \(G=(V, E, c)\), starting point \(s \in V\),
Output: Length \(d_{s}\) of the shortest paths from \(s\) and predecessor \(\pi_{s}\) for each node
foreach \(u \in V\) do
\(\left\lfloor d_{s}[u] \leftarrow \infty ; \pi_{s}[u] \leftarrow\right.\) null
\(d_{s}[s] \leftarrow 0 ; N \leftarrow\{s\}\)
while \(N \neq \emptyset\) do
\[
u \leftarrow \arg \min _{u \in N} d_{s}[u] ; N \leftarrow N \backslash\{u\}
\]
foreach \(v \in N^{+}(u)\) do
\[
\text { if } \begin{gathered}
d_{s}[u]+c(u, v)<d_{s}[v] \text { then } \\
d_{s}[v] \leftarrow d_{s}[u]+c(u, v) \\
\pi_{s}[v] \leftarrow u
\end{gathered}
\]


\section*{Algorithm: \(\operatorname{Dijkstra}(G, s)\)}

Input: Positively weighted Graph \(G=(V, E, c)\), starting point \(s \in V\),
Output: Length \(d_{s}\) of the shortest paths from \(s\) and predecessor \(\pi_{s}\) for each node
foreach \(u \in V\) do
\(\left\lfloor d_{s}[u] \leftarrow \infty ; \pi_{s}[u] \leftarrow\right.\) null
\(d_{s}[s] \leftarrow 0 ; N \leftarrow\{s\}\)
while \(N \neq \emptyset\) do
\[
u \leftarrow \arg \min _{u \in N} d_{s}[u] ; N \leftarrow N \backslash\{u\}
\]
foreach \(v \in N^{+}(u)\) do
\[
\text { if } \begin{gathered}
d_{s}[u]+c(u, v)<d_{s}[v] \text { then } \\
d_{s}[v] \leftarrow d_{s}[u]+c(u, v) \\
\pi_{s}[v] \leftarrow u \\
N \leftarrow N \cup\{v\}
\end{gathered}
\]


\section*{Algorithm: \(\operatorname{Dijkstra}(G, s)\)}

Input: Positively weighted Graph \(G=(V, E, c)\), starting point \(s \in V\),
Output: Length \(d_{s}\) of the shortest paths from \(s\) and predecessor \(\pi_{s}\) for each node
foreach \(u \in V\) do
\(\left\lfloor d_{s}[u] \leftarrow \infty ; \pi_{s}[u] \leftarrow\right.\) null
\(d_{s}[s] \leftarrow 0 ; N \leftarrow\{s\}\)
while \(N \neq \emptyset\) do
\[
u \leftarrow \arg \min _{u \in N} d_{s}[u] ; N \leftarrow N \backslash\{u\}
\]
foreach \(v \in N^{+}(u)\) do
\[
\text { if } \begin{aligned}
& d_{s}[u]+c(u, v)<d_{s}[v] \text { then } \\
& d_{s}[v] \leftarrow d_{s}[u]+c(u, v) \\
& \pi_{s}[v] \leftarrow u \\
& N \leftarrow N \cup\{v\}
\end{aligned}
\]


\section*{Algorithm: \(\operatorname{Dijkstra}(G, s)\)}

Input: Positively weighted Graph \(G=(V, E, c)\), starting point \(s \in V\),
Output: Length \(d_{s}\) of the shortest paths from \(s\) and predecessor \(\pi_{s}\) for each node
foreach \(u \in V\) do
\(\left\lfloor d_{s}[u] \leftarrow \infty ; \pi_{s}[u] \leftarrow\right.\) null
\(d_{s}[s] \leftarrow 0 ; N \leftarrow\{s\}\)
while \(N \neq \emptyset\) do
\[
u \leftarrow \arg \min _{u \in N} d_{s}[u] ; N \leftarrow N \backslash\{u\}
\]
foreach \(v \in N^{+}(u)\) do
\[
\begin{aligned}
& \text { if } d_{s}[u]+c(u, v)<d_{s}[v] \text { then } \\
& \qquad \begin{array}{l}
d_{s}[v] \leftarrow d_{s}[u]+c(u, v) \\
\pi_{s}[v] \leftarrow u \\
N \leftarrow N \cup\{v\}
\end{array}
\end{aligned}
\]


\section*{Algorithm: \(\operatorname{Dijkstra}(G, s)\)}

Input: Positively weighted Graph \(G=(V, E, c)\), starting point \(s \in V\),
Output: Length \(d_{s}\) of the shortest paths from \(s\) and predecessor \(\pi_{s}\) for each node
foreach \(u \in V\) do
\(\left\lfloor d_{s}[u] \leftarrow \infty ; \pi_{s}[u] \leftarrow\right.\) null
\(d_{s}[s] \leftarrow 0 ; N \leftarrow\{s\}\)
while \(N \neq \emptyset\) do
\[
u \leftarrow \arg \min _{u \in N} d_{s}[u] ; N \leftarrow N \backslash\{u\}
\]
foreach \(v \in N^{+}(u)\) do
\[
\begin{aligned}
& \text { if } d_{s}[u]+c(u, v)<d_{s}[v] \text { then } \\
& \qquad \begin{array}{l}
d_{s}[v] \leftarrow d_{s}[u]+c(u, v) \\
\pi_{s}[v] \leftarrow u \\
N \leftarrow N \cup\{v\}
\end{array}
\end{aligned}
\]


\section*{Algorithm: \(\operatorname{Dijkstra}(G, s)\)}

Input: Positively weighted Graph \(G=(V, E, c)\), starting point \(s \in V\),
Output: Length \(d_{s}\) of the shortest paths from \(s\) and predecessor \(\pi_{s}\) for each node
foreach \(u \in V\) do
\(\left\lfloor d_{s}[u] \leftarrow \infty ; \pi_{s}[u] \leftarrow\right.\) null
\(d_{s}[s] \leftarrow 0 ; N \leftarrow\{s\}\)
while \(N \neq \emptyset\) do
\[
u \leftarrow \arg \min _{u \in N} d_{s}[u] ; N \leftarrow N \backslash\{u\}
\]
foreach \(v \in N^{+}(u)\) do
\[
\begin{aligned}
& \text { if } d_{s}[u]+c(u, v)<d_{s}[v] \text { then } \\
& \begin{array}{l}
d_{s}[v] \leftarrow d_{s}[u]+c(u, v) \\
\pi_{s}[v] \leftarrow u \\
N \leftarrow N \cup\{v\}
\end{array}
\end{aligned}
\]


\section*{Implementation: Data Structure for \(N ?\)}

Required operations:

\section*{Implementation: Data Structure for \(N\) ?}

Required operations:
■ Insert((p, k)): add key (node) \(k\) with value (upper bound) \(p\)

\section*{Implementation: Data Structure for \(N\) ?}

Required operations:
■ Insert((p, k)): add key (node) \(k\) with value (upper bound) \(p\)
- ExtractMin():
remove element with smallest value

\section*{Implementation: Data Structure for \(N\) ?}

Required operations:
■ Insert((p, k)): add key (node) \(k\) with value (upper bound) \(p\)
- ExtractMin():
remove element with smallest value
\(\Rightarrow\) MinHeap

\section*{Implementation: Data Structure for \(N\) ?}

Required operations:
■ Insert((p, k)): add key (node) \(k\) with value (upper bound) \(p\)
■ ExtractMin(): remove element with smallest value

\(\Rightarrow\) MinHeap

\section*{Implementation: Data Structure for \(N\) ?}

\section*{Required operations:}

■ Insert((p, k)): add key (node) \(k\) with value (upper bound) \(p\)
- ExtractMin(): remove element with smallest value

\(\Rightarrow\) MinHeap with nodes from \(N\) as keys and with upper bounds as value

\section*{Implementation: Data Structure for \(N\) ?}

\section*{Required operations:}

■ Insert((p, k)): add key (node) \(k\) with value (upper bound) \(p\)
- ExtractMin(): remove element with smallest value

\(\Rightarrow\) MinHeap with nodes from \(N\) as keys and with upper bounds as value

\section*{Implementation: Data Structure for \(N\) ?}

\section*{Required operations:}

■ Insert ( \(\mathrm{p}, \mathrm{k})\) ): \(\mathcal{O}(\log |V|)\) add key (node) \(k\) with value (upper bound) \(p\)
- ExtractMin(): remove element with smallest value

\(\Rightarrow\) MinHeap with nodes from \(N\) as keys and with upper bounds as value

\section*{Implementation: Data Structure for \(N\) ?}

\section*{Required operations:}

■ Insert ( \(\mathrm{p}, \mathrm{k})\) ): \(\mathcal{O}(\log |V|)\) add key (node) \(k\) with value (upper bound) \(p\)
■ ExtractMin(): \(\mathcal{O}(\log |V|)\) remove element with smallest value

\(\Rightarrow\) MinHeap with nodes from \(N\) as keys and with upper bounds as value

\section*{Implementation: Data Structure for \(N\) ?}

\section*{Required operations:}

■ Insert ( \(\mathrm{p}, \mathrm{k}) \mathrm{)}: \mathcal{O}(\log |V|)\) add key (node) \(k\) with value (upper bound) \(p\)
■ ExtractMin(): \(\mathcal{O}(\log |V|)\) remove element with smallest value
- DecreaseKey ( \(\mathrm{p}, \mathrm{k}\) )):
 update the value of key \(k\) to \(p\)
\(\Rightarrow\) MinHeap with nodes from \(N\) as keys and with upper bounds as value

\section*{Implementation: Data Structure for \(N\) ?}

\section*{Required operations:}

■ Insert ( \(\mathrm{p}, \mathrm{k}) \mathrm{)}: \mathcal{O}(\log |V|)\) add key (node) \(k\) with value (upper bound) \(p\)
■ ExtractMin(): \(\mathcal{O}(\log |V|)\) remove element with smallest value
- DecreaseKey ( \(\mathrm{p}, \mathrm{k}\) )):
 update the value of key \(k\) to \(p\)
\(\Rightarrow\) MinHeap with nodes from \(N\) as keys and with upper bounds as value

\section*{Implementation: Data Structure for \(N\) ?}

\section*{Required operations:}

■ Insert ( \(\mathrm{p}, \mathrm{k}) \mathrm{)}: \mathcal{O}(\log |V|)\) add key (node) \(k\) with value (upper bound) \(p\)
■ ExtractMin(): \(\mathcal{O}(\log |V|)\) remove element with smallest value
- DecreaseKey ( \(\mathrm{p}, \mathrm{k}\) )):
 update the value of key \(k\) to \(p\)
\(\Rightarrow\) MinHeap with nodes from \(N\) as keys and with upper bounds as value

\section*{Implementation: Data Structure for \(N\) ?}

\section*{Required operations:}

■ Insert ( \(\mathrm{p}, \mathrm{k}) \mathrm{)}: \mathcal{O}(\log |V|)\) add key (node) \(k\) with value (upper bound) \(p\)
■ ExtractMin(): \(\mathcal{O}(\log |V|)\) remove element with smallest value
- DecreaseKey ( \(\mathrm{p}, \mathrm{k}\) )):
 update the value of key \(k\) to \(p\)
\(\Rightarrow\) MinHeap with nodes from \(N\) as keys and with upper bounds as value

\section*{Implementation: Data Structure for \(N\) ?}

\section*{Required operations:}

■ Insert ( \(\mathrm{p}, \mathrm{k}) \mathrm{)}: \mathcal{O}(\log |V|)\) add key (node) \(k\) with value (upper bound) \(p\)
■ ExtractMin(): \(\mathcal{O}(\log |V|)\) remove element with smallest value

■ DecreaseKey ((p, k)): \(\mathcal{O}(\log |V|)\)
 update the value of key \(k\) to \(p\)
\(\Rightarrow\) MinHeap with nodes from \(N\) as keys and with upper bounds as value

DecreaseKey

\section*{DecreaseKey}

Two possibilities:

\section*{DecreaseKey}

Two possibilities:
- tracking position:
store at nodes or external

\section*{DecreaseKey}

\section*{Two possibilities:}
- tracking position:
store at nodes or external
■ or avoid DecreaseKey: with Lazy Deletion

\section*{DecreaseKey}

\section*{Two possibilities:}
- tracking position:
store at nodes or external
■ or avoid DecreaseKey: with Lazy Deletion

\section*{Lazy Deletion:}

\section*{DecreaseKey}

\section*{Two possibilities:}
- tracking position:
store at nodes or external
■ or avoid DecreaseKey: with Lazy Deletion

\section*{Lazy Deletion:}

■ Re-insert node with smaller upper bound

\section*{DecreaseKey}

\section*{Two possibilities:}
- tracking position:
store at nodes or external
■ or avoid DecreaseKey: with Lazy Deletion

\section*{Lazy Deletion:}


■ Re-insert node with smaller upper bound

\section*{DecreaseKey}

\section*{Two possibilities:}
- tracking position:
store at nodes or external
■ or avoid DecreaseKey: with Lazy Deletion

\section*{Lazy Deletion:}


■ Re-insert node with smaller upper bound

\section*{DecreaseKey}

\section*{Two possibilities:}
- tracking position:
store at nodes or external
■ or avoid DecreaseKey: with Lazy Deletion

\section*{Lazy Deletion:}


■ Re-insert node with smaller upper bound

\section*{DecreaseKey}

\section*{Two possibilities:}
- tracking position:
store at nodes or external
■ or avoid DecreaseKey: with Lazy Deletion

\section*{Lazy Deletion:}


■ Re-insert node with smaller upper bound

\section*{DecreaseKey}

\section*{Two possibilities:}
- tracking position:
store at nodes or external
■ or avoid DecreaseKey: with Lazy Deletion

\section*{Lazy Deletion:}


■ Re-insert node with smaller upper bound

\section*{DecreaseKey}

\section*{Two possibilities:}
- tracking position:
store at nodes or external
■ or avoid DecreaseKey: with Lazy Deletion

\section*{Lazy Deletion:}


■ Re-insert node with smaller upper bound

\section*{DecreaseKey}

\section*{Two possibilities:}
- tracking position:
store at nodes or external
■ or avoid DecreaseKey: with Lazy Deletion

\section*{Lazy Deletion:}


■ Re-insert node with smaller upper bound
■ Mark nodes "deleted" once extracted

\section*{DecreaseKey}

\section*{Two possibilities:}

■ tracking position:
store at nodes or external
■ or avoid DecreaseKey: with Lazy Deletion

\section*{Lazy Deletion:}


■ Re-insert node with smaller upper bound
■ Mark nodes "deleted" once extracted
\(\Rightarrow\) Memory consumption of heap can grow to \(\Theta(|E|)\) instead of \(\Theta(|V|)\)

\section*{DecreaseKey}

\section*{Two possibilities:}

■ tracking position:
store at nodes or external
■ or avoid DecreaseKey: with Lazy Deletion

\section*{Lazy Deletion:}


■ Re-insert node with smaller upper bound
■ Mark nodes "deleted" once extracted
\(\Rightarrow\) Memory consumption of heap can grow to \(\Theta(|E|)\) instead of \(\Theta(|V|)\)
\(\Rightarrow\) Because \(|E| \leq|V|^{2}\) : Insert and ExtractMin still in \(\mathcal{O}\left(\log |V|^{2}\right)=\mathcal{O}(\log |V|)\)

Algorithm: Dijkstra( \(G, s\) ) with Lazy Deletion

\section*{Algorithm: Dijkstra( \(G, s\) ) with Lazy Deletion}

Input: Positively weighted Graph \(G=(V, E, c)\), starting point \(s \in V\), Output: Length \(d_{s}\) of the shortest paths from \(s\) and predecessor \(\pi_{s}\) for each node foreach \(u \in V\) do
\(\left\lfloor d_{s}[u] \leftarrow \infty ; \pi_{s}[u] \leftarrow\right.\) null

\section*{Algorithm: Dijkstra( \(G, s\) ) with Lazy Deletion}

Input: Positively weighted Graph \(G=(V, E, c)\), starting point \(s \in V\), Output: Length \(d_{s}\) of the shortest paths from \(s\) and predecessor \(\pi_{s}\) for each node foreach \(u \in V\) do
\(L d_{s}[u] \leftarrow \infty ; \pi_{s}[u] \leftarrow\) null
\(K=\{ \} ; d_{s}[s] \leftarrow 0 ; N \leftarrow\{s\}\)

\section*{Algorithm: Dijkstra( \(G, s\) ) with Lazy Deletion}

Input: Positively weighted Graph \(G=(V, E, c)\), starting point \(s \in V\), Output: Length \(d_{s}\) of the shortest paths from \(s\) and predecessor \(\pi_{s}\) for each node foreach \(u \in V\) do
\(\left\lfloor d_{s}[u] \leftarrow \infty ; \pi_{s}[u] \leftarrow\right.\) null
\(K=\{ \} ; d_{s}[s] \leftarrow 0 ; N \leftarrow\{s\}\) while \(N \neq \emptyset\) do

\section*{Algorithm: Dijkstra( \(G, s\) ) with Lazy Deletion}

Input: Positively weighted Graph \(G=(V, E, c)\), starting point \(s \in V\), Output: Length \(d_{s}\) of the shortest paths from \(s\) and predecessor \(\pi_{s}\) for each node foreach \(u \in V\) do
\(\left\lfloor d_{s}[u] \leftarrow \infty ; \pi_{s}[u] \leftarrow\right.\) null
\(K=\{ \} ; d_{s}[s] \leftarrow 0 ; N \leftarrow\{s\}\) while \(N \neq \emptyset\) do
\(d, u \leftarrow \operatorname{Extract} \operatorname{Min}(N)\)

\section*{Algorithm: Dijkstra( \(G, s\) ) with Lazy Deletion}

Input: Positively weighted Graph \(G=(V, E, c)\), starting point \(s \in V\), Output: Length \(d_{s}\) of the shortest paths from \(s\) and predecessor \(\pi_{s}\) for each node foreach \(u \in V\) do
\(d_{s}[u] \leftarrow \infty ; \pi_{s}[u] \leftarrow\) null
\(K=\{ \} ; d_{s}[s] \leftarrow 0 ; N \leftarrow\{s\}\)
while \(N \neq \emptyset\) do
\(d, u \leftarrow \operatorname{ExtractMin}(N)\)
if \(u \notin K\) then

\section*{Algorithm: Dijkstra( \(G, s\) ) with Lazy Deletion}

Input: Positively weighted Graph \(G=(V, E, c)\), starting point \(s \in V\),
Output: Length \(d_{s}\) of the shortest paths from \(s\) and predecessor \(\pi_{s}\) for each node foreach \(u \in V\) do
\(\left\lfloor d_{s}[u] \leftarrow \infty ; \pi_{s}[u] \leftarrow\right.\) null
\(K=\{ \} ; d_{s}[s] \leftarrow 0 ; N \leftarrow\{s\}\)
while \(N \neq \emptyset\) do
\(d, u \leftarrow \operatorname{ExtractMin}(N)\)
if \(u \notin K\) then
\(K \leftarrow K \cup\{u\}\)

\section*{Algorithm: Dijkstra( \(G, s\) ) with Lazy Deletion}

Input: Positively weighted Graph \(G=(V, E, c)\), starting point \(s \in V\), Output: Length \(d_{s}\) of the shortest paths from \(s\) and predecessor \(\pi_{s}\) for each node foreach \(u \in V\) do
\(\left\lfloor d_{s}[u] \leftarrow \infty ; \pi_{s}[u] \leftarrow\right.\) null
\(K=\{ \} ; d_{s}[s] \leftarrow 0 ; N \leftarrow\{s\}\) while \(N \neq \emptyset\) do
\(d, u \leftarrow \operatorname{ExtractMin}(N)\)
if \(u \notin K\) then
\(K \leftarrow K \cup\{u\}\)
foreach \(v \in N^{+}(u)\) do

\section*{Algorithm: Dijkstra( \(G, s\) ) with Lazy Deletion}

Input: Positively weighted Graph \(G=(V, E, c)\), starting point \(s \in V\),
Output: Length \(d_{s}\) of the shortest paths from \(s\) and predecessor \(\pi_{s}\) for each node foreach \(u \in V\) do
\(L d_{s}[u] \leftarrow \infty ; \pi_{s}[u] \leftarrow\) null
\(K=\{ \} ; d_{s}[s] \leftarrow 0 ; N \leftarrow\{s\}\) while \(N \neq \emptyset\) do
\(d, u \leftarrow \operatorname{ExtractMin}(N)\)
if \(u \notin K\) then
\(K \leftarrow K \cup\{u\}\)
foreach \(v \in N^{+}(u)\) do if \(d+c(u, v)<d_{s}[v]\) then

\section*{Algorithm: \(\operatorname{Dijkstra}(G, s)\) with Lazy Deletion}

Input: Positively weighted Graph \(G=(V, E, c)\), starting point \(s \in V\),
Output: Length \(d_{s}\) of the shortest paths from \(s\) and predecessor \(\pi_{s}\) for each node foreach \(u \in V\) do
\(L d_{s}[u] \leftarrow \infty ; \pi_{s}[u] \leftarrow\) null
\(K=\{ \} ; d_{s}[s] \leftarrow 0 ; N \leftarrow\{s\}\) while \(N \neq \emptyset\) do
\(d, u \leftarrow \operatorname{ExtractMin}(N)\)
if \(u \notin K\) then
\(K \leftarrow K \cup\{u\}\)
foreach \(v \in N^{+}(u)\) do if \(d+c(u, v)<d_{s}[v]\) then
\(d_{s}[v] \leftarrow d+c(u, v) ; \pi_{s}[v] \leftarrow u\)

\section*{Algorithm: Dijkstra( \(G, s\) ) with Lazy Deletion}

Input: Positively weighted Graph \(G=(V, E, c)\), starting point \(s \in V\),
Output: Length \(d_{s}\) of the shortest paths from \(s\) and predecessor \(\pi_{s}\) for each node foreach \(u \in V\) do
\[
\begin{array}{r}
L d_{s}[u] \leftarrow \infty ; \pi_{s}[u] \leftarrow \text { null } \\
K=\{ \} ; d_{s}[s] \leftarrow 0 ; N \leftarrow\{s\}
\end{array}
\]
\[
\text { while } N \neq \emptyset \text { do }
\]
\[
d, u \leftarrow \operatorname{Extract} \operatorname{Min}(N)
\]
\[
\text { if } u \notin K \text { then }
\]
\[
K \leftarrow K \cup\{u\}
\]
\[
\text { foreach } v \in N^{+}(u) \text { do }
\]
\[
\text { if } d+c(u, v)<d_{s}[v] \text { then }
\]
\[
d_{s}[v] \leftarrow d+c(u, v) ; \pi_{s}[v] \leftarrow u
\]
\[
\operatorname{Insert}((d+c(u, v), v))
\]

\section*{Algorithm: Dijkstra( \(G, s\) ) with Lazy Deletion}

Input: Positively weighted Graph \(G=(V, E, c)\), starting point \(s \in V\),
Output: Length \(d_{s}\) of the shortest paths from \(s\) and predecessor \(\pi_{s}\) for each node foreach \(u \in V\) do
\[
\begin{array}{r}
L d_{s}[u] \leftarrow \infty ; \pi_{s}[u] \leftarrow \text { null } \\
K=\{ \} ; d_{s}[s] \leftarrow 0 ; N \leftarrow\{s\}
\end{array}
\]
\[
\text { while } N \neq \emptyset \text { do }
\]
\[
d, u \leftarrow \operatorname{Extract} \operatorname{Min}(N)
\]
\[
\text { if } u \notin K \text { then }
\]
\[
K \leftarrow K \cup\{u\}
\]
\[
\text { foreach } v \in N^{+}(u) \text { do }
\]
\[
\text { if } d+c(u, v)<d_{s}[v] \text { then }
\]
\[
d_{s}[v] \leftarrow d+c(u, v) ; \pi_{s}[v] \leftarrow u
\]
\[
\operatorname{Insert}((d+c(u, v), v))
\]

\section*{Algorithm: Dijkstra( \(G, s\) ) with Lazy Deletion}

Input: Positively weighted Graph \(G=(V, E, c)\), starting point \(s \in V\),
Output: Length \(d_{s}\) of the shortest paths from \(s\) and predecessor \(\pi_{s}\) for each node foreach \(u \in V\) do
\[
\begin{array}{r}
d_{s}[u] \leftarrow \infty ; \pi_{s}[u] \leftarrow \text { null } \\
K=\{ \} ; d_{s}[s] \leftarrow 0 ; N \leftarrow\{s\}
\end{array}
\]
\[
\text { while } N \neq \emptyset \text { do }
\]
\[
d, u \leftarrow \operatorname{ExtractMin}(N)
\]
\[
\text { if } u \notin K \text { then }
\]
\[
K \leftarrow K \cup\{u\}
\]
\[
\text { foreach } v \in N^{+}(u) \text { do }
\]
\[
\text { if } d+c(u, v)<d_{s}[v] \text { then }
\]
\[
d_{s}[v] \leftarrow d+c(u, v) ; \pi_{s}[v] \leftarrow u
\]
\[
\operatorname{Insert}((d+c(u, v), v))
\]

\section*{Running time:}

Initialization: \(\mathcal{O}(|V|)\)
\((|V|+|E|)\) times ExtractMin: \(\mathcal{O}((|V|+|E|)\).
\(\log |V|)\);
\((|E|+1)\) times Insert: \(\mathcal{O}(|E| \cdot \log |V|)\);
\(\Rightarrow\) Overall: \(\mathcal{O}((|V|+|E|) \cdot \log |V|)\)

\section*{Runtime of Dijkstra (without Lazy Deletion)}

■ \(|V| \times\) ExtractMin: \(\mathcal{O}(|V| \log |V|)\)
■ \(|E| \times\) Insert or DecreaseKey: \(\mathcal{O}(|E| \log |V|)\)
■ \(1 \times\) Init: \(\mathcal{O}(|V|)\)
■ Overal \({ }^{39} 40\) :
\[
\mathcal{O}((|V|+|E|) \log |V|)
\]

\footnotetext{
\({ }^{39}\) For connected graphs: \(\mathcal{O}(|E| \log |V|)\)
\({ }^{40}\) Can be improved when a data structure optimized for ExtractMin and DecreaseKey ist used (Fibonacci Heap), then runtime \(\mathcal{O}(|E|+|V| \log |V|)\).
}

Observations

\section*{Observations}

■ Is the shortest path always unique?

\section*{Observations}

■ Is the shortest path always unique? No!


\section*{Observations}

■ Is the shortest path always unique? No!


Dijkstra's algorithm finds one (any) shortest path.

\section*{Observations}

■ Is the shortest path always unique? No!


Dijkstra's algorithm finds one (any) shortest path.
- Is there always at least one shortest path?

\section*{Observations}

■ Is the shortest path always unique? No!


Dijkstra's algorithm finds one (any) shortest path.
■ Is there always at least one shortest path? No! Negative cycles.

\section*{Observations}

■ Is the shortest path always unique? No!


Dijkstra's algorithm finds one (any) shortest path.
■ Is there always at least one shortest path? No! Negative cycles.


\section*{Observations}

■ Is the shortest path always unique? No!


Dijkstra's algorithm finds one (any) shortest path.
■ Is there always at least one shortest path? No! Negative cycles.


\subsection*{26.3 General Algorithm}

Why Dijkstra is correct and how to generalize.

\section*{Observations (1)}

\section*{Triangle Inequality}

For all \(s, u, v \in V\) :
\[
\delta(s, v) \leq \delta(s, u)+\delta(u, v)
\]


A shortest path from \(s\) to \(v\) cannot be longer than a shortest path from \(s\) to \(v\) that has to include \(u\)

\section*{Observations (2)}

\section*{Optimal Substructure}

Sub-paths of shortest paths are shortest paths. Let \(p=\left\langle v_{0}, \ldots, v_{k}\right\rangle\) be a shortest path from \(v_{0}\) to \(v_{k}\). Then each of the sub-paths \(p_{i j}=\left\langle v_{i}, \ldots, v_{j}\right\rangle\) ( \(0 \leq i<j \leq k\) ) is a shortest path from \(v_{i}\) to \(v_{j}\).


If not, then one of the sub-paths could be shortened which immediately leads to a contradiction.

\section*{Observations (3)}

Shortest paths do not contain cycles
1. Shortest path contains a negative cycle: there is no shortest path, contradiction
2. Path contains a positive cycle: removing the cycle from the path will reduce the weight. Contradiction.
3. Path contains a cycle with weight 0: removing the cycle from the path will not change the weight. Remove the cycle (convention).

\section*{General Algorithm}
1. Initialise \(d_{s}\) and \(\pi_{s}: d_{s}[v]=\infty, \pi_{s}[v]=\) null for each \(v \in V\)
2. Set \(d_{s}[s] \leftarrow 0\)
3. Choose an edge \((u, v) \in E\)

\section*{Relax \((u, v)\) :}
if \(d_{s}[u]+c(u, v)<d_{s}[v]\) then
\(d_{s}[v] \leftarrow d_{s}[u]+c(u, v)\)
\(\pi_{s}[v] \leftarrow u\)
return true
return false

4. Repeat 3 until nothing can be relaxed any more.
(until \(d_{s}[v] \leq d_{s}[u]+c(u, v) \quad \forall(u, v) \in E\) )

\section*{It is Safe to Relax}

At any time in the algorithm above it holds
\[
d_{s}[v] \geq \delta(s, v) \quad \forall v \in V
\]

\section*{It is Safe to Relax}

At any time in the algorithm above it holds
\[
d_{s}[v] \geq \delta(s, v) \quad \forall v \in V
\]

In the relaxation step:
\[
\begin{aligned}
\delta(s, v) & \leq \delta(s, u)+\delta(u, v) \\
\delta(s, u) & \leq d_{s}[u] \\
\delta(u, v) & \leq c(u, v) \\
\Rightarrow \quad d_{s}[u]+c(u, v) & \geq \delta(s, v) \\
& \\
\Rightarrow & \min \left\{d_{s}[v], d_{s}[u]+c(u, v)\right\} \geq \delta(s, v)
\end{aligned}
\]

\section*{Central Question}

How / in which order should edges be chosen in above algorithm?

\section*{Special Case: Directed Acyclic Graph (DAG)}

DAG \(\Rightarrow\) topological sorting returns optimal visiting order


Top. Sort: \(\Rightarrow\) Order \(s, v_{1}, v_{2}, v_{3}, v_{4}, v_{6}, v_{5}, v_{8}, v_{7}\).

\section*{Special Case: Directed Acyclic Graph (DAG)}

DAG \(\Rightarrow\) topological sorting returns optimal visiting order


Top. Sort: \(\Rightarrow\) Order \(s, v_{1}, v_{2}, v_{3}, v_{4}, v_{6}, v_{5}, v_{8}, v_{7}\).

\section*{Other Cases}

■ Special case: \(c \equiv=1 \Rightarrow\) BFS
■ Special Case: Positive Edge Weights \(\Rightarrow\) Dijkstra - .
■ General Weighted Graphs: cycles with negative weights can shorten the path, a shortest path is not guaranteed to exist.

\section*{Dynamic Programming Approach (Bellman)}

Induction over number of edges \(d_{s}[i, v]\) : Shortest path from \(s\) to \(v\) via maximally \(i\) edges.
\[
\begin{aligned}
& d_{s}[i, v]=\min \left\{d_{s}[i-1, v], \min _{(u, v) \in E}\left(d_{s}[i-1, u]+c(u, v)\right)\right. \\
& d_{s}[0, s]=0, d_{s}[0, v]=\infty \forall v \neq s .
\end{aligned}
\]

\section*{Dynamic Programming Approach (Bellman)}
\begin{tabular}{c|ccccc} 
& \(s\) & \(\cdots\) & \(v\) & \(\cdots\) & \(w\) \\
\hline 0 & 0 & \(\infty\) & \(\infty\) & \(\infty\) & \(\infty\) \\
1 & 0 & \(\infty\) & 7 & \(\infty\) & -2 \\
\(\vdots\) & \(\vdots\) & \(\vdots\) & \(\vdots\) & \(\vdots\) & \(\vdots\) \\
\(n-1\) & 0 & \(\cdots\) & \(\cdots\) & \(\cdots\) & \(\cdots\)
\end{tabular}


Algorithm: Iterate over last row until the relaxation steps do not provide any further changes, maximally \(n-1\) iterations. If still changes, then there is no shortest path.

\section*{Algorithm Bellman-Ford( \(G, s\) )}

Input: Graph \(G=(V, E, c)\), starting point \(s \in V\)
Output: If return value true, minimal weights \(d\) for all shortest paths from \(s\), otherwise no shortest path.
foreach \(u \in V\) do
\[
\begin{aligned}
& \left\lfloor d_{s}[u] \leftarrow \infty ; \pi_{s}[u] \leftarrow\right. \text { null } \\
& d_{s}[s] \leftarrow 0 ; \\
& \text { for } i \leftarrow 1 \text { to }|V| \text { do } \\
& \begin{array}{l}
f \leftarrow \text { false } \\
\text { foreach }(u, v) \in E \text { do } \\
\quad f \leftarrow f \vee \operatorname{Relax}(u, v) \\
\text { if } f=\text { false then return true }
\end{array} \\
& \text { return false; }
\end{aligned}
\]

Runtime \(\mathcal{O}(|E| \cdot|V|)\).

\subsection*{26.5 A*-Algorithm}


■ Dijkstra Algorithm searches for all shortest paths, in all directions.


■ Dijkstra Algorithm searches for all shortest paths, in all directions.


■ Dijkstra Algorithm searches for all shortest paths, in all directions.


■ Dijkstra Algorithm searches for all shortest paths, in all directions.


■ Dijkstra Algorithm searches for all shortest paths, in all directions.
\begin{tabular}{|r|r|r|r|r|r|}
\hline & 4 & 3 & 4 & & \\
\hline 4 & 3 & 2 & 3 & 4 & \\
\hline 3 & 2 & 1 & 2 & 3 & 4 \\
\hline 2 & \(O_{1}\) & \(S_{0}\) & 1 & 2 & 3 \\
\hline 2 & 2 & 1 & 2 & 3 & \(O_{4}\) \\
\hline
\end{tabular}

■ Dijkstra Algorithm searches for all shortest paths, in all directions.

\section*{Motivation A*}


■ Dijkstra Algorithm searches for all shortest paths, in all directions.

\section*{Motivation A*}


■ Dijkstra Algorithm searches for all shortest paths, in all directions.
- which is correct, because the algorithm does not know about the graph's structure.

\section*{Motivation A*}


■ Dijkstra Algorithm searches for all shortest paths, in all directions.
- which is correct, because the algorithm does not know about the graph's structure.

\section*{Motivation A*}


■ Dijkstra Algorithm searches for all shortest paths, in all directions.
- which is correct, because the algorithm does not know about the graph's structure.

\section*{Motivation A*}


■ Dijkstra Algorithm searches for all shortest paths, in all directions.
- which is correct, because the algorithm does not know about the graph's structure.

\section*{Motivation A*}


■ Dijkstra Algorithm searches for all shortest paths, in all directions.
■ which is correct, because the algorithm does not know about the graph's structure.

\section*{Motivation A*}


■ Dijkstra Algorithm searches for all shortest paths, in all directions.
■ which is correct, because the algorithm does not know about the graph's structure.

\section*{Motivation A*}


■ Dijkstra Algorithm searches for all shortest paths, in all directions.
- which is correct, because the algorithm does not know about the graph's structure.

\section*{Motivation A*}


■ Dijkstra Algorithm searches for all shortest paths, in all directions.
- which is correct, because the algorithm does not know about the graph's structure.

\section*{Motivation A*}


■ Dijkstra Algorithm searches for all shortest paths, in all directions.
- which is correct, because the algorithm does not know about the graph's structure.

\section*{Motivation A*}


■ Dijkstra Algorithm searches for all shortest paths, in all directions.
- which is correct, because the algorithm does not know about the graph's structure.

\section*{A* in Action}
\[
\hat{f}(u)=d_{s}[u]+\hat{h}(u) \quad\left(\hat{h}=\delta_{x}+\delta_{y} \text { Manhattan-Distance }\right)
\]


■ Idea: equip algorithm with a preferred direction by ways of a distance heuristic \(\hat{h}\)
■ The value of this heuristics needs to underestimate the distance to \(t\) and is added to the found distance \(d_{s}\) to \(s\)

\section*{A* in Action}
\[
\hat{f}(u)=d_{s}[u]+\hat{h}(u) \quad\left(\hat{h}=\delta_{x}+\delta_{y} \text { Manhattan-Distance }\right)
\]


■ Idea: equip algorithm with a preferred direction by ways of a distance heuristic \(\hat{h}\)
- The value of this heuristics needs to underestimate the distance to \(t\) and is added to the found distance \(d_{s}\) to \(s\)

\section*{A* in Action}
\[
\hat{f}(u)=d_{s}[u]+\hat{h}(u) \quad\left(\hat{h}=\delta_{x}+\delta_{y} \text { Manhattan-Distance }\right)
\]


■ Idea: equip algorithm with a preferred direction by ways of a distance heuristic \(\hat{h}\)
- The value of this heuristics needs to underestimate the distance to \(t\) and is added to the found distance \(d_{s}\) to \(s\)

\section*{A* in Action}
\[
\hat{f}(u)=d_{s}[u]+\hat{h}(u) \quad\left(\hat{h}=\delta_{x}+\delta_{y} \text { Manhattan-Distance }\right)
\]


■ Idea: equip algorithm with a preferred direction by ways of a distance heuristic \(\hat{h}\)
- The value of this heuristics needs to underestimate the distance to \(t\) and is added to the found distance \(d_{s}\) to \(s\)

\section*{A* in Action}
\[
\hat{f}(u)=d_{s}[u]+\hat{h}(u) \quad\left(\hat{h}=\delta_{x}+\delta_{y} \text { Manhattan-Distance }\right)
\]
\begin{tabular}{|l|l|l|l|l|l|l|l|l|l|}
\hline 9 & 8 & & 7 & & 6 & & 5 & & 4 \\
\hline 8 & 7 & & 6 & & 5 & & 4 & & 3 \\
\hline & & & & & 6 & & 6 & & \\
\hline & 6 & & 5 & 1 & 4 & 2 & 3 & & 2 \\
\hline & & 6 & & 4 & & 4 & & 4 & \\
\hline 6 & 5 & 1 & 4 & 0 & 3 & 1 & 2 & 2 & 1 \\
\hline & & 6 & & 4 & & 4 & & & \\
\hline 5 & 4 & 2 & 3 & 1 & 2 & 2 & 1 & & 0 \\
\hline
\end{tabular}

■ Idea: equip algorithm with a preferred direction by ways of a distance heuristic \(\hat{h}\)
- The value of this heuristics needs to underestimate the distance to \(t\) and is added to the found distance \(d_{s}\) to \(s\)

\section*{A* in Action}
\[
\hat{f}(u)=d_{s}[u]+\hat{h}(u) \quad\left(\hat{h}=\delta_{x}+\delta_{y} \text { Manhattan-Distance }\right)
\]
\(\left.\begin{array}{|l|l|l|l|l|l|l|l|l|}\hline 9 & 8 & & 7 & & 6 & & 5 & \\ \hline 8 & 7 & & 6 & & 5 & & 4 \\ \hline & & & & 6 & & 6 & & 6 \\ \hline & 6 & & 5 & 1 & 4 & 2 & 3 & 3\end{array}\right)\)

■ Idea: equip algorithm with a preferred direction by ways of a distance heuristic \(\hat{h}\)
- The value of this heuristics needs to underestimate the distance to \(t\) and is added to the found distance \(d_{s}\) to \(s\)

\section*{A* in Action}
\[
\hat{f}(u)=d_{s}[u]+\hat{h}(u) \quad\left(\hat{h}=\delta_{x}+\delta_{y} \text { Manhattan-Distance }\right)
\]
\begin{tabular}{|l|l|ll|ll|ll|ll|l|l|}
\hline 9 & & 8 & & 7 & & 6 & & 5 & & 4 \\
\hline 8 & & 7 & & 6 & 2 & 5 & 3 & 4 & 4 & 3 \\
\hline & & & 8 & & 6 & & 6 & & 6 & \\
7 & & 6 & 2 & 5 & 1 & 4 & 2 & 3 & 3 & 2 \\
\hline & 8 & & 6 & & 4 & & 4 & & 4 & \\
6 & 2 & 5 & 1 & 4 & 0 & 3 & 1 & 2 & 2 & 1 \\
\hline & 8 & & 6 & & 4 & & 4 & & 4 & \\
5 & 3 & 4 & 2 & 3 & 1 & 2 & 2 & 1 & 3 & 0 \\
\hline
\end{tabular}
- Idea: equip algorithm with a preferred direction by ways of a distance heuristic \(\hat{h}\)
■ The value of this heuristics needs to underestimate the distance to \(t\) and is added to the found distance \(d_{s}\) to \(s\)

\section*{A* in Action}
\[
\hat{f}(u)=d_{s}[u]+\hat{h}(u) \quad\left(\hat{h}=\delta_{x}+\delta_{y} \text { Manhattan-Distance }\right)
\]


■ Idea: equip algorithm with a preferred direction by ways of a distance heuristic \(\hat{h}\)
- The value of this heuristics needs to underestimate the distance to \(t\) and is added to the found distance \(d_{s}\) to \(s\)

\section*{A* in Action}
\[
\hat{f}(u)=d_{s}[u]+\hat{h}(u) \quad\left(\hat{h}=\delta_{x}+\delta_{y} \text { Manhattan-Distance }\right)
\]
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline & & & & & & \\
\hline 9 & 9 & 8 & 73 & 64 & \(5 \quad 5\) & 4 \\
\hline 8 & & & \[
\begin{array}{r}
8 \\
6 \\
6
\end{array}
\] & \[
\begin{array}{r}
8 \\
5 \\
5
\end{array}
\] & -8 8 & \\
\hline 7 & & \[
\begin{array}{r}
8 \\
6 \\
6
\end{array}
\] & \[
\begin{array}{rr}
6 \\
5 & 6 \\
5
\end{array}
\] & \[
\begin{array}{r}
6 \\
4 \\
4
\end{array}
\] & & \\
\hline & & & \[
\left.4_{4}\right)_{0}^{4}
\] & & \[
\begin{array}{ll}
4 \\
2 & 2
\end{array}
\] & 1 \\
\hline & & & & & \[
\begin{aligned}
& 4 \\
& 1 \\
& 1
\end{aligned}
\] & \({ }_{0}{ }^{t}\) \\
\hline
\end{tabular}

■ Idea: equip algorithm with a preferred direction by ways of a distance heuristic \(\hat{h}\)
- The value of this heuristics needs to underestimate the distance to \(t\) and is added to the found distance \(d_{s}\) to \(s\)

\section*{A* in Action}
\[
\hat{f}(u)=d_{s}[u]+\hat{h}(u) \quad\left(\hat{h}=\delta_{x}+\delta_{y} \text { Manhattan-Distance }\right)
\]


■ Idea: equip algorithm with a preferred direction by ways of a distance heuristic \(\hat{h}\)
- The value of this heuristics needs to underestimate the distance to \(t\) and is added to the found distance \(d_{s}\) to \(s\)

\section*{Keep backward path}
\[
\hat{f}(u)=d_{s}[u]+\hat{h}(u) \quad\left(\hat{h}=\delta_{x}+\delta_{y}\right)
\]

- The algorithm works like the Dijkstra-algorithm
- For finding the next candidate of \(R\) instead of the value \(d_{s}\) the value of \(\hat{f}=\hat{h}+d_{s}\) is used

\section*{Keep backward path}
\[
\hat{f}(u)=d_{s}[u]+\hat{h}(u) \quad\left(\hat{h}=\delta_{x}+\delta_{y}\right)
\]


■ The algorithm works like the Dijkstra-algorithm
- For finding the next candidate of \(R\) instead of the value \(d_{s}\) the value of \(\hat{f}=\hat{h}+d_{s}\) is used

\section*{Keep backward path}
\[
\hat{f}(u)=d_{s}[u]+\hat{h}(u) \quad\left(\hat{h}=\delta_{x}+\delta_{y}\right)
\]


■ The algorithm works like the Dijkstra-algorithm
- For finding the next candidate of \(R\) instead of the value \(d_{s}\) the value of \(\hat{f}=\hat{h}+d_{s}\) is used

\section*{Keep backward path}
\[
\hat{f}(u)=d_{s}[u]+\hat{h}(u) \quad\left(\hat{h}=\delta_{x}+\delta_{y}\right)
\]


■ The algorithm works like the Dijkstra-algorithm
- For finding the next candidate of \(R\) instead of the value \(d_{s}\) the value of \(\hat{f}=\hat{h}+d_{s}\) is used

\section*{Keep backward path}
\[
\hat{f}(u)=d_{s}[u]+\hat{h}(u) \quad\left(\hat{h}=\delta_{x}+\delta_{y}\right)
\]
\begin{tabular}{|c|c|c|c|c|}
\hline 8 & \begin{tabular}{|l|}
\hline 8 \\
7 \\
7
\end{tabular} & 6
6 & 5 & 4 \\
\hline \[
\begin{array}{rr} 
& 8 \\
7 & 1
\end{array}
\] & \[
\begin{gathered}
S \\
6 \\
4 \\
0
\end{gathered}
\] & \[
\frac{6}{5}{ }^{6}
\] & \[
\begin{array}{r}
6 \\
4 \quad 2 \\
\hline
\end{array}
\] & 3 \\
\hline \[
\begin{array}{ll} 
& 8 \\
6 & 2
\end{array}
\] & \[
\begin{array}{ll}
6 \\
5 & 6 \\
\hline
\end{array}
\] & \[
\begin{array}{rr} 
& 6 \\
4 & 2
\end{array}
\] & & 2 \\
\hline 5 & \[
\begin{array}{ll} 
& 6 \\
4 & 2
\end{array}
\] & & 2 & 1 \\
\hline 4 & 3 & 2 & 1 & \(0^{t}\) \\
\hline
\end{tabular}

■ The algorithm works like the Dijkstra-algorithm
- For finding the next candidate of \(R\) instead of the value \(d_{s}\) the value of \(\hat{f}=\hat{h}+d_{s}\) is used

\section*{Keep backward path}
\[
\hat{f}(u)=d_{s}[u]+\hat{h}(u) \quad\left(\hat{h}=\delta_{x}+\delta_{y}\right)
\]
\begin{tabular}{|c|c|c|c|c|}
\hline 8 & \begin{tabular}{|l|} 
\\
7 \\
7 \\
\hline
\end{tabular} & \(6 \begin{array}{rr}8 \\ 6 & 2\end{array}\) & \(\begin{array}{ll} & 8 \\ 5 & 3\end{array}\) & 4 \\
\hline \[
\begin{array}{rr} 
& 8 \\
7 \\
7
\end{array}
\] & \[
{ }_{6}{ }^{S}{ }^{6}
\] & \[
-5 \uparrow
\] & \[
4 \begin{aligned}
& 6 \\
& 4
\end{aligned}
\] & 3 \\
\hline \[
\begin{array}{r}
1 \\
8 \\
6 \quad 2 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
6 \\
5 \uparrow 1
\end{array}
\] & \[
\begin{array}{r}
6 \\
4 \quad 2 \\
4 \\
\hline
\end{array}
\] & \[
\begin{array}{ll} 
& 6 \\
& 6 \\
3 & 3 \\
\hline
\end{array}
\] & 2 \\
\hline \[
\begin{array}{ll} 
& 8 \\
5 & 3
\end{array}
\] & \[
\begin{aligned}
& 6 \\
& 4 \\
& 4 \\
& 4
\end{aligned}
\] & \[
\begin{array}{ll} 
& 6 \\
3 & 3 \\
\hline
\end{array}
\] & & 1 \\
\hline 4 & \(\left\lvert\, \begin{array}{ll}6 \\ 3 & 3\end{array}\right.\) & 2 & 1 & \({ }_{0}{ }^{t}\) \\
\hline
\end{tabular}

■ The algorithm works like the Dijkstra-algorithm
■ For finding the next candidate of \(R\) instead of the value \(d_{s}\) the value of \(\hat{f}=\hat{h}+d_{s}\) is used

\section*{Keep backward path}
\[
\hat{f}(u)=d_{s}[u]+\hat{h}(u) \quad\left(\hat{h}=\delta_{x}+\delta_{y}\right)
\]


■ The algorithm works like the Dijkstra-algorithm
- For finding the next candidate of \(R\) instead of the value \(d_{s}\) the value of \(\hat{f}=\hat{h}+d_{s}\) is used

\section*{Keep backward path}
\[
\hat{f}(u)=d_{s}[u]+\hat{h}(u) \quad\left(\hat{h}=\delta_{x}+\delta_{y}\right)
\]

- The algorithm works like the Dijkstra-algorithm
- For finding the next candidate of \(R\) instead of the value \(d_{s}\) the value of \(\hat{f}=\hat{h}+d_{s}\) is used

\section*{Keep backward path}
\[
\hat{f}(u)=d_{s}[u]+\hat{h}(u) \quad\left(\hat{h}=\delta_{x}+\delta_{y}\right)
\]
\begin{tabular}{|ll|ll|ll|ll|l|}
\hline & & & 8 & & 8 & & 8 & \\
\hline 8 & & 7 & 1 & 6 & 2 & 5 & 3 & 4 \\
\hline & 8 & & 6 & & 6 & & 6 & \\
7 & 1 & 6 & 4 & 0 & 5 & 1 & 4 & 2 \\
\hline
\end{tabular}
- The algorithm works like the Dijkstra-algorithm
- For finding the next candidate of \(R\) instead of the value \(d_{s}\) the value of \(\hat{f}=\hat{h}+d_{s}\) is used

\section*{Keep backward path}
\[
\hat{f}(u)=d_{s}[u]+\hat{h}(u) \quad\left(\hat{h}=\delta_{x}+\delta_{y}\right)
\]
\begin{tabular}{|ll|ll|ll|ll|l|}
\hline & & & 8 & & 8 & & 8 & \\
\hline 8 & & 7 & 1 & 6 & 2 & 5 & 3 & 4 \\
\hline & 8 & & 6 & & 6 & & 6 & \\
7 & 1 & 6 & & 5 & 1 & 4 & 2 & 3 \\
\hline & 8 & & 6 & & 6 & & 6 & \\
6 & 2 & 5 & -1 & 4 & 2 & 3 & 3 & 2 \\
\hline & 8 & & 6 & & 6 & & 6 & \\
5 & 3 & 4 & 2 & 3 & 3 & 2 & 4 & 1 \\
\hline & 8 & & 6 & & 6 & & 6 & \\
4 & 4 & 3 & 3 & 2 & 4 & 1 & 5 & 0 \\
\hline
\end{tabular}

■ The algorithm works like the Dijkstra-algorithm
- For finding the next candidate of \(R\) instead of the value \(d_{s}\) the value of \(\hat{f}=\hat{h}+d_{s}\) is used

\section*{A*-Algorithm}

\section*{Prerequisites}
- Positively weighted, finite graph \(G=(V, E, c)\)

■ \(s \in V, t \in V\)
■ Distance estimate \(\widehat{h}_{t}(v) \leq h_{t}(v):=\delta(v, t) \forall v \in V\).
■ Wanted: shortest path \(p: s \rightsquigarrow t\)

\section*{A*-Algorithm \((G, s, t, \hat{h})\)}

Input: Positively weighted Graph \(G=(V, E, c)\), starting point \(s \in V\), end point \(t \in V\), estimate \(\widehat{h}(v) \leq \delta(v, t)\)
Output: Existence and value of a shortest path from \(s\) to \(t\)
foreach \(u \in V\) do
\(d[u] \leftarrow \infty ; \widehat{f}[u] \leftarrow \infty ; \pi[u] \leftarrow\) null
\(d[s] \leftarrow 0 ; \widehat{f}[s] \leftarrow \widehat{h}(s) ; N \leftarrow\{s\} ; K \leftarrow\{ \}\)
while \(N \neq \emptyset\) do
\(u \leftarrow \operatorname{ExtractMin}_{\widehat{f}}(N) ; K \leftarrow K \cup\{u\}\)
if \(u=t\) then return success
foreach \(v \in N^{+}(u)\) with \(d[v]>d[u]+c(u, v)\) do
\[
\begin{aligned}
& d[v] \leftarrow d[u]+c(u, v) ; \widehat{f}[v] \leftarrow d[v]+\widehat{h}(v) ; \pi[v] \leftarrow u \\
& N \leftarrow N \cup\{v\} ; K \leftarrow K-\{v\}
\end{aligned}
\]
return failure

\section*{What if \(\hat{h}\) does not underestimate}
\[
\hat{f}(u)=d_{s}[u]+\hat{h}(u) \quad\left(\hat{h}=\delta_{x}^{2}+\delta_{y}^{2}\right)
\]

- Algorithm can terminate with the wrong result when \(\hat{h}\) does not under-estimate the distance to \(t\).
- although the heuristics looks reasonable otherwise (it is monotonic, for instance)

\section*{What if \(\hat{h}\) does not underestimate}
\[
\hat{f}(u)=d_{s}[u]+\hat{h}(u) \quad\left(\hat{h}=\delta_{x}^{2}+\delta_{y}^{2}\right)
\]

- Algorithm can terminate with the wrong result when \(\hat{h}\) does not under-estimate the distance to \(t\).
- although the heuristics looks reasonable otherwise (it is monotonic, for instance)

\section*{What if \(\hat{h}\) does not underestimate}
\[
\hat{f}(u)=d_{s}[u]+\hat{h}(u) \quad\left(\hat{h}=\delta_{x}^{2}+\delta_{y}^{2}\right)
\]

- Algorithm can terminate with the wrong result when \(\hat{h}\) does not under-estimate the distance to \(t\).
- although the heuristics looks reasonable otherwise (it is monotonic, for instance)

\section*{What if \(\hat{h}\) does not underestimate}
\[
\hat{f}(u)=d_{s}[u]+\hat{h}(u) \quad\left(\hat{h}=\delta_{x}^{2}+\delta_{y}^{2}\right)
\]

- Algorithm can terminate with the wrong result when \(\hat{h}\) does not under-estimate the distance to \(t\).
- although the heuristics looks reasonable otherwise (it is monotonic, for instance)

\section*{What if \(\hat{h}\) does not underestimate}
\[
\hat{f}(u)=d_{s}[u]+\hat{h}(u) \quad\left(\hat{h}=\delta_{x}^{2}+\delta_{y}^{2}\right)
\]

- Algorithm can terminate with the wrong result when \(\hat{h}\) does not under-estimate the distance to \(t\).
- although the heuristics looks reasonable otherwise (it is monotonic, for instance)

\section*{What if \(\hat{h}\) does not underestimate}
\[
\hat{f}(u)=d_{s}[u]+\hat{h}(u) \quad\left(\hat{h}=\delta_{x}^{2}+\delta_{y}^{2}\right)
\]

- Algorithm can terminate with the wrong result when \(\hat{h}\) does not under-estimate the distance to \(t\).
- although the heuristics looks reasonable otherwise (it is monotonic, for instance)

\section*{What if \(\hat{h}\) does not underestimate}
\[
\hat{f}(u)=d_{s}[u]+\hat{h}(u) \quad\left(\hat{h}=\delta_{x}^{2}+\delta_{y}^{2}\right)
\]

- Algorithm can terminate with the wrong result when \(\hat{h}\) does not under-estimate the distance to \(t\).
- although the heuristics looks reasonable otherwise (it is monotonic, for instance)

\section*{What if \(\hat{h}\) does not underestimate}
\[
\hat{f}(u)=d_{s}[u]+\hat{h}(u) \quad\left(\hat{h}=\delta_{x}^{2}+\delta_{y}^{2}\right)
\]

- Algorithm can terminate with the wrong result when \(\hat{h}\) does not under-estimate the distance to \(t\).
- although the heuristics looks reasonable otherwise (it is monotonic, for instance)

\section*{What if \(\hat{h}\) does not underestimate}
\[
\hat{f}(u)=d_{s}[u]+\hat{h}(u) \quad\left(\hat{h}=\delta_{x}^{2}+\delta_{y}^{2}\right)
\]

- Algorithm can terminate with the wrong result when \(\hat{h}\) does not under-estimate the distance to \(t\).
- although the heuristics looks reasonable otherwise (it is monotonic, for instance)

\section*{What if \(\hat{h}\) does not underestimate}
\[
\hat{f}(u)=d_{s}[u]+\hat{h}(u) \quad\left(\hat{h}=\delta_{x}^{2}+\delta_{y}^{2}\right)
\]

- Algorithm can terminate with the wrong result when \(\hat{h}\) does not under-estimate the distance to \(t\).
- although the heuristics looks reasonable otherwise (it is monotonic, for instance)

\section*{What if \(\hat{h}\) does not underestimate}
\[
\hat{f}(u)=d_{s}[u]+\hat{h}(u) \quad\left(\hat{h}=\delta_{x}^{2}+\delta_{y}^{2}\right)
\]

- Algorithm can terminate with the wrong result when \(\hat{h}\) does not under-estimate the distance to \(t\).
- although the heuristics looks reasonable otherwise (it is monotonic, for instance)

\section*{What if \(\hat{h}\) does not underestimate}
\[
\hat{f}(u)=d_{s}[u]+\hat{h}(u) \quad\left(\hat{h}=\delta_{x}^{2}+\delta_{y}^{2}\right)
\]

- Algorithm can terminate with the wrong result when \(\hat{h}\) does not under-estimate the distance to \(t\).
- although the heuristics looks reasonable otherwise (it is monotonic, for instance)

\section*{Revisiting nodes}

■ The A*-algorithm can re-insert nodes that had been extracted from \(R\) before.
- This can lead to suboptimal behavior (w.r.t. running time of the algorithm).
- If \(\widehat{h}\), in addition to being admissible \((\hat{h}(v) \leq h(v)\) for all \(v \in V\) ), fulfils monotonicity, i.e. if for all \(\left(u, u^{\prime}\right) \in E\) :
\[
\widehat{h}\left(u^{\prime}\right) \leq \widehat{h}(u)+c\left(u^{\prime}, u\right)
\]
then the A*-Algorithm is equivalent to the Dijsktra-algorithm with edge weights \(\tilde{c}(u, v)=c(u, v)+\widehat{h}(u)-\widehat{h}(v)\), and no node is re-inserted into \(R\).
■ It is not always possible to find monotone heuristics.

\section*{A crazy \(\hat{h}\)}
\(\hat{f}(u)=d_{s}[u]+\hat{h}(u)\)

- Algorithm terminates correctly even if the distance heuristic is not monotonic
- It is then possible that nodes are removed and re-inserted into \(R\) multiple times.

\section*{A crazy \(\hat{h}\)}
\[
\hat{f}(u)=d_{s}[u]+\hat{h}(u)
\]

- Algorithm terminates correctly even if the distance heuristic is not monotonic
- It is then possible that nodes are removed and re-inserted into \(R\) multiple times.

\section*{A crazy \(\hat{h}\)}
\[
\hat{f}(u)=d_{s}[u]+\hat{h}(u)
\]

- Algorithm terminates correctly even if the distance heuristic is not monotonic
- It is then possible that nodes are removed and re-inserted into \(R\) multiple times.

\section*{A crazy \(\hat{h}\)}
\[
\hat{f}(u)=d_{s}[u]+\hat{h}(u)
\]

- Algorithm terminates correctly even if the distance heuristic is not monotonic
- It is then possible that nodes are removed and re-inserted into \(R\) multiple times.

\section*{A crazy \(\hat{h}\)}
\[
\hat{f}(u)=d_{s}[u]+\hat{h}(u)
\]
\begin{tabular}{|ll|lllll|l|l|l|}
\hline & & & 8 & & 8 & & \\
8 & & 7 & 1 & 6 & 2 & 5 & & 4 \\
\hline & 8 & & 0 & & 1 & & 2 & \\
7 & 1 & 0 & 0 & 0 & 1 & 0 & 2 & 3 \\
\hline & & & 6 & & 2 & & & \\
\hline 6 & & 5 & 1 & 1 & 2 & 0 & 2 \\
\hline & & & & & & & \\
\hline 5 & 0 & & 0 & & 0 & 1 \\
\hline & & & & & & & & \(t\) \\
4 & & 0 & & 2 & & 1 & & 0 \\
\hline
\end{tabular}
- Algorithm terminates correctly even if the distance heuristic is not monotonic
- It is then possible that nodes are removed and re-inserted into \(R\) multiple times.

\section*{A crazy \(\hat{h}\)}
\[
\hat{f}(u)=d_{s}[u]+\hat{h}(u)
\]

- Algorithm terminates correctly even if the distance heuristic is not monotonic
- It is then possible that nodes are removed and re-inserted into \(R\) multiple times.

\section*{A crazy \(\hat{h}\)}
\[
\hat{f}(u)=d_{s}[u]+\hat{h}(u)
\]

- Algorithm terminates correctly even if the distance heuristic is not monotonic
- It is then possible that nodes are removed and re-inserted into \(R\) multiple times.

\section*{A crazy \(\hat{h}\)}
\[
\hat{f}(u)=d_{s}[u]+\hat{h}(u)
\]

- Algorithm terminates correctly even if the distance heuristic is not monotonic
- It is then possible that nodes are removed and re-inserted into \(R\) multiple times.

\section*{A crazy \(\hat{h}\)}
\[
\hat{f}(u)=d_{s}[u]+\hat{h}(u)
\]

- Algorithm terminates correctly even if the distance heuristic is not monotonic
- It is then possible that nodes are removed and re-inserted into \(R\) multiple times.

\section*{A crazy \(\hat{h}\)}
\[
\hat{f}(u)=d_{s}[u]+\hat{h}(u)
\]
\(\left.\begin{array}{|c|c|cccc|c|c|}\hline & & 8 & & 8 & & 8 & \\ 8 & & 7 & 1 & 6 & 2 & 5 & 3\end{array}\right)\)
- Algorithm terminates correctly even if the distance heuristic is not monotonic
- It is then possible that nodes are removed and re-inserted into \(R\) multiple times.

\section*{A crazy \(\hat{h}\)}
\[
\hat{f}(u)=d_{s}[u]+\hat{h}(u)
\]

- Algorithm terminates correctly even if the distance heuristic is not monotonic
- It is then possible that nodes are removed and re-inserted into \(R\) multiple times.

\section*{A crazy \(\hat{h}\)}
\[
\hat{f}(u)=d_{s}[u]+\hat{h}(u)
\]

- Algorithm terminates correctly even if the distance heuristic is not monotonic
- It is then possible that nodes are removed and re-inserted into \(R\) multiple times.

\section*{A crazy \(\hat{h}\)}
\[
\hat{f}(u)=d_{s}[u]+\hat{h}(u)
\]

- Algorithm terminates correctly even if the distance heuristic is not monotonic
- It is then possible that nodes are removed and re-inserted into \(R\) multiple times.

\section*{A crazy \(\hat{h}\)}
\[
\hat{f}(u)=d_{s}[u]+\hat{h}(u)
\]

- Algorithm terminates correctly even if the distance heuristic is not monotonic
- It is then possible that nodes are removed and re-inserted into \(R\) multiple times.

\section*{Conclusion}
- The A*-Algorithm is an extension of the Dijkstra algortihm by a distance heuristic \(\hat{h}\).
- \(\mathrm{A}^{*}=\) Dijkstra if \(\hat{h} \equiv 0\)
- If \(\hat{h}\) underestimates the real distance, the algorithm works correctly.
- If \(\hat{h}\) is monotone in addition, then the algorithm works efficiently.
- In practical applications (e.g. routing), the choice of \(\hat{h}\) is often intuitive and leads to a significant improvement over Dijkstra.
- Correctness proof in the handout

\section*{27. Transitive Closure, All Pairs Shortest Paths}

Reflexive transitive closure [Ottman/Widmayer, Kap. 9.2 Cormen et al, Kap. 25.2] Floyd-Warshall Algorithm [Ottman/Widmayer, Kap. 9.5.3 Cormen et al, Kap. 25.2]

\section*{Adjacency Matrix Product}
\[
B:=A_{G}^{2}=\left(\begin{array}{ccccc}
0 & 1 & 1 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 1 & 1 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 1
\end{array}\right)^{2}=\left(\begin{array}{lllll}
0 & 1 & 0 & 1 & 1 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 \\
0 & 1 & 1 & 1 & 2
\end{array}\right)
\]


\section*{Interpretation}

\section*{Theorem 27}

Let \(G=(V, E)\) be a graph and \(k \in \mathbb{N}\). Then the element \(a_{i, j}^{(k)}\) of the matrix \(\left(a_{i, j}^{(k)}\right)_{1 \leq i, j \leq n}=\left(A_{G}\right)^{k}\) provides the number of paths with length \(k\) from \(v_{i}\) to \(v_{j}\).

\section*{Graphs and Relations}

Graph \(G=(V, E)\)
adjacencies \(A_{G} \widehat{=}\) Relation \(E \subseteq V \times V\) over \(V\)

\section*{Graphs and Relations}

Graph \(G=(V, E)\)
adjacencies \(A_{G} \widehat{=}\) Relation \(E \subseteq V \times V\) over \(V\)
■ reflexive \(\Leftrightarrow a_{i, i}=1\) for all \(i=1, \ldots, n\). (loops)
■ symmetric \(\Leftrightarrow a_{i, j}=a_{j, i}\) for all \(i, j=1, \ldots, n\) (undirected)
- transitive \(\Leftrightarrow(u, v) \in E,(v, w) \in E \Rightarrow(u, w) \in E\). (reachability)

\section*{Reflexive Transitive Closure}

Reflexive transitive closure of \(G \Leftrightarrow\) Reachability relation \(E^{*}:(v, w) \in E^{*}\) iff \(\exists\) path from node \(v\) to \(w\).
\[
\left[\begin{array}{lllll}
0 & 1 & 0 & 0 & 1 \\
0 & 0 & 0 & 1 & 0 \\
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 0
\end{array}\right]
\]
\(\left[\begin{array}{lllll}1 & 1 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 & 0 \\ 0 & 1 & 1 & 1 & 0 \\ 0 & 1 & 1 & 1 & 0 \\ 0 & 1 & 1 & 1 & 1\end{array}\right]\)

\[
G=(V, E)
\]

\section*{Algorithm A A}

Input: (Adjacency-)Matrix \(A=\left(a_{i j}\right)_{i, j=1 \ldots n}\)
Output: Matrix Product \(B=\left(b_{i j}\right)_{i, j=1 \ldots n}=A \cdot A\)
\[
\begin{aligned}
& B \leftarrow 0 \\
& \text { for } r \leftarrow 1 \text { to } n \text { do } \\
& \quad \text { for } c \leftarrow 1 \text { to } n \text { do } \\
& \quad \begin{array}{r}
\text { for } k \leftarrow 1 \text { to } n \text { do } \\
\quad \quad b_{r c} \leftarrow b_{r c}+a_{r k} \cdot a_{k c}
\end{array}
\end{aligned}
\]
return \(B\)

Counts number of paths of length 2

\section*{Algorithm \(A \otimes A\)}

Input: Adjacency-Matrix \(A=\left(a_{i j}\right)_{i, j=1 \ldots n}\)
Output: Modified Matrix Product \(B=\left(b_{i j}\right)_{i, j=1 \ldots . n}=A \otimes A\)
```

B\leftarrowA
// Keep paths
for}r\leftarrow1\mathrm{ to }n\mathrm{ do
for }c\leftarrow1\mathrm{ to }n\mathrm{ do
for }k\leftarrow1\mathrm{ to }n\mathrm{ do
b}\mp@subsup{b}{rc}{}\leftarrow\operatorname{max}{\mp@subsup{b}{rc}{},\mp@subsup{a}{rk}{}\cdot\mp@subsup{a}{kc}{}
// Path: yes/no
return B

```

Computes which paths of length 1 and 2 exist

\section*{Computation of the Reflexive Transitive Closure}

Goal: computation of \(B=\left(b_{i j}\right)_{1 \leq i, j \leq n}\) with \(b_{i j}=1 \Leftrightarrow\left(v_{i}, v_{j}\right) \in E^{*}\)

\section*{Computation of the Reflexive Transitive Closure}

Goal: computation of \(B=\left(b_{i j}\right)_{1 \leq i, j \leq n}\) with \(b_{i j}=1 \Leftrightarrow\left(v_{i}, v_{j}\right) \in E^{*}\) First idea:

■ Start with \(B \leftarrow A\) and set \(b_{i i}=1\) for each \(i\) (Reflexivity.).
- Compute
\[
B_{n}=\bigotimes_{i=1}^{n} B
\]
how

\section*{Computation of the Reflexive Transitive Closure}

Goal: computation of \(B=\left(b_{i j}\right)_{1 \leq i, j \leq n}\) with \(b_{i j}=1 \Leftrightarrow\left(v_{i}, v_{j}\right) \in E^{*}\) First idea:
■ Start with \(B \leftarrow A\) and set \(b_{i i}=1\) for each \(i\) (Reflexivity.).
■ Compute
\[
B_{n}=\bigotimes_{i=1}^{n} B
\]
with powers of \(2 B_{2}:=B \otimes B, B_{4}:=B_{2} \otimes B_{2}, B_{8}=B_{4} \otimes B_{4} \ldots\)
\(\Rightarrow\) running time \(n^{3}\left\lceil\log _{2} n\right\rceil\)

\section*{Improvement: Algorithm of Warshall (1962)}

Inductive procedure: all paths known over nodes from \(\left\{v_{i}: i<k\right\}\). Add node \(v_{k}\).

\[
\left[\begin{array}{lllll}
1 & 1 & 0 & 0 & 1 \\
0 & 0 & 0 & 1 & 0 \\
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 0
\end{array}\right]
\]

\section*{Improvement: Algorithm of Warshall (1962)}

Inductive procedure: all paths known over nodes from \(\left\{v_{i}: i<k\right\}\). Add node \(v_{k}\).

\[
\left[\begin{array}{lllll}
1 & 1 & 0 & 1 & 1 \\
0 & 1 & 0 & 1 & 0 \\
0 & 1 & 0 & 1 & 0 \\
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 0
\end{array}\right]
\]

\section*{Improvement: Algorithm of Warshall (1962)}

Inductive procedure: all paths known over nodes from \(\left\{v_{i}: i<k\right\}\). Add node \(v_{k}\).

\[
\left[\begin{array}{lllll}
1 & 1 & 0 & 1 & 1 \\
0 & 1 & 0 & 1 & 0 \\
0 & 1 & 1 & 1 & 0 \\
0 & 1 & 1 & 1 & 0 \\
0 & 0 & 0 & 1 & 0
\end{array}\right]
\]

\section*{Improvement: Algorithm of Warshall (1962)}

Inductive procedure: all paths known over nodes from \(\left\{v_{i}: i<k\right\}\). Add node \(v_{k}\).

\[
\left[\begin{array}{lllll}
1 & 1 & 1 & 1 & 1 \\
0 & 1 & 1 & 1 & 0 \\
0 & 1 & 1 & 1 & 0 \\
0 & 1 & 1 & 1 & 0 \\
0 & 1 & 1 & 1 & 0
\end{array}\right]
\]

\section*{Improvement: Algorithm of Warshall (1962)}

Inductive procedure: all paths known over nodes from \(\left\{v_{i}: i<k\right\}\). Add node \(v_{k}\).

\[
\left[\begin{array}{lllll}
1 & 1 & 1 & 1 & 1 \\
0 & 1 & 1 & 1 & 0 \\
0 & 1 & 1 & 1 & 0 \\
0 & 1 & 1 & 1 & 0 \\
0 & 1 & 1 & 1 & 1
\end{array}\right]
\]

\section*{Algorithm TransitiveClosure \(\left(A_{G}\right)\)}

Input: Adjacency matrix \(A_{G}=\left(a_{i j}\right)_{i, j=1 \ldots n}\)
Output: Reflexive transitive closure \(B=\left(b_{i j}\right)_{i, j=1 \ldots n}\) of \(G\)
\(B \leftarrow A_{G}\)
for \(k \leftarrow 1\) to \(n\) do
\(b_{k k} \leftarrow 1\)
// Reflexivity
for \(r \leftarrow 1\) to \(n\) do for \(c \leftarrow 1\) to \(n\) do
\(\left\lfloor b_{r c} \leftarrow \max \left\{b_{r c}, b_{r k} \cdot b_{k c}\right\}\right.\)
// All paths via \(v_{k}\)
return \(B\)
Runtime \(\Theta\left(n^{3}\right)\).

\section*{Correctness of the Algorithm (Induction)}

Invariant ( \(k\) ): all paths via nodes with maximal index \(<k\) considered.
■ Base case ( \(k=1\) ): All directed paths (all edges) in \(A_{G}\) considered.
■ Hypothesis: invariant ( \(k\) ) fulfilled.
■ Step \((k \rightarrow k+1)\) : For each path from \(v_{i}\) to \(v_{j}\) via nodes with maximal index \(k\) : by the hypothesis \(b_{i k}=1\) and \(b_{k j}=1\). Therefore in the \(k\)-th iteration: \(b_{i j} \leftarrow 1\).


\section*{All shortest Paths}

Compute the weight of a shortest path for each pair of nodes.
■ \(|V| \times\) Application of Dijkstra's Shortest Path algorithm \(\mathcal{O}(|V| \cdot(|E|+|V|) \cdot \log |V|)\) (with Fibonacci Heap: \(\left.\mathcal{O}\left(|V|^{2} \log |V|+|V| \cdot|E|\right)\right)\)
■ \(|V| \times\) Application of Bellman-Ford: \(\mathcal{O}\left(|E| \cdot|V|^{2}\right)\)
■ There are better ways!

\section*{Induction via node number}

Consider weights of all shortest paths \(S^{k}\) with intermediate nodes in \({ }^{42}\) \(V^{k}:=\left\{v_{1}, \ldots, v_{k}\right\}\), provided that weights for all shortest paths \(S^{k-1}\) with intermediate nodes in \(V^{k-1}\) are given.
- \(v_{k}\) no intermediate node of a shortest path of \(v_{i} \rightsquigarrow v_{j}\) in \(V^{k}\) : Weight of a shortest path \(v_{i} \rightsquigarrow v_{j}\) in \(S^{k-1}\) is then also weight of shortest path in \(S^{k}\).
■ \(v_{k}\) intermediate node of a shortest path \(v_{i} \rightsquigarrow v_{j}\) in \(V^{k}\) : Sub-paths \(v_{i} \rightsquigarrow v_{k}\) and \(v_{k} \rightsquigarrow v_{j}\) contain intermediate nodes only from \(S^{k-1}\).

\footnotetext{
\({ }^{42}\) like for the algorithm of the reflexive transitive closure of Warshall
}

\section*{Induction via node number}
\(d^{k}(u, v)=\) Minimal weight of a path \(u \rightsquigarrow v\) with intermediate nodes in \(V^{k}\) Induktion
\[
\begin{aligned}
& d^{k}(u, v)=\min \left\{d^{k-1}(u, v), d^{k-1}(u, k)+d^{k-1}(k, v)\right\}(k \geq 1) \\
& d^{0}(u, v)=c(u, v)
\end{aligned}
\]

\section*{Algorithm Floyd-Warshall( \(G\) )}

Input: Graph \(G=(V, E, c)\) without negative weight cycles.
Output: Minimal weights of all paths \(d\)
\(d^{0} \leftarrow c\)
for \(k \leftarrow 1\) to \(|V|\) do
for \(i \leftarrow 1\) to \(|V|\) do
for \(j \leftarrow 1\) to \(|V|\) do
\(\left\llcorner d^{k}\left(v_{i}, v_{j}\right)=\min \left\{d^{k-1}\left(v_{i}, v_{j}\right), d^{k-1}\left(v_{i}, v_{k}\right)+d^{k-1}\left(v_{k}, v_{j}\right)\right\}\right.\)

Runtime: \(\Theta\left(|V|^{3}\right)\)
Remark: Algorithm can be executed with a single matrix \(d\) (in place).

\section*{Reweighting}

Idea: Reweighting the graph in order to apply Dijkstra's algorithm. The following does not work. The graphs are not equivalent in terms of shortest paths.


\section*{Reweighting}

Other Idea: "Potential" (Height) on the nodes
■ \(G=(V, E, c)\) a weighted graph.
■ Mapping \(h: V \rightarrow \mathbb{R}\)
■ New weights
\[
\tilde{c}(u, v)=c(u, v)+h(u)-h(v),(u, v \in V)
\]

\section*{Reweighting}

Observation: A path \(p\) is shortest path in in \(G=(V, E, c)\) iff it is shortest path in in \(\tilde{G}=(V, E, \tilde{c})\)
\[
\begin{aligned}
\tilde{c}(p) & =\sum_{i=1}^{k} \tilde{c}\left(v_{i-1}, v_{i}\right)=\sum_{i=1}^{k} c\left(v_{i-1}, v_{i}\right)+h\left(v_{i-1}\right)-h\left(v_{i}\right) \\
& =h\left(v_{0}\right)-h\left(v_{k}\right)+\sum_{i=1}^{k} c\left(v_{i-1}, v_{i}\right)=c(p)+h\left(v_{0}\right)-h\left(v_{k}\right)
\end{aligned}
\]

Thus \(\tilde{c}(p)\) minimal in all \(v_{0} \rightsquigarrow v_{k} \Longleftrightarrow c(p)\) minimal in all \(v_{0} \rightsquigarrow v_{k}\). Weights of cycles are invariant: \(\tilde{c}\left(v_{0}, \ldots, v_{k}=v_{0}\right)=c\left(v_{0}, \ldots, v_{k}=v_{0}\right)\)

\section*{Johnson's Algorithm}

Add a new node \(s \notin V\) :
\[
\begin{aligned}
G^{\prime} & =\left(V^{\prime}, E^{\prime}, c^{\prime}\right) \\
V^{\prime} & =V \cup\{s\} \\
E^{\prime} & =E \cup\{(s, v): v \in V\} \\
c^{\prime}(u, v) & =c(u, v), u \neq s \\
c^{\prime}(s, v) & =0(v \in V)
\end{aligned}
\]

\section*{Johnson's Algorithm}

If no negative cycles, choose as height function the weight of the shortest paths from \(s\),
\[
h(v)=d(s, v)
\]

For a minimal weight \(d\) of a path the following triangular inequality holds:
\[
d(s, v) \leq d(s, u)+c(u, v)
\]

Substitution yields \(h(v) \leq h(u)+c(u, v)\). Therefore
\[
\tilde{c}(u, v)=c(u, v)+h(u)-h(v) \geq 0 .
\]

\section*{Algorithm Johnson \((G)\)}

Input: Weighted Graph \(G=(V, E, c)\)
Output: Minimal weights of all paths \(D\).
New node \(s\). Compute \(G^{\prime}=\left(V^{\prime}, E^{\prime}, c^{\prime}\right)\)
if BellmanFord \(\left(G^{\prime}, s\right)=\) false then return "graph has negative cycles"
foreach \(v \in V^{\prime}\) do
\[
h(v) \leftarrow d(s, v) / / d \text { aus BellmanFord Algorithmus }
\]
foreach \((u, v) \in E^{\prime}\) do
\[
\tilde{c}(u, v) \leftarrow c(u, v)+h(u)-h(v)
\]
foreach \(u \in V\) do
\[
\tilde{d}(u, \cdot) \leftarrow \operatorname{Dijkstra}\left(\tilde{G}^{\prime}, u\right)
\]
foreach \(v \in V\) do
\[
D(u, v) \leftarrow \tilde{d}(u, v)+h(v)-h(u)
\]

\section*{Analysis}

Runtimes
■ Computation of \(G^{\prime}: \mathcal{O}(|V|)\)
■ Bellman Ford \(G^{\prime}: \mathcal{O}(|V| \cdot|E|)\)
■ \(|V| \times\) Dijkstra \(\mathcal{O}(|V| \cdot|E| \cdot \log |V|)\) (with Fibonacci Heap: \(\mathcal{O}\left(|V|^{2} \log |V|+|V| \cdot|E|\right)\) )
Overal \(\mathcal{O}(|V| \cdot|E| \cdot \log |V|)\)
\(\left(\mathcal{O}\left(|V|^{2} \log |V|+|V| \cdot|E|\right)\right)\)

\section*{28. Minimum Spanning Trees}

Motivation, Greedy, Algorithm Kruskal, General Rules, ADT Union-Find, Algorithm Jarnik, Prim, Dijkstra , Fibonacci Heaps [Ottman/Widmayer, Kap. 9.6, 6.2, 6.1, Cormen et al, Kap. 23, 19]

Cheapest Electricity Grid

\section*{Cheapest Electricity Grid}

Given: Houses


\section*{Cheapest Electricity Grid}

Given: Houses and costs to connect the houses with electricity.


\section*{Cheapest Electricity Grid}

Given: Houses and costs to connect the houses with electricity.


Wanted: Cheapest electricity grid that reaches every house.

\section*{Cheapest Electricity Grid}

Given: Houses and costs to connect the houses with electricity.


Wanted: Cheapest electricity grid that reaches every house.

\section*{Cheapest Electricity Grid}

Given: Houses and costs to connect the houses with electricity.


Wanted: Cheapest electricity grid that reaches every house.

\section*{Cheapest Electricity Grid}

Given: Houses and costs to connect the houses with electricity.


Wanted: Cheapest electricity grid that reaches every house.

\section*{Cheapest Electricity Grid}

Given: Houses and costs to connect the houses with electricity.


Wanted: Cheapest electricity grid that reaches every house.

\section*{Cheapest Electricity Grid}

Given: Houses and costs to connect the houses with electricity.


Wanted: Cheapest electricity grid that reaches every house.

\section*{Requirements for the power grid}

\section*{Requirements for the power grid}

■ Every house must have at least one power line.


\section*{Requirements for the power grid}

■ Every house must have at least one power line.


■ The power grid needs to be connected (just one grid).


\section*{Requirements for the power grid}

■ Every house must have at least one power line.


■ The power grid needs to be connected (just one grid).


■ The power grid should not have cycles.


\section*{Spanning Tree}

\section*{Spanning Tree}


\section*{Spanning Tree}

Given: undirected, connected graph \(G=(V, E)\)


\section*{Spanning Tree}

Given: undirected, connected graph \(G=(V, E)\)


Spanning Tree of \(G\) :

\section*{Spanning Tree}

Given: undirected, connected graph \(G=(V, E)\)


Spanning Tree of \(G\) : Subgraph \(T=\left(V^{\prime}, E^{\prime}\right)\) with \(V^{\prime} \subseteq V, E^{\prime} \subseteq E\) such that

\section*{Spanning Tree}

Given: undirected, connected graph \(G=(V, E)\)


Spanning Tree of \(G\) : Subgraph \(T=\left(V^{\prime}, E^{\prime}\right)\) with \(V^{\prime} \subseteq V, E^{\prime} \subseteq E\) such that
■ Spanning: \(V^{\prime}=V\) (spans all nodes)

\section*{Spanning Tree}

Given: undirected, connected graph \(G=(V, E)\)


Spanning Tree of \(G\) : Subgraph \(T=\left(V^{\prime}, E^{\prime}\right)\) with \(V^{\prime} \subseteq V, E^{\prime} \subseteq E\) such that
■ Spanning: \(V^{\prime}=V\) (spans all nodes)
- Tree:

\section*{Spanning Tree}

Given: undirected, connected graph \(G=(V, E)\)


Spanning Tree of \(G\) : Subgraph \(T=\left(V^{\prime}, E^{\prime}\right)\) with \(V^{\prime} \subseteq V, E^{\prime} \subseteq E\) such that
■ Spanning: \(V^{\prime}=V\) (spans all nodes)
■ Tree: connected

\section*{Spanning Tree}

Given: undirected, connected graph \(G=(V, E)\)


Spanning Tree of \(G\) : Subgraph \(T=\left(V^{\prime}, E^{\prime}\right)\) with \(V^{\prime} \subseteq V, E^{\prime} \subseteq E\) such that
■ Spanning: \(V^{\prime}=V\) (spans all nodes)
■ Tree: connected and cycle-free

\section*{Spanning Tree}

Given: undirected, connected graph \(G=(V, E)\)


Spanning Tree of \(G\) : Subgraph \(T=\left(V^{\prime}, E^{\prime}\right)\) with \(V^{\prime} \subseteq V, E^{\prime} \subseteq E\) such that
■ Spanning: \(V^{\prime}=V\) (spans all nodes)
■ Tree: connected and cycle-free
\(\Rightarrow\) for each pair of nodes: exactly one connecting path

\section*{Spanning Tree}

Given: undirected, connected graph \(G=(V, E)\)


Spanning Tree of \(G\) : Subgraph \(T=\left(V^{\prime}, E^{\prime}\right)\) with \(V^{\prime} \subseteq V, E^{\prime} \subseteq E\) such that
- Spanning: \(V^{\prime}=V\) (spans all nodes)

■ Tree: connected and cycle-free
\(\Rightarrow\) for each pair of nodes: exactly one connecting path
\(\Rightarrow\) spanning tree has exactly \(|V|-1\) edges \(\left(\left|E^{\prime}\right|=|V|-1\right)\)

Trees

Trees


\section*{Trees}


Up to this point trees were directed trees!

\section*{Trees}


Up to this point trees were directed trees!
■ connected

\section*{Trees}


Up to this point trees were directed trees!
■ connected
- cycle-free

\section*{Trees}


Up to this point trees were directed trees!
- connected
- cycle-free
- directed from parents to children

Minimum Spanning Tree (MST)

\section*{Minimum Spanning Tree (MST)}

Given: undirected, weighted, connected graph \(G=(V, E, c)\) with edge weights \(c: E \rightarrow \mathbb{R}\)


\section*{Minimum Spanning Tree (MST)}

Given: undirected, weighted, connected graph \(G=(V, E, c)\) with edge weights \(c: E \rightarrow \mathbb{R}\)


Wanted: Spanning tree \(T=\left(V, E^{\prime}\right)\) of \(G\) with minimum weight \(\sum_{e \in E^{\prime}} c(e)\)

Observations

\section*{Observations}

■ Is that the same as shortest paths?

\section*{Observations}

■ Is that the same as shortest paths? No!


\section*{Observations}

■ Is that the same as shortest paths? No!


■ Is the minimum spanning tree unique?

\section*{Observations}

■ Is that the same as shortest paths? No!

- Is the minimum spanning tree unique? Not always.

\section*{Observations}

■ Is that the same as shortest paths? No!

- Is the minimum spanning tree unique? Not always.


Trivial brute force algorithm?

\section*{Trivial brute force algorithm?}

Try out all spanning trees?

\section*{Trivial brute force algorithm?}

Try out all spanning trees?


\section*{Trivial brute force algorithm?}

Try out all spanning trees?


\section*{Trivial brute force algorithm?}

Try out all spanning trees?

\(\Rightarrow\) Inefficient: There are graphs with exponentially many spanning trees.

\subsection*{28.2 Algorithm of Kruskal}

Kruskal's Algorithm


\section*{Kruskal's Algorithm}

Idea: add lightest edge if it does not lead to a cycle


\section*{Kruskal's Algorithm}

Idea: add lightest edge if it does not lead to a cycle Invariant: After \(i\) steps, \(i\) edges of the MST and the corresponding components are known


\section*{Beispiel}

Construct \(T\) by adding the cheapest edge that does not generate a cycle.

(Solution is not unique.)

\section*{Beispiel}

Construct \(T\) by adding the cheapest edge that does not generate a cycle.

(Solution is not unique.)

\section*{Beispiel}

Construct \(T\) by adding the cheapest edge that does not generate a cycle.

(Solution is not unique.)

\section*{Beispiel}

Construct \(T\) by adding the cheapest edge that does not generate a cycle.

(Solution is not unique.)

\section*{Beispiel}

Construct \(T\) by adding the cheapest edge that does not generate a cycle.

(Solution is not unique.)

\section*{Beispiel}

Construct \(T\) by adding the cheapest edge that does not generate a cycle.

(Solution is not unique.)

\section*{Algorithm MST-Kruskal(G)}

Input: Weighted Graph \(G=(V, E, c)\)
Output: Minimum spanning tree with edges \(A\).
Sort edges by weight \(c\left(e_{1}\right) \leq \ldots \leq c\left(e_{m}\right)\)
\(A \leftarrow \emptyset\)
for \(k=1\) to \(|E|\) do
if \(\left(V, A \cup\left\{e_{k}\right\}\right)\) acyclic then
\(A \leftarrow A \cup\left\{e_{k}\right\}\)
return \((V, A, c)\)
(Corrrectness proof in handout.)

\section*{Implementation Issues}

\section*{Implementation Issues}

Consider a set of sets \(i \equiv V_{i} \subset V\).


\section*{Implementation Issues}

Consider a set of sets \(i \equiv V_{i} \subset V\).
To identify cycles: membership of the both ends of an edge to sets?


\section*{Implementation Issues}

General problem: partition (set of subsets) .e.g. \(\{\{1,2,3,9\},\{7,6,4\},\{5,8\},\{10\}\}\)
Required: Abstract data type "Union-Find" with the following operations
■ Make-Set \((i)\) : create a new set represented by \(i\).
■ Find(e): name of the set \(i\) that contains \(e\).
■ Union \((i, j)\) : union of the sets with names \(i\) and \(j\).

\section*{Union-Find Algorithm MST-Kruskal(G)}

Input: Weighted Graph \(G=(V, E, c)\)
Output: Minimum spanning tree with edges \(A\).
Sort edges by weight \(c\left(e_{1}\right) \leq \ldots \leq c\left(e_{m}\right)\)
\(A \leftarrow \emptyset\)
for \(k=1\) to \(|V|\) do
\(\llcorner\) MakeSet \((k)\)
for \(k=1\) to \(m\) do
\((u, v) \leftarrow e_{k}\)
if Find \((u) \neq \operatorname{Find}(v)\) then
Union \((\) Find \((u)\), Find \((v))\) \(A \leftarrow A \cup e_{k}\)
else
// conceptual: \(R \leftarrow R \cup e_{k}\)
return \((V, A, c)\)

\section*{Implementation Union-Find}

Idea: tree for each subset in the partition,e.g. \(\{\{1,2,3,9\},\{7,6,4\},\{5,8\},\{10\}\}\)

\(10^{5}\)
roots = names (representatives) of the sets,
trees = elements of the sets

\section*{Implementation Union-Find}


Representation as array:
\begin{tabular}{lllllllllll} 
Index & \(\mathbf{1}\) & 2 & 3 & 4 & \(\mathbf{5}\) & \(\mathbf{6}\) & 7 & 8 & 9 & \(\mathbf{1 0}\) \\
Parent & 1 & 1 & 1 & 6 & 5 & 6 & 6 & 5 & 3 & 10
\end{tabular}

\section*{Implementation Union-Find}
\begin{tabular}{lllllllllll} 
Index & \(\mathbf{1}\) & 2 & 3 & 4 & \(\mathbf{5}\) & \(\mathbf{6}\) & 7 & 8 & 9 & \(\mathbf{1 0}\) \\
Parent & 1 & 1 & 1 & 6 & 5 & 6 & 6 & 5 & 3 & 10
\end{tabular}

Make-Set \((i) \quad p[i] \leftarrow i\); return \(i\)
\(\operatorname{Find}(i) \quad\) while \((p[i] \neq i)\) do \(i \leftarrow p[i]\) return \(i\)
\[
\operatorname{Union}(i, j)^{44} \quad p[j] \leftarrow i \text {; }
\]

\footnotetext{
\({ }^{44} i\) and \(j\) need to be names (roots) of the sets. Otherwise use Union(Find \((i)\), \(\left.\operatorname{Find}(j)\right)\)
}

\section*{Optimisation of the runtime for Find}

Tree may degenerate. Example: Union(8, 7), Union(7, 6), Union(6, 5), ...
\[
\begin{array}{llllllllll}
\text { Index } & \mathbf{1} & 2 & 3 & 4 & 5 & 6 & 7 & 8 & \text {. } \\
\text { Parent } & 1 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & . .
\end{array}
\]

Worst-case running time of Find in \(\Theta(n)\).

\section*{Optimisation of the runtime for Find}

Idea: always append smaller tree to larger tree. Requires additional size information (array) \(g\)

Make-Set \((i) \quad p[i] \leftarrow i ; g[i] \leftarrow 1\); return \(i\)
```

if $g[j]>g[i]$ then $\operatorname{swap}(i, j)$
Union $(i, j) \quad p[j] \leftarrow i$
if $g[i]=g[j]$ then $g[i] \leftarrow g[i]+1$

```
\(\Rightarrow\) Tree depth (and worst-ase running time for Find) in \(\Theta(\log n)\)
(Proof: handout)

\section*{Alterantive improvement}

Link all nodes to the root when Find is called.
Find \((i)\) :
\(j \leftarrow i\)
while \((p[i] \neq i)\) do \(i \leftarrow p[i]\)
while \((j \neq i)\) do
\(t \leftarrow j\)
\(j \leftarrow p[j]\)
\(p[t] \leftarrow i\)
return \(i\)
Cost: amortised nearly constant (inverse of the Ackermann-function). \({ }^{45}\)
\({ }^{45}\) When combined with union by size, we do not go into any details here. Cf. Cormen et al, Kap. 21.4

\section*{Running time of Kruskal's Algorithm}

■ Sorting of the edges: \(\Theta(|E| \log |E|)=\Theta(|E| \log |V|) .{ }^{46}\)
■ Initialisation of the Union-Find data structure \(\Theta(|V|)\)
■ \(|E| \times \operatorname{Union}(\) Find \((x)\),Find \((y)): \mathcal{O}(|E| \log |E|)=\mathcal{O}(|E| \log |V|)\).
Overal \(\Theta(|E| \log |V|)\).

\footnotetext{
\({ }^{46}\) because \(G\) is connected: \(|V| \leq|E| \leq|V|^{2}\)
}

\subsection*{28.4 Algorithm Jarnik, Prim, Dijkstra}

\section*{Algorithm of Jarnik (1930), Prim, Dijkstra (1959)}

Idea: start with some \(v \in V\) and grow the spanning tree from here by the acceptance rule.
```

A\leftarrow\emptyset
S\leftarrow{vo}
for}i\leftarrow1\mathrm{ to }|V|\mathrm{ do
Choose cheapest (u,v) mit u\inS,v\not\inS
A\leftarrowA\cup{(u,v)}
S\leftarrowS\cup{v} // (Coloring)

```

Remark: a union-Find data structure is not required. It suffices to color nodes when they are added to \(S\).

\section*{Implementation and Running time}

Implementation like with Dijkstra's ShortestPath. Only difference:

\section*{Shortest Paths}

Relax \((u, v)\) :
if \(d_{s}[v]>d[u]+c(u, v)\) then
\(d_{s}[v] \leftarrow d_{s}[u]+c(u, v)\) \(\pi_{s}[v] \leftarrow u\)

With Min-Heap: costs \(\mathcal{O}(|E| \cdot \log |V|)\) :
- Initialization (node coloring) \(\mathcal{O}(|V|)\)
- \(|V| \times\) ExtractMin \(=\mathcal{O}(|V| \log |V|)\),

■ |E|× Insert or DecreaseKey: \(\mathcal{O}(|E| \log |V|)\),
■ With a Fibonacci-Heap: \(\mathcal{O}(|E|+|V| \cdot \log |V|)\).

\section*{Application Examples}

\section*{Application Examples}

■ Network-Design: find the cheapest / shortest network that connects all nodes.

\section*{Application Examples}

■ Network-Design: find the cheapest / shortest network that connects all nodes.
- Approximation of a solution of the travelling salesman problem: find a round-trip, as short as possible, that visits each node once.

\subsection*{28.6 Fibonacci Heaps}

\section*{Fibonacci Heaps}

Data structure for elements with key with operations
■ MakeHeap(): Return new heap without elements
- Insert \((H, x)\) : Add \(x\) to \(H\)

■ Minimum \((H)\) : return a pointer to element \(m\) with minimal key
■ ExtractMin \((H)\) : return and remove (from \(H\) ) pointer to the element \(m\)
■ Union \(\left(H_{1}, H_{2}\right)\) : return a heap merged from \(H_{1}\) and \(H_{2}\)
■ DecreaseKey \((H, x, k)\) : decrease the key of \(x\) in \(H\) to \(k\)
■ Delete \((H, x)\) : remove element \(x\) from \(H\)

\section*{Advantage over binary heap?}
\(\left.\begin{array}{lcc} & \begin{array}{c}\text { Binary Heap } \\ \text { (worst-Case) }\end{array} & \text { Fibonacci Heap } \\ \text { (amortized) }\end{array}\right]\)

\section*{Structure}

Set of trees that respect the Min-Heap property. Nodes that can be marked.


\section*{Implementation}

Doubly linked lists of nodes with a marked-flag and number of children. Pointer to minimal Element and number nodes.


\section*{Simple Operations}
- MakeHeap (trivial)

■ Minimum (trivial)
- Insert( \(H, e\) )
1. Insert new element into root-list
2. If key is smaller than minimum, reset min-pointer.
- Union ( \(H_{1}, H_{2}\) )
1. Concatenate root-lists of \(H_{1}\) and \(H_{2}\)
2. Reset min-pointer.

■ Delete \((H, e)\)
1. DecreaseKey \((H, e,-\infty)\)
2. ExtractMin \((H)\)

\section*{ExtractMin}
1. Remove minimal node \(m\) from the root list
2. Insert children of \(m\) into the root list
3. Merge heap-ordered trees with the same degrees until all trees have a different degree:
Array of degrees \(a[0, \ldots, n]\) of elements, empty at beginning. For each element \(e\) of the root list:
a Let \(g\) be the degree of \(e\)
b If \(a[g]=n i l: a[g] \leftarrow e\).
c If \(e^{\prime}:=a[g] \neq\) nil: Merge \(e\) with \(e^{\prime}\) resutling in \(e^{\prime \prime}\) and set \(a[g] \leftarrow\) nil. Set \(e^{\prime \prime}\) unmarked. Re-iterate with \(e \leftarrow e^{\prime \prime}\) having degree \(g+1\).

\section*{DecreaseKey ( \(H, e, k\) )}
1. Remove \(e\) from its parent node \(p\) (if existing) and decrease the degree of \(p\) by one.
2. Insert \((H, e)\)
3. Avoid too thin trees:
a If \(p=n i l\) then done.
b If \(p\) is unmarked: mark \(p\) and done.
c If \(p\) marked: unmark \(p\) and cut \(p\) from its parent \(p p\). Insert ( \(H, p\) ). Iterate with \(p \leftarrow p p\).

A sketch of the amoritized analysis is in the handout.

\section*{29. Flow in Networks}

Flow Network, Flow, Maximum Flow
Residual Capacity, Remainder Network, Augmenting path
Ford-Fulkerson Algorithm
Edmonds-Karp Algorithm
Cuts, Max-Flow Min-Cut Theorem
[Ottman/Widmayer, Kap. 9.7, 9.8.1], [Cormen et al, Kap. 26.1-26.3]

Slides redesigned by Manuela Fischer - thank you!

Maximum Traffic Flow

\section*{Maximum Traffic Flow}

Given: Road Network with capacities


\section*{Maximum Traffic Flow}

Given: Road Network with capacities


Wanted: Maximum traffic flow between Zurich and Geneva

Flow Network

\section*{Flow Network}
directed, weighted graph \(G=(V, E, c)\) with capacities \(c: E \rightarrow \mathbb{R}^{>0}\)


\section*{Flow Network}
directed, weighted graph \(G=(V, E, c)\) with capacities \(c: E \rightarrow \mathbb{R}^{>0}\)
■ without antiparallel edges:


\section*{Flow Network}
directed, weighted graph \(G=(V, E, c)\) with capacities \(c: E \rightarrow \mathbb{R}^{>0}\)
■ without antiparallel edges:


\section*{Flow Network}
directed, weighted graph \(G=(V, E, c)\) with capacities \(c: E \rightarrow \mathbb{R}^{>0}\)
■ without antiparallel edges:
\((u, v) \in E \Rightarrow(v, u) \notin E\)


\section*{Flow Network}
directed, weighted graph \(G=(V, E, c)\) with capacities \(c: E \rightarrow \mathbb{R}^{>0}\)
■ without antiparallel edges:
\((u, v) \in E \Rightarrow(v, u) \notin E\)


■ source \(s \in V\) without ingoing edges:


\section*{Flow Network}
directed, weighted graph \(G=(V, E, c)\) with capacities \(c: E \rightarrow \mathbb{R}^{>0}\)
■ without antiparallel edges:
\((u, v) \in E \Rightarrow(v, u) \notin E\)


■ source \(s \in V\) without ingoing edges:
\(\forall v \in V:(v, s) \notin E\)


\section*{Flow Network}
directed, weighted graph \(G=(V, E, c)\) with capacities \(c: E \rightarrow \mathbb{R}^{>0}\)
■ without antiparallel edges:
\((u, v) \in E \Rightarrow(v, u) \notin E\)


■ source \(s \in V\) without ingoing edges: \(\forall v \in V:(v, s) \notin E\)


■ \(\operatorname{sink} t \in V\) without outgoing edges:


\section*{Flow Network}
directed, weighted graph \(G=(V, E, c)\) with capacities \(c: E \rightarrow \mathbb{R}^{>0}\)
■ without antiparallel edges:
\[
(u, v) \in E \Rightarrow(v, u) \notin E
\]


■ source \(s \in V\) without ingoing edges:
\(\forall v \in V:(v, s) \notin E\)


■ sink \(t \in V\) without outgoing edges:
\[
\forall v \in V:(t, v) \notin E
\]


\section*{Quiz Flow Network}

\section*{Quiz Flow Network}

Which of the following graphs are flow networks?

\section*{Quiz Flow Network}

Which of the following graphs are flow networks?


\section*{Quiz Flow Network}

Which of the following graphs are flow networks?


\section*{Quiz Flow Network}

Which of the following graphs are flow networks?


\section*{Quiz Flow Network}

Which of the following graphs are flow networks?


\section*{Quiz Flow Network}

Which of the following graphs are flow networks?


\section*{Quiz Flow Network}

Which of the following graphs are flow networks?


Flow in Flow Network

Flow in Flow Network


\section*{Flow in Flow Network}

Flow is function \(f: E \rightarrow \mathbb{R}^{\geq 0}\) such that


\section*{Flow in Flow Network}

Flow is function \(f: E \rightarrow \mathbb{R}^{\geq 0}\) such that


\section*{Flow in Flow Network}

Flow is function \(f: E \rightarrow \mathbb{R}^{\geq 0}\) such that


\section*{Flow in Flow Network}

Flow is function \(f: E \rightarrow \mathbb{R}^{\geq 0}\) such that


\section*{Flow in Flow Network}

Flow is function \(f: E \rightarrow \mathbb{R}^{\geq 0}\) such that
■ Bounded Capacity: \(\forall e \in E: f(e) \leq c(e)\)


\section*{Flow in Flow Network}

Flow is function \(f: E \rightarrow \mathbb{R}^{\geq 0}\) such that
■ Bounded Capacity: \(\forall e \in E: f(e) \leq c(e)\)
- Conservation of flow:


\section*{Flow in Flow Network}

Flow is function \(f: E \rightarrow \mathbb{R}^{\geq 0}\) such that
■ Bounded Capacity: \(\forall e \in E: f(e) \leq c(e)\)
■ Conservation of flow: \(\forall v \in V \backslash\{s, t\}\) :


\section*{Flow in Flow Network}

Flow is function \(f: E \rightarrow \mathbb{R}^{\geq 0}\) such that
■ Bounded Capacity: \(\forall e \in E: f(e) \leq c(e)\)
■ Conservation of flow: \(\forall v \in V \backslash\{s, t\}\) :
\[
\sum_{e \in E^{-}(v)} f(e)
\]


\section*{Flow in Flow Network}

Flow is function \(f: E \rightarrow \mathbb{R}^{\geq 0}\) such that
- Bounded Capacity: \(\forall e \in E: f(e) \leq c(e)\)

■ Conservation of flow: \(\forall v \in V \backslash\{s, t\}\) :


\section*{Flow in Flow Network}

Flow is function \(f: E \rightarrow \mathbb{R}^{\geq 0}\) such that
■ Bounded Capacity: \(\forall e \in E: f(e) \leq c(e)\)
■ Conservation of flow: \(\forall v \in V \backslash\{s, t\}\) :
\[
\underbrace{\sum_{e \in E^{-}(v)} f(e)}_{=: f^{-}(v)}=\underbrace{\sum_{e \in E^{+}(v)} f(e)}_{=: f^{+}(v)}
\]


\section*{Flow in Flow Network}

Flow is function \(f: E \rightarrow \mathbb{R}^{\geq 0}\) such that
- Bounded Capacity: \(\forall e \in E: f(e) \leq c(e)\)

■ Conservation of flow: \(\forall v \in V \backslash\{s, t\}\) :
\[
\underbrace{\sum_{e \in E^{-}(v)} f(e)}_{=: f^{-}(v)}=\underbrace{\sum_{e \in E^{+}(v)} f(e)}_{=: f^{+}(v)}
\]

Size of flow: \(|f|:=f^{+}(s)=f^{-}(t)\)


\section*{Flow in Flow Network}

Flow is function \(f: E \rightarrow \mathbb{R}^{\geq 0}\) such that
- Bounded Capacity: \(\forall e \in E: f(e) \leq c(e)\)

■ Conservation of flow: \(\forall v \in V \backslash\{s, t\}\) :
\[
\underbrace{\sum_{e \in E^{-}(v)} f(e)}_{=: f^{-}(v)}=\underbrace{\sum_{e \in E^{+}(v)} f(e)}_{=: f^{+}(v)}
\]

Size of flow: \(|f|:=f^{+}(s)=f^{-}(t)\)


\section*{Intuition: Flow as set of paths \(s \rightsquigarrow t\)}

Intuition: Flow as set of paths \(s \rightsquigarrow t\)


Intuition: Flow as set of paths \(s \rightsquigarrow t\)


Intuition: Flow as set of paths \(s \rightsquigarrow t\)


Intuition: Flow as set of paths \(s \rightsquigarrow t\)


Intuition: Flow as set of paths \(s \rightsquigarrow t\)


Quiz Flow

\section*{Quiz Flow}

Which of the following are flows?

\section*{Quiz Flow}

Which of the following are flows?


\section*{Quiz Flow}

Which of the following are flows?


\section*{Quiz Flow}

Which of the following are flows?


\section*{Quiz Flow}

Which of the following are flows?


\section*{Quiz Flow}

Which of the following are flows?


\section*{Quiz Flow}

Which of the following are flows?


Maximal Flow

\section*{Maximal Flow}

Given: Flow network: \(G=(V, E, c)\), directed, positively weighted, without antiparallel edges, with source \(s\) and \(\operatorname{sink} t\)


\section*{Maximal Flow}

Given: Flow network: \(G=(V, E, c)\), directed, positively weighted, without antiparallel edges, with source \(s\) and \(\operatorname{sink} t\)


Wanted: Size \(\left|f_{\max }\right|\) of the maximum flow in \(G\)

\section*{Maximal Flow}

Given: Flow network: \(G=(V, E, c)\), directed, positively weighted, without antiparallel edges, with source \(s\) and \(\operatorname{sink} t\)

\[
\mathbf{1 8}=|\mathbf{f}| \leq\left|\mathbf{f}_{\max }\right|=\mathbf{2 3}
\]

Wanted: Size \(\left|f_{\max }\right|\) of the maximum flow in \(G\)

\section*{Quiz Maximum Flow}

\section*{Quiz Maximum Flow}

What is the maximum flow in the following flow network?

\section*{Quiz Maximum Flow}

What is the maximum flow in the following flow network?


\section*{Greedy Algorithm?}

\section*{Greedy Algorithm?}

Residual capacity of an edge \(e\) : \(r(e):=c(e)-f(e)\) Residual capacity of a path \(P: \min _{e \in P} r(e)\)

\section*{Greedy Algorithm?}

Residual capacity of an edge \(e\) : \(r(e):=c(e)-f(e)\) Residual capacity of a path \(P: \min _{e \in P} r(e)\)

Greedy: Starting with \(f(e)=0\) for all \(e \in E\), as long as there exists a path \(s \rightsquigarrow t\) with remaining capacity \(d>0\), increase flow along this path by \(d\).

\section*{Greedy Algorithm?}

Residual capacity of an edge \(e\) : \(r(e):=c(e)-f(e)\) Residual capacity of a path \(P: \min _{e \in P} r(e)\)

Greedy: Starting with \(f(e)=0\) for all \(e \in E\), as long as there exists a path \(s \rightsquigarrow t\) with remaining capacity \(d>0\), increase flow along this path by \(d\).

\[
|f|=0
\]

\section*{Greedy Algorithm?}

Residual capacity of an edge \(e\) : \(r(e):=c(e)-f(e)\) Residual capacity of a path \(P: \min _{e \in P} r(e)\)

Greedy: Starting with \(f(e)=0\) for all \(e \in E\), as long as there exists a path \(s \rightsquigarrow t\) with remaining capacity \(d>0\), increase flow along this path by \(d\).


\section*{Greedy Algorithm?}

Residual capacity of an edge \(e\) : \(r(e):=c(e)-f(e)\) Residual capacity of a path \(P: \min _{e \in P} r(e)\)

Greedy: Starting with \(f(e)=0\) for all \(e \in E\), as long as there exists a path \(s \rightsquigarrow t\) with remaining capacity \(d>0\), increase flow along this path by \(d\).


\section*{Greedy Algorithm?}

Residual capacity of an edge \(e\) : \(r(e):=c(e)-f(e)\) Residual capacity of a path \(P: \min _{e \in P} r(e)\)

Greedy: Starting with \(f(e)=0\) for all \(e \in E\), as long as there exists a path \(s \rightsquigarrow t\) with remaining capacity \(d>0\), increase flow along this path by \(d\).
\[
\begin{aligned}
& |f|=3 \\
& s \rightarrow a \rightarrow b \rightarrow d \rightarrow t: 3
\end{aligned}
\]
\[
G_{f}^{+}:=(V, E, r:=c-f)
\]

\section*{Greedy Algorithm?}

Residual capacity of an edge \(e\) : \(r(e):=c(e)-f(e)\) Residual capacity of a path \(P: \min _{e \in P} r(e)\)

Greedy: Starting with \(f(e)=0\) for all \(e \in E\), as long as there exists a path \(s \rightsquigarrow t\) with remaining capacity \(d>0\), increase flow along this path by \(d\).
\[
\begin{aligned}
& |f|=3 \\
& s \rightarrow a \rightarrow b \rightarrow d \rightarrow t: 3
\end{aligned}
\]
\[
G_{f}^{+}:=(V, E, r:=c-f)
\]

\section*{Greedy Algorithm?}

Residual capacity of an edge \(e\) : \(r(e):=c(e)-f(e)\) Residual capacity of a path \(P: \min _{e \in P} r(e)\)

Greedy: Starting with \(f(e)=0\) for all \(e \in E\), as long as there exists a path \(s \rightsquigarrow t\) with remaining capacity \(d>0\), increase flow along this path by \(d\).


\section*{Greedy Algorithm?}

Residual capacity of an edge \(e\) : \(r(e):=c(e)-f(e)\) Residual capacity of a path \(P: \min _{e \in P} r(e)\)

Greedy: Starting with \(f(e)=0\) for all \(e \in E\), as long as there exists a path \(s \rightsquigarrow t\) with remaining capacity \(d>0\), increase flow along this path by \(d\).


\section*{Greedy Algorithm?}

Residual capacity of an edge \(e\) : \(r(e):=c(e)-f(e)\) Residual capacity of a path \(P: \min _{e \in P} r(e)\)

Greedy: Starting with \(f(e)=0\) for all \(e \in E\), as long as there exists a path \(s \rightsquigarrow t\) with remaining capacity \(d>0\), increase flow along this path by \(d\).


\section*{Greedy Algorithm?}

Residual capacity of an edge \(e\) : \(r(e):=c(e)-f(e)\) Residual capacity of a path \(P: \min _{e \in P} r(e)\)

Greedy: Starting with \(f(e)=0\) for all \(e \in E\), as long as there exists a path \(s \rightsquigarrow t\) with remaining capacity \(d>0\), increase flow along this path by \(d\).
\[
G_{f}^{+}:=(V, E, r:=c-f)
\]
\[
\begin{aligned}
& |f|=5 \\
& s \rightarrow a \rightarrow b \rightarrow d \rightarrow t: 3 \\
& s \rightarrow a \rightarrow c \rightarrow t: 2
\end{aligned}
\]

\section*{Greedy Algorithm?}

Residual capacity of an edge \(e\) : \(r(e):=c(e)-f(e)\) Residual capacity of a path \(P: \min _{e \in P} r(e)\)

Greedy: Starting with \(f(e)=0\) for all \(e \in E\), as long as there exists a path \(s \rightsquigarrow t\) with remaining capacity \(d>0\), increase flow along this path by \(d\).
\[
\begin{aligned}
& |f|=8 \\
& s \rightarrow a \rightarrow b \rightarrow d \rightarrow t: 3 \\
& s \rightarrow a \rightarrow c \rightarrow t: 2 \\
& s \rightarrow b \rightarrow c \rightarrow t: 3
\end{aligned}
\]

\section*{Greedy Algorithm?}

Residual capacity of an edge \(e\) : \(r(e):=c(e)-f(e)\) Residual capacity of a path \(P: \min _{e \in P} r(e)\)

Greedy: Starting with \(f(e)=0\) for all \(e \in E\), as long as there exists a path \(s \rightsquigarrow t\) with remaining capacity \(d>0\), increase flow along this path by \(d\).


\section*{Greedy Algorithm?}

Residual capacity of an edge \(e\) : \(r(e):=c(e)-f(e)\) Residual capacity of a path \(P: \min _{e \in P} r(e)\)

Greedy: Starting with \(f(e)=0\) for all \(e \in E\), as long as there exists a path \(s \rightsquigarrow t\) with remaining capacity \(d>0\), increase flow along this path by \(d\).
\[
\begin{aligned}
& |f|=8 \\
& s \rightarrow a \rightarrow b \rightarrow d \rightarrow t: 3 \\
& s \rightarrow a \rightarrow c \rightarrow t: 2 \\
& s \rightarrow b \rightarrow c \rightarrow t: 3 \\
& \text { but }\left|f_{\max }\right|=10
\end{aligned}
\]
\[
G_{f}^{+}:=(V, E, r:=c-f)
\]

\section*{Problem with Greedy}

\section*{Problem with Greedy}


\section*{Problem with Greedy}


\section*{Problem with Greedy}


\section*{Problem with Greedy}


Greedy: \(|f|=5\)


Redirection

\section*{Problem with Greedy}




Greedy: \(|f|=5\)


Redirection

\section*{Problem with Greedy}


Greedy: \(|f|=5\)


Redirection

\subsection*{29.1 Flow Algorithms}

\author{
Ford-Fulkerson Algorithm
}

Edmonds-Karp Algorithm

Redirection using flow decrement

Redirection using flow decrement


Redirection using flow decrement

before

Redirection using flow decrement


Redirection using flow decrement


Redirection using flow decrement


\section*{Redirection using flow decrement}


\section*{Redirection using flow decrement}

\(\Rightarrow\) Umleitung entspricht Verringerung des Flusses durch Kante

Idea: Flow increments and decrements

Idea: Flow increments and decrements
\(\longrightarrow \xrightarrow{f(e) / c(e)} \longrightarrow\)

Idea: Flow increments and decrements


■ Increment:
flow through \(e\) can be increased by at most \(r(e):=c(e)-f(e)\)

Idea: Flow increments and decrements


■ Increment:
flow through \(e\) can be increased by at most \(r(e):=c(e)-f(e)\)


\section*{Idea: Flow increments and decrements}


\section*{■ Increment:}
flow through \(e\) can be increased by at most \(r(e):=c(e)-f(e)\)


■ Decrement:
flow through e can be decreased by at most \(f(e)\)

\section*{Idea: Flow increments and decrements}


\section*{■ Increment:}
flow through \(e\) can be increased by at most \(r(e):=c(e)-f(e)\)

- Decrement:
flow through e can be decreased by at most \(f(e)\)
\(\Rightarrow\) flow through \(\overleftarrow{e}\) can be increased by at most \(f(e)\)

\section*{Idea: Flow increments and decrements}


\section*{■ Increment:}
flow through \(e\) can be increased by at most \(r(e):=c(e)-f(e)\)

- Decrement:
flow through e can be decreased by at most \(f(e)\)

\(\Rightarrow\) flow through \(\overleftarrow{e}\) can be increased by at
\[
G_{f}^{-}:=(V, \overleftarrow{E}, f)
\] most \(f(e)\)

\section*{Residual Network}

Residual Network



Residual network: \(G_{f}:=\mathrm{G}_{\mathrm{f}}^{+} \cup \mathrm{G}_{\mathrm{f}}^{-}=\left(V, E_{f}, c_{f}\right)\)


Residual network: \(G_{f}:=\mathrm{G}_{\mathrm{f}}^{+} \cup \mathrm{G}_{\mathrm{f}}^{-}=\left(V, E_{f}, c_{f}\right)\)


Residual network: \(G_{f}:=\mathrm{G}_{\mathrm{f}}^{+} \cup \mathrm{G}_{\mathrm{f}}^{-}=\left(V, E_{f}, c_{f}\right)\)

Ford-Fulkerson: Flow augmentation

\section*{Ford-Fulkerson: Flow augmentation}


\section*{Ford-Fulkerson: Flow augmentation}


■ Augmenting Path: Find a path \(\mathbf{P}: \mathrm{s} \rightarrow \mathbf{t}\) with residual capacity \(d>0\) in \(G_{f}\)

\section*{Ford-Fulkerson: Flow augmentation}


■ Augmenting Path: Find a path \(\mathbf{P}: \mathrm{s} \rightarrow \mathbf{t}\) with residual capacity \(d>0\) in \(G_{f}\)
- augment flow along this path for all \(e \in P\) by \(d\) :

\section*{Ford-Fulkerson: Flow augmentation}


■ Augmenting Path: Find a path \(\mathbf{P}: \mathrm{s} \rightarrow \mathbf{t}\) with residual capacity \(d>0\) in \(G_{f}\)
■ augment flow along this path for all \(e \in P\) by \(d\) :
- decrease residual capacity \(\mathrm{c}_{\mathbf{f}}(\mathbf{e})\) in \(G_{f}\) by \(d\); increase \(\mathrm{c}_{\mathbf{f}}(\overleftarrow{e})\) by \(d\)

\section*{Ford-Fulkerson: Flow augmentation}


■ Augmenting Path: Find a path \(\mathbf{P}: \mathrm{s} \rightarrow \mathbf{t}\) with residual capacity \(d>0\) in \(G_{f}\)
■ augment flow along this path for all \(e \in P\) by \(d\) :
- decrease residual capacity \(\mathbf{c}_{\mathbf{f}}(\mathbf{e})\) in \(G_{f}\) by \(d\); increase \(\mathbf{c}_{\mathbf{f}}(\overleftarrow{e})\) by \(d\)
- increase flow through \(\mathrm{e} \in \mathrm{E}\) by \(d\); decrease through \(\overleftarrow{e} \in \mathbf{E}\)

\section*{Ford-Fulkerson: Flow augmentation}


■ Augmenting Path: Find a path \(\mathbf{P}: \mathrm{s} \rightarrow \mathbf{t}\) with residual capacity \(d>0\) in \(G_{f}\)
- augment flow along this path for all \(e \in P\) by \(d\) :
- decrease residual capacity \(\mathbf{c}_{\mathbf{f}}(\mathbf{e})\) in \(G_{f}\) by \(d\); increase \(\mathbf{c}_{\mathbf{f}}(\overleftarrow{e})\) by \(d\)
- increase flow through \(\mathrm{e} \in \mathbb{E}\) by \(d\); decrease through \(\overleftarrow{e} \in \mathbf{E}\)

\section*{Algorithm Ford-Fulkerson( \(G, s, t\) )}

Input: Flow network \(G=(V, E, c)\), source \(s\), sink \(t\) Output: Maximal flow \(f\)

\section*{Algorithm Ford-Fulkerson( \(G, s, t\) )}

Input: Flow network \(G=(V, E, c)\), source \(s\), sink \(t\)
Output: Maximal flow \(f\)
for \(e \in E\) do
\(f(e) \leftarrow 0\)

\section*{Algorithm Ford-Fulkerson( \(G, s, t\) )}

Input: Flow network \(G=(V, E, c)\), source \(s\), sink \(t\)
Output: Maximal flow \(f\)
for \(e \in E\) do
\(f(e) \leftarrow 0\)
while exists positive path \(P: s \rightsquigarrow t\) in residual network \(G_{f}=\left(V, E_{f}, c_{f}\right)\) do

\section*{Algorithm Ford-Fulkerson( \(G, s, t\) )}

Input: Flow network \(G=(V, E, c)\), source \(s\), sink \(t\)
Output: Maximal flow \(f\)
for \(e \in E\) do
\(f(e) \leftarrow 0\)
while exists positive path \(P: s \rightsquigarrow t\) in residual network \(G_{f}=\left(V, E_{f}, c_{f}\right)\) do \(d \leftarrow \min _{e \in P} c_{f}(e)\)

\section*{Algorithm Ford-Fulkerson( \(G, s, t\) )}

Input: Flow network \(G=(V, E, c)\), source \(s\), sink \(t\)
Output: Maximal flow \(f\)
for \(e \in E\) do
\(f(e) \leftarrow 0\)
while exists positive path \(P: s \rightsquigarrow t\) in residual network \(G_{f}=\left(V, E_{f}, c_{f}\right)\) do \(d \leftarrow \min _{e \in P} c_{f}(e)\)
foreach \(e \in P\) do

\section*{Algorithm Ford-Fulkerson( \(G, s, t\) )}

Input: Flow network \(G=(V, E, c)\), source \(s\), sink \(t\)
Output: Maximal flow \(f\)
for \(e \in E\) do
\(f(e) \leftarrow 0\)
while exists positive path \(P: s \rightsquigarrow t\) in residual network \(G_{f}=\left(V, E_{f}, c_{f}\right)\) do \(d \leftarrow \min _{e \in P} c_{f}(e)\)
foreach \(e \in P\) do if \(e \in E\) then
\(f(e) \leftarrow f(e)+d\)

\section*{Algorithm Ford-Fulkerson( \(G, s, t\) )}

Input: Flow network \(G=(V, E, c)\), source \(s\), sink \(t\)
Output: Maximal flow \(f\)
for \(e \in E\) do
\(f(e) \leftarrow 0\)
while exists positive path \(P: s \rightsquigarrow t\) in residual network \(G_{f}=\left(V, E_{f}, c_{f}\right)\) do \(d \leftarrow \min _{e \in P} c_{f}(e)\)
foreach \(e \in P\) do
if \(e \in E\) then
\[
f(e) \leftarrow f(e)+d
\]
else
\[
L f(\overleftarrow{e}) \leftarrow f(\overleftarrow{e})-d
\]

\section*{Example Ford-Fulkerson}

Example Ford-Fulkerson


\section*{Example Ford-Fulkerson}


Example Ford-Fulkerson


Example Ford-Fulkerson


Example Ford-Fulkerson


Example Ford-Fulkerson


\section*{Example Ford-Fulkerson}

nodes reachable from \(s\)

\section*{Example Ford-Fulkerson}

nodes reachable from \(s\) nodes not reachable from \(s\)

\section*{Example Ford-Fulkerson}

nodes reachable from \(s\) nodes not reachable from \(s\)
all outgoing edges have residual capacity 0 in \(G_{f}\)

\section*{Example Ford-Fulkerson}

nodes reachable from \(s\) nodes not reachable from \(s\)
all outgoing edges have residual capacity 0 in \(G_{f}\)
\(\Rightarrow\) flow fully exhausts capacity on these edges!

\section*{Quiz Ford-Fulkerson}

\section*{Quiz Ford-Fulkerson}


\section*{Quiz Ford-Fulkerson}


How many iterations does Ford-Fulkerson need in the worst case?

\section*{Solution}

\section*{Solution}


\section*{Solution}


\section*{Solution}


\section*{Solution}


\section*{Solution}


\section*{Solution}


\section*{Solution}


\section*{Solution}


\section*{Solution}


\section*{Solution}


\section*{Solution}


\section*{Solution}


\section*{Solution}


\section*{Solution}


\section*{Solution}


After \(i\) iterations: \(|f|=i\)

\section*{Solution}


After \(i\) iterations: \(|f|=i\)
\(\Rightarrow\) in total \(\left|f_{\text {max }}\right|\)
iterations

\section*{Solution}


After \(i\) iterations: \(|f|=i\)
\(\Rightarrow\) in total \(\left|f_{\max }\right|=200\) iterations

Running Time Analysis of Ford-Fulkerson

\section*{Running Time Analysis of Ford-Fulkerson}

Running time of each iteration:

\section*{Running Time Analysis of Ford-Fulkerson}

Running time of each iteration: search of an augmenting path \(s \rightsquigarrow t\)

\section*{Running Time Analysis of Ford-Fulkerson}

Running time of each iteration: search of an augmenting path \(s \rightsquigarrow t\) \(\Rightarrow\) BFS or DFS: \(\mathcal{O}(|V|+|E|)=\mathcal{O}(|E|)\)

\section*{Running Time Analysis of Ford-Fulkerson}

Running time of each iteration: search of an augmenting path \(s \rightsquigarrow t\)
\(\Rightarrow\) BFS or DFS: \(\mathcal{O}(|V|+|E|)=\mathcal{O}(|E|)\)
( \(|V| \leq|E|\), because all non-reachable nodes can be ignored.)

\section*{Running Time Analysis of Ford-Fulkerson}

Running time of each iteration: search of an augmenting path \(s \rightsquigarrow t\)
\(\Rightarrow\) BFS or DFS: \(\mathcal{O}(|V|+|E|)=\mathcal{O}(|E|)\)
( \(|V| \leq|E|\), because all non-reachable nodes can be ignored.)
Number of iterations:

\section*{Running Time Analysis of Ford-Fulkerson}

Running time of each iteration: search of an augmenting path \(s \rightsquigarrow t\)
\(\Rightarrow\) BFS or DFS: \(\mathcal{O}(|V|+|E|)=\mathcal{O}(|E|)\)
( \(|V| \leq|E|\), because all non-reachable nodes can be ignored.)

\section*{Number of iterations:}

In every step, the size of the flow increases by \(d>0\).

\section*{Running Time Analysis of Ford-Fulkerson}

Running time of each iteration: search of an augmenting path \(s \rightsquigarrow t\)
\(\Rightarrow\) BFS or DFS: \(\mathcal{O}(|V|+|E|)=\mathcal{O}(|E|)\)
( \(|V| \leq|E|\), because all non-reachable nodes can be ignored.)

\section*{Number of iterations:}

In every step, the size of the flow increases by \(d>0\). integer capacities

\section*{Running Time Analysis of Ford-Fulkerson}

Running time of each iteration: search of an augmenting path \(s \rightsquigarrow t\)
\(\Rightarrow\) BFS or DFS: \(\mathcal{O}(|V|+|E|)=\mathcal{O}(|E|)\)
( \(|V| \leq|E|\), because all non-reachable nodes can be ignored.)

\section*{Number of iterations:}

In every step, the size of the flow increases by \(d>0\). integer capacities \(\Rightarrow\) increment by \(\geq 1\)

\section*{Running Time Analysis of Ford-Fulkerson}

Running time of each iteration: search of an augmenting path \(s \rightsquigarrow t\)
\(\Rightarrow\) BFS or DFS: \(\mathcal{O}(|V|+|E|)=\mathcal{O}(|E|)\)
( \(|V| \leq|E|\), because all non-reachable nodes can be ignored.)

\section*{Number of iterations:}

In every step, the size of the flow increases by \(d>0\).
integer capacities \(\Rightarrow\) increment by \(\geq 1 \Rightarrow\) at most \(\left|f_{\max }\right|\) iterations

\section*{Running Time Analysis of Ford-Fulkerson}

Running time of each iteration: search of an augmenting path \(s \rightsquigarrow t\)
\(\Rightarrow\) BFS or DFS: \(\mathcal{O}(|V|+|E|)=\mathcal{O}(|E|)\)
( \(|V| \leq|E|\), because all non-reachable nodes can be ignored.)

\section*{Number of iterations:}

In every step, the size of the flow increases by \(d>0\).
integer capacities \(\Rightarrow\) increment by \(\geq 1 \Rightarrow\) at most \(\left|f_{\max }\right|\) iterations
\(\Rightarrow \mathcal{O}\left(\left|f_{\text {max }}\right| \cdot|E|\right)\) for flow networks \(G=(V, E, c)\) with \(c: E \rightarrow \mathbb{N}^{\geq 1}\)

\section*{Running Time Analysis of Ford-Fulkerson}

Running time of each iteration: search of an augmenting path \(s \rightsquigarrow t\)
\(\Rightarrow\) BFS or DFS: \(\mathcal{O}(|V|+|E|)=\mathcal{O}(|E|)\)
\[
\text { (|V| } \leq|E| \text {, because all non-reachable nodes can be ignored.) }
\]

\section*{Number of iterations:}

In every step, the size of the flow increases by \(d>0\). integer capacities \(\Rightarrow\) increment by \(\geq 1 \Rightarrow\) at most \(\left|f_{\max }\right|\) iterations
\(\Rightarrow \mathcal{O}\left(\left|f_{\max }\right| \cdot|E|\right)\) for flow networks \(G=(V, E, c)\) with \(c: E \rightarrow \mathbb{N} \geq 1\)
Edmonds-Karp Algorithm: (Variant of Ford-Fulkerson)

\section*{Running Time Analysis of Ford-Fulkerson}

Running time of each iteration: search of an augmenting path \(s \rightsquigarrow t\)
\(\Rightarrow\) BFS or DFS: \(\mathcal{O}(|V|+|E|)=\mathcal{O}(|E|)\)
\[
\text { (|V| } \leq|E| \text {, because all non-reachable nodes can be ignored.) }
\]

\section*{Number of iterations:}

In every step, the size of the flow increases by \(d>0\). integer capacities \(\Rightarrow\) increment by \(\geq 1 \Rightarrow\) at most \(\left|f_{\max }\right|\) iterations
\(\Rightarrow \mathcal{O}\left(\left|f_{\max }\right| \cdot|E|\right)\) for flow networks \(G=(V, E, c)\) with \(c: E \rightarrow \mathbb{N}^{\geq 1}\)
Edmonds-Karp Algorithm: (Variant of Ford-Fulkerson)
shortest augmenting path (number of edges)

\section*{Running Time Analysis of Ford-Fulkerson}

Running time of each iteration: search of an augmenting path \(s \rightsquigarrow t\)
\(\Rightarrow\) BFS or DFS: \(\mathcal{O}(|V|+|E|)=\mathcal{O}(|E|)\)
\[
\text { (|V| } \leq|E| \text {, because all non-reachable nodes can be ignored.) }
\]

\section*{Number of iterations:}

In every step, the size of the flow increases by \(d>0\). integer capacities \(\Rightarrow\) increment by \(\geq 1 \Rightarrow\) at most \(\left|f_{\max }\right|\) iterations
\(\Rightarrow \mathcal{O}\left(\left|f_{\text {max }}\right| \cdot|E|\right)\) for flow networks \(G=(V, E, c)\) with \(c: E \rightarrow \mathbb{N}^{\geq 1}\)
Edmonds-Karp Algorithm: (Variant of Ford-Fulkerson)
shortest augmenting path (number of edges) \(\Rightarrow \mathcal{O}\left(|V| \cdot|E|^{2}\right)\) (without explanation)

Quiz Edmonds-Karp

\section*{Quiz Edmonds-Karp}


\section*{Quiz Edmonds-Karp}


How many iterations does Edmonds-Karp need in the worst case?

\section*{Solution}

\section*{Solution}


\section*{Solution}


\section*{Solution}


\section*{Solution}


\section*{Solution}


\section*{Solution}


\section*{Solution}


\section*{Solution}


Termination after 2 iterations!
29.2 Max-Flow Min-Cut

Flows and Cuts: Bottleneck Intuition

Flows and Cuts: Bottleneck Intuition


\section*{Flows and Cuts: Bottleneck Intuition}

Upper bounds on size of flow:


\section*{Flows and Cuts: Bottleneck Intuition}

Upper bounds on size of flow:
- what can flow out of \(s: c^{+}(s)\)


\section*{Flows and Cuts: Bottleneck Intuition}

\section*{Upper bounds on size of flow:}

■ what can flow out of \(s: c^{+}(s)\)
- what can flow into \(t\) : \(c^{-}(t)\)


\section*{Flows and Cuts: Bottleneck Intuition}

\section*{Upper bounds on size of flow:}
- what can flow out of \(s: c^{+}(s)\)

■ what can flow into \(t\) : \(c^{-}(t)\)
- what can flow through arbitrary cut


\section*{Flows and Cuts: Bottleneck Intuition}

\section*{Upper bounds on size of flow:}
- what can flow out of \(s: c^{+}(s)\)
- what can flow into \(t\) : \(c^{-}(t)\)
- what can flow through arbitrary cut

■ what can flow through bottleneck: \(c_{\text {min }}\)


\section*{Flows and Cuts: Bottleneck Intuition}

\section*{Upper bounds on size of flow:}

■ what can flow out of \(s: c^{+}(s)\)
- what can flow into \(t\) : \(c^{-}(t)\)
- what can flow through arbitrary cut

■ what can flow through bottleneck: \(c_{\text {min }}\)


\section*{Flows and Cuts: Bottleneck Intuition}

\section*{Upper bounds on size of flow:}

■ what can flow out of \(s\) : \(c^{+}(s)\)
- what can flow into \(t\) : \(c^{-}(t)\)
- what can flow through arbitrary cut

■ what can flow through bottleneck: \(c_{\text {min }}\)


\section*{Flows and Cuts: Bottleneck Intuition}

\section*{Upper bounds on size of flow:}

■ what can flow out of \(s\) : \(c^{+}(s)\)
- what can flow into \(t\) : \(c^{-}(t)\)
- what can flow through arbitrary cut

■ what can flow through bottleneck: \(c_{\text {min }}\)


\section*{Flows and Cuts: Bottleneck Intuition}

\section*{Upper bounds on size of flow:}

■ what can flow out of \(s: c^{+}(s)\)
- what can flow into \(t\) : \(c^{-}(t)\)
- what can flow through arbitrary cut

■ what can flow through bottleneck: \(c_{\text {min }}\)


Cut

Cut


\section*{Cut}
\((s, t)\)-Cut of graph \(G=(V, E, c)\) :


\section*{Cut}
( \(s, t)\)-Cut of graph \(G=(V, E, c)\) : Partition (S, T) of \(V\) such that \(s \in S, t \in T\)


\section*{Cut}
\((s, t)\)-Cut of graph \(G=(V, E, c)\) : Partition \((\mathbf{S}, \mathbf{T})\) of \(V\) such that \(s \in S, t \in T\)


\section*{Cut}
\((s, t)\)-Cut of graph \(G=(V, E, c)\) : Partition (S, T) of \(V\) such that \(s \in S, t \in T\)

Size of cut:
\(c(S, T):=\sum_{\mathrm{e}: \mathrm{S} \rightarrow \mathrm{T}} \mathrm{c}(\mathrm{e})\)


\section*{Cut}
( \(s, t)\)-Cut of graph \(G=(V, E, c)\) : Partition (S, T) of \(V\) such that \(s \in S, t \in T\)

Size of cut:
\(c(S, T):=\sum_{\mathrm{e}: \mathrm{S} \rightarrow \mathrm{T}} \mathrm{c}(\mathrm{e})\)


\section*{Cut}
( \(s, t)\)-Cut of graph \(G=(V, E, c)\) : Partition (S, T) of \(V\) such that \(s \in S, t \in T\)

\section*{Size of cut:}
\[
c(S, T):=\sum_{\mathrm{e}: \mathrm{S} \rightarrow \mathrm{~T}} \mathrm{c}(\mathrm{e})
\]

Flow through cut of flow network:


\section*{Cut}
( \(s, t)\)-Cut of graph \(G=(V, E, c)\) : Partition (S, T) of \(V\) such that \(s \in S, t \in T\)

\section*{Size of cut:}
\[
c(S, T):=\sum_{\mathrm{e}: \mathrm{S} \rightarrow \mathrm{~T}} \mathrm{c}(\mathrm{e})
\]

Flow through cut of flow network:
\[
f(S, T):=\sum_{\mathrm{e}: \mathrm{S} \rightarrow \mathrm{~T}} \mathrm{f}(\mathrm{e})-\sum_{\mathrm{e}: \mathrm{T} \rightarrow \mathrm{~S}} \mathrm{f}(\mathrm{e})
\]


\section*{Cut}
( \(s, t)\)-Cut of graph \(G=(V, E, c)\) : Partition (S, T) of \(V\) such that \(s \in S, t \in T\)

\section*{Size of cut:}
\[
c(S, T):=\sum_{\mathrm{e}: \mathrm{S} \rightarrow \mathrm{~T}} \mathrm{c}(\mathrm{e})
\]

Flow through cut of flow network:
\[
f(S, T):=\sum_{\mathrm{e}: \mathrm{S} \rightarrow \mathrm{~T}} \mathrm{f}(\mathrm{e})-\sum_{\mathrm{e}: \mathrm{T} \rightarrow \mathrm{~S}} \mathrm{f}(\mathrm{e})
\]


\section*{Cut}
\((s, t)\)-Cut of graph \(G=(V, E, c)\) : Partition (S, T) of \(V\) such that \(s \in S, t \in T\)

\section*{Size of cut:}
\(c(S, T):=\sum_{\mathrm{e}: \mathrm{S} \rightarrow \mathrm{T}} \mathrm{c}(\mathrm{e})\)
Flow through cut of flow network:
\[
f(S, T):=\sum_{\mathrm{e}: \mathrm{S} \rightarrow \mathrm{~T}} \mathrm{f}(\mathrm{e})-\sum_{\mathrm{e}: \mathrm{T} \rightarrow \mathrm{~S}} \mathrm{f}(\mathrm{e})
\]

Observation:
\[
\forall f, S, T:|f|=f(S, T) \leq c(S, T)
\]

\section*{Cut}
\((s, t)\)-Cut of graph \(G=(V, E, c)\) : Partition (S, T) of \(V\) such that \(s \in S, t \in T\)

\section*{Size of cut:}
\[
c(S, T):=\sum_{\mathrm{e}: \mathrm{S} \rightarrow \mathrm{~T}} \mathrm{c}(\mathrm{e})
\]

Flow through cut of flow network:
\[
f(S, T):=\sum_{\mathrm{e}: \mathrm{S} \rightarrow \mathrm{~T}} \mathrm{f}(\mathrm{e})-\sum_{\mathrm{e}: \mathrm{T} \rightarrow \mathrm{~S}} \mathrm{f}(\mathrm{e})
\]

Observation:
\[
\begin{aligned}
& \forall f, S, T:|f|=f(S, T) \leq c(S, T) \\
& \Rightarrow\left|f_{\max }\right| \leq c_{\min }
\end{aligned}
\]


Maximum Flow and Minimum Cut

\section*{Maximum Flow and Minimum Cut}

after termination of Ford-Fulkerson/Edmonds-Karp:

\section*{Maximum Flow and Minimum Cut}

after termination of Ford-Fulkerson/Edmonds-Karp:
- reachable from \(s, \mathbf{T} \subseteq \mathbf{V}\) nodes not reachable from \(s\)

\section*{Maximum Flow and Minimum Cut}

after termination of Ford-Fulkerson/Edmonds-Karp:
■ reachable from \(s, \mathbf{T} \subseteq \mathbf{V}\) nodes not reachable from \(s \Rightarrow \mathbf{C u t}(\mathbf{S}, \mathbf{T})\)

\section*{Maximum Flow and Minimum Cut}

after termination of Ford-Fulkerson/Edmonds-Karp:
■ reachable from \(s, \mathbf{T} \subseteq \mathbf{V}\) nodes not reachable from \(s \Rightarrow \mathbf{C u t}(\mathbf{S}, \mathbf{T})\)
■ all outgoing edges \(e\) have remaining capacity 0 in \(G_{f}\)

\section*{Maximum Flow and Minimum Cut}

after termination of Ford-Fulkerson/Edmonds-Karp:
- reachable from \(s, \mathbf{T} \subseteq \mathbf{V}\) nodes not reachable from \(s \Rightarrow \mathbf{C u t}(\mathbf{S}, \mathbf{T})\)

■ all outgoing edges \(e\) have remaining capacity 0 in \(G_{f}\)
■ \(f(S, T)=\sum_{\mathrm{e}: \mathrm{S} \rightarrow \mathrm{T}} \mathrm{f}(\mathrm{e})-\sum_{\mathrm{e}: \mathrm{T} \rightarrow \mathrm{S}} \mathrm{f}(\mathrm{e})\)

\section*{Maximum Flow and Minimum Cut}

after termination of Ford-Fulkerson/Edmonds-Karp:
- reachable from \(s, \mathbf{T} \subseteq \mathbf{V}\) nodes not reachable from \(s \Rightarrow \mathbf{C u t}(\mathbf{S}, \mathbf{T})\)

■ all outgoing edges \(e\) have remaining capacity 0 in \(G_{f}\)
■ \(f(S, T)=\sum_{\mathrm{e}: \mathrm{S} \rightarrow \mathrm{T}} \mathrm{f}(\mathrm{e})-\sum_{\mathrm{e}: \mathrm{T} \rightarrow \mathrm{S}} \mathrm{f}(\mathrm{e})=\sum_{\mathrm{e}: \mathrm{S} \rightarrow \mathrm{T}} \mathrm{c}(\mathrm{e})\)

\section*{Maximum Flow and Minimum Cut}

after termination of Ford-Fulkerson/Edmonds-Karp:
- reachable from \(s, \mathbf{T} \subseteq \mathbf{V}\) nodes not reachable from \(s \Rightarrow \mathbf{C u t}(\mathbf{S}, \mathbf{T})\)

■ all outgoing edges \(e\) have remaining capacity 0 in \(G_{f}\)
\(\square f(S, T)=\sum_{\mathrm{e}: \mathrm{S} \rightarrow \mathrm{T}} \mathrm{f}(\mathrm{e})-\sum_{\mathrm{e}: \mathrm{T} \rightarrow \mathrm{S}} \mathrm{f}(\mathrm{e})=\sum_{\mathrm{e}: \mathrm{S} \rightarrow \mathrm{T}} \mathrm{C}(\mathrm{e})=\mathbf{c}(\mathbf{S}, \mathbf{T})\)

\section*{Maximum Flow and Minimum Cut}

after termination of Ford-Fulkerson/Edmonds-Karp:
■ reachable from \(s, \mathbf{T} \subseteq \mathbf{V}\) nodes not reachable from \(s \Rightarrow \mathbf{C u t}(\mathbf{S}, \mathbf{T})\)
- all outgoing edges \(e\) have remaining capacity 0 in \(G_{f}\)
\(\square f(S, T)=\sum_{\mathrm{e}: \mathrm{S} \rightarrow \mathrm{T}} \mathrm{f}(\mathrm{e})-\sum_{\mathrm{e}: \mathrm{T} \rightarrow \mathrm{S}} \mathrm{f}(\mathrm{e})=\sum_{\mathrm{e}: \mathrm{S} \rightarrow \mathrm{T}} \mathrm{C}(\mathrm{e})=\mathbf{c}(\mathbf{S}, \mathbf{T})\) \(\Rightarrow\left|f_{\text {max }}\right|=c_{\text {min }}\)

\section*{Max-Flow Min-Cut Theorem}

\section*{Max-Flow Min-Cut Theorem}

For a flow \(f\) in a flow network \(G=(V, E, c)\) with source \(s\) and \(\operatorname{sink} t\), the following statements are equivalent:
1. \(f\) is a maximum flow in \(G\)
2. The residual network \(G_{f}\) does not provide any augmenting paths
3. \(|f|=c(S, T)\) for a cut \((S, T)\) of \(G\).

Quiz

Quiz


\section*{Quiz}


What is the minimum cut?

\section*{Quiz}


What is the minimum cut?
What is the maximum flow?

\section*{Application Examples}

\section*{Application Examples}

■ Maximum Rate:
- water in sewage system
- cars in traffic

\section*{Application Examples}

■ Maximum Rate:
- water in sewage system
- cars in traffic

■ current in electrical networks

\section*{Application Examples}
- Maximum Rate:
- water in sewage system
- cars in traffic
- current in electrical networks
- components on conveyors

\section*{Application Examples}
- Maximum Rate:
- water in sewage system
- cars in traffic
- current in electrical networks
- components on conveyors
- information flow in communication networks

\section*{Application Examples}
- Maximum Rate:
- water in sewage system
- cars in traffic
- current in electrical networks
- components on conveyors
- information flow in communication networks

■ Scheduling

\section*{Application Examples}
- Maximum Rate:
- water in sewage system
- cars in traffic
- current in electrical networks
- components on conveyors
- information flow in communication networks

■ Scheduling
- Bipartite Matching

\section*{Application Examples}
- Maximum Rate:

■ water in sewage system
- cars in traffic

■ current in electrical networks
- components on conveyors

■ information flow in communication networks
■ Scheduling
- Bipartite Matching
- Image Segmentation
29.4 Maximales Bipartites Matching

\section*{Notation}

A graph where \(V\) can be partitioned into disjoint sets \(U\) and \(W\) such that each \(e \in E\) provides a node in \(U\) and a node in \(W\) is called bipartite.


\section*{Application: maximal bipartite matching}

Given: bipartite undirected graph \(G=(V, E)\).
Matching \(M: M \subseteq E\) such that \(|\{m \in M: v \in m\}| \leq 1\) for all \(v \in V\).
Maximal Matching \(M\) : Matching \(M\), such that \(|M| \geq\left|M^{\prime}\right|\) for each matching \(M^{\prime}\).


\section*{Corresponding flow network}

Construct a flow network that corresponds to the partition \(L, R\) of a bipartite graph with source \(s\) and \(\operatorname{sink} t\), with directed edges from \(s\) to \(L\), from \(L\) to \(R\) and from \(R\) to \(t\). Each edge has capacity 1.


\section*{Summary}

\section*{Summary}

■ Definitions: flow networks, flow, cut

\section*{Summary}

■ Definitions: flow networks, flow, cut
■ Concepts: Redirection, remainder network, augmenting path

\section*{Summary}

■ Definitions: flow networks, flow, cut
■ Concepts: Redirection, remainder network, augmenting path
- Algorithms

\section*{Summary}

■ Definitions: flow networks, flow, cut
■ Concepts: Redirection, remainder network, augmenting path
- Algorithms

■ Greedy: incorrect!

\section*{Summary}

■ Definitions: flow networks, flow, cut
■ Concepts: Redirection, remainder network, augmenting path
- Algorithms

■ Greedy: incorrect!
- Ford-Fulkerson: \(\mathcal{O}\left(\left|f_{\max }\right| \cdot|E|\right)\) Greedy augmenting paths in remainder network

\section*{Summary}

■ Definitions: flow networks, flow, cut
■ Concepts: Redirection, remainder network, augmenting path
- Algorithms
- Greedy: incorrect!

■ Ford-Fulkerson: \(\mathcal{O}\left(\left|f_{\max }\right| \cdot|E|\right)\) Greedy augmenting paths in remainder network
■ Edmonds-Karp: \(\mathcal{O}\left(|V| \cdot|E|^{2}\right)\)
Ford-Fulkerson with shortest augmenting paths (number of edges)

\section*{Summary}

■ Definitions: flow networks, flow, cut
■ Concepts: Redirection, remainder network, augmenting path
- Algorithms
- Greedy: incorrect!

■ Ford-Fulkerson: \(\mathcal{O}\left(\left|f_{\max }\right| \cdot|E|\right)\) Greedy augmenting paths in remainder network
■ Edmonds-Karp: \(\mathcal{O}\left(|V| \cdot|E|^{2}\right)\)
Ford-Fulkerson with shortest augmenting paths (number of edges)
■ Max Flow = Min Cut
29.5 Appendix: Some Formal Things

\section*{Flow: Formulation with Skew Symmetry}

A Flow \(f: V \times V \rightarrow \mathbb{R}\) fulfills the following conditions:

■ Bounded Capacity:
For all \(u, v \in V: f(u, v) \leq c(u, v)\).
■ Skew Symmetry:
For all \(u, v \in V: f(u, v)=-f(v, u)\).
■ Conservation of flow:

For all \(u \in V \backslash\{s, t\}\) :
\[
\sum_{v \in V} f(u, v)=0
\]


Value of the flow:
\(|f|=\sum_{v \in V} f(s, v)\). Here \(|f|=18\).

\section*{Cuts}
- Capacity of an ( \(s, t\) )--cut: \(c(S, T)=\sum_{v \in S, v^{\prime} \in T} c\left(v, v^{\prime}\right)\)
- Minimal cut: cut with minimal capacity.

■ Flow over the cut: \(f(S, T)=\sum_{v \in S, v^{\prime} \in T} f\left(v, v^{\prime}\right)\)
Generally: Let \(U, U^{\prime} \subseteq V\)
\[
f\left(U, U^{\prime}\right):=\sum_{\substack{u \in U \\ u^{\prime} \in U^{\prime}}} f\left(u, u^{\prime}\right), \quad f\left(u, U^{\prime}\right):=f\left(\{u\}, U^{\prime}\right)
\]

Then
- \(|f|=f(s, V)\)
- \(f(U, U)=0\)
- \(f\left(U, U^{\prime}\right)=-f\left(U^{\prime}, U\right)\)

■ \(f(X \cup Y, Z)=f(X, Z)+f(Y, Z)\), if \(X \cap Y=\emptyset\).
■ \(f(R, V)=0\) if \(R \cap\{s, t\}=\emptyset\). [flow conversation!]

How large can a flow possibly be?
\[
\begin{aligned}
& f(S, T)=f(S, V)-\underbrace{f(S, S)}_{0}=f(S, V) \\
&=f(s, V)+f(\underbrace{S-\{s\}}_{\nexists t, \ngtr s}, V)=|f| . \\
& \Rightarrow|f| \leq \sum_{v \in S, v^{\prime} \in T} c\left(v, v^{\prime}\right)=c(S, T) \\
& \ddots
\end{aligned}
\]

\section*{Rest Network}

Rest network \(G_{f}\) provided by the edges with positive rest capacity:
\[
\begin{aligned}
G_{f} & :=\left(V, E_{f}, c_{f}\right) \\
c_{f}(u, v) & :=c(u, v)-f(u, v) \quad \forall u, v \in V \\
E_{f} & :=\left\{(u, v) \in V \times V \mid c_{f}(u, v)>0\right\}
\end{aligned}
\]

■ Increase of the flow along some edge possible, when flow can be increased along the edge, i.e. if \(f(u, v)<c(u, v)\).
Rest capacity \(c_{f}(u, v)=c(u, v)-f(u, v)>0\).
- Increase of flow against the direction of the edge possible, if flow can be reduced along the edge, i.e. if \(f(u, v)>0\). Rest capacity \(c_{f}(v, u)=f(u, v)>0\).

\section*{The increased flow is a flow}

\section*{Theorem 32}

Let \(G=(V, E, c)\) be a flow network with source \(s\) and sink \(t\) and \(f\) a flow in \(G\). Let \(G_{f}\) be the corresponding rest networks and let \(f^{\prime}\) be a flow in \(G_{f}\). Then \(f \oplus f^{\prime}\) with
\[
\left(f \oplus f^{\prime}\right)(u, v)=f(u, v)+f^{\prime}(u, v)
\]
defines a flow in \(G\) with value \(|f|+\left|f^{\prime}\right|\).

\section*{Proof}

\section*{\(f \oplus f^{\prime}\) defines a flow in \(G\) :}

■ capacity limit
\[
\left(f \oplus f^{\prime}\right)(u, v)=f(u, v)+\underbrace{f^{\prime}(u, v)}_{\leq c(u, v)-f(u, v)} \leq c(u, v)
\]

■ skew symmetry
\[
\left(f \oplus f^{\prime}\right)(u, v)=-f(v, u)+-f^{\prime}(v, u)=-\left(f \oplus f^{\prime}\right)(v, u)
\]

■ flow conservation \(u \in V-\{s, t\}\) :
\[
\sum_{v \in V}\left(f \oplus f^{\prime}\right)(u, v)=\sum_{v \in V} f(u, v)+\sum_{v \in V} f^{\prime}(u, v)=0
\]

\section*{Proof}

Value of \(f \oplus f^{\prime}\)
\[
\begin{aligned}
\left|f \oplus f^{\prime}\right| & =\left(f \oplus f^{\prime}\right)(s, V) \\
& =\sum_{u \in V} f(s, u)+f^{\prime}(s, u) \\
& =f(s, V)+f^{\prime}(s, V) \\
& =|f|+\left|f^{\prime}\right|
\end{aligned}
\]

\section*{Augmenting Paths}
expansion path \(p\) : simple path from \(s\) to \(t\) in the rest network \(G_{f}\).
Rest capacity \(c_{f}(p)=\min \left\{c_{f}(u, v):(u, v)\right.\) edge in \(\left.p\right\}\)

\section*{Theorem 33}

The mapping \(f_{p}: V \times V \rightarrow \mathbb{R}\),
\[
f_{p}(u, v)= \begin{cases}c_{f}(p) & \text { if }(u, v) \text { edge in } p \\ -c_{f}(p) & \text { if }(v, u) \text { edge in } p \\ 0 & \text { otherwise }\end{cases}
\]
provides a flow in \(G_{f}\) with value \(\left|f_{p}\right|=c_{f}(p)>0\).
\(f_{p}\) is a flow (easy to show). there is one and only one \(u \in V\) with \((s, u) \in p\). Thus \(\left|f_{p}\right|=\sum_{v \in V} f_{p}(s, v)=f_{p}(s, u)=c_{f}(p)\).

\section*{Max-Flow Min-Cut Theorem}

\section*{Theorem 34}

Let \(f\) be a flow in a flow network \(G=(V, E, c)\) with source \(s\) and \(\operatorname{sink} t\). The following statementsa are equivalent:
1. \(f\) is a maximal flow in \(G\)
2. The rest network \(G_{f}\) does not provide any expansion paths
3. It holds that \(|f|=c(S, T)\) for a cut \((S, T)\) of \(G\).

\section*{Proof}

■ \((3) \Rightarrow(1)\) :
It holds that \(|f| \leq c(S, T)\) for all cuts \(S, T\). From \(|f|=c(S, T)\) it follows that \(|f|\) is maximal.
- (1) \(\Rightarrow(2)\) :
\(f\) maximal Flow in \(G\). Assumption: \(G_{f}\) has some expansion path \(\left|f \oplus f_{p}\right|=|f|+\left|f_{p}\right|>|f|\). Contradiction.

Proof \((2) \Rightarrow(3)\)

\section*{Assumption: \(G_{f}\) has no expansion path}

Define \(S=\left\{v \in V\right.\) : there is a path \(s \rightsquigarrow v\) in \(\left.G_{f}\right\}\).
\((S, T):=(S, V \backslash S)\) is a cut: \(s \in S, t \in T\).
Let \(u \in S\) and \(v \in T\). Then \(c_{f}(u, v)=0\), also \(c_{f}(u, v)=c(u, v)-f(u, v)=0\). Somit \(f(u, v)=c(u, v)\).
Thus
\[
|f|=f(S, T)=\sum_{u \in S} \sum_{v \in T} f(u, v)=\sum_{u \in S} \sum_{v \in T} c(u, v)=C(S, T) .
\]

\section*{Edmonds-Karp Algorithm}

\section*{Theorem 35}

When the Edmonds-Karp algorithm is applied to some integer valued flow network \(G=(V, E)\) with source \(s\) and \(\operatorname{sink} t\) then the number of flow increases applied by the algorithm is in \(\mathcal{O}(|V| \cdot|E|)\).
\(\Rightarrow\) Overal asymptotic runtime: \(\mathcal{O}\left(|V| \cdot|E|^{2}\right)\)
[Without proof]

\section*{Edmonds-Karp Algorithmus}

\section*{Theorem 36}

Wenn der Edmonds-Karp Algorithmus auf Flussnetzwerk \(G=(V, E)\) mit Quelle \(s\) und Senke \(t\) angewendet wird, dann wächst für jeden Knoten \(v \in V \backslash\{s, t\}\) die Distanz \(\delta_{f}(s, v)\) des kürzesten Pfades von \(s\) nach \(v\) im Restnetzwerk \(G_{f}\) monoton mit jeder Flusserhöhung.

\section*{Beweis}

Annahme: Distanz \(\delta_{f}(s, v)\) wird bei Flusserhöhung \(f \rightarrow f^{\prime}\) kleiner für ein \(v\) : \(\delta_{f}(s, v)<\delta_{f^{\prime}}(s, v)\) Sei \(p=s \rightsquigarrow u \rightarrow v\) kürzester Pfad von \(s\) nach \(v\) in \(G_{f^{\prime}}\), so dass \((u, v) \in E_{f^{\prime}}\) und \(\delta_{f^{\prime}}(s, u)=\delta_{f^{\prime}}(s, v)-1\). Es gilt \(\delta_{f^{\prime}}(s, u) \geq \delta_{f}(s, u)\).
Wenn \((u, v) \in E_{f}: \delta_{f} s, v \leq \delta_{f}(s, u)+1 \leq \delta_{f^{\prime}}(s, u)+1=\delta_{f^{\prime}}(s, v)\) Widerspruch. Also \((u, v) \notin E_{f}\).

\section*{Integer number theorem}

\section*{Theorem 37}

If the capacities of a flow network are integers, then the maximal flow generated by the Ford-Fulkerson method provides integer numbers for each \(f(u, v), u, v \in V\).
[without proof]
Consequence: Ford-Fulkerson generates for a flow network that corresponds to a bipartite graph a maximal matching
\[
M=\{(u, v): f(u, v)=1\} .
\]

\section*{30. Parallel Programming I}

Moore's Law, Hardware Architectures, Parallel Execution , Multi-Threading, Parallelism and Concurrency, C++ Threads, Scalability: Amdahl and Gustafson, Scheduling
[Task-Scheduling: Cormen et al, Kap. 27] [Concurrency, Scheduling: Williams, Kap. 1.1-1.2]

Motivation: Paint a Picture (1 Artist)


Motivation: Paint a Picture (1 Artist)












\section*{Motivation: Paint a Picture (1 Artist)}


Model: sequential execution

Motivation: Paint a Picture (4 Artists)


Motivation: Paint a Picture (4 Artists)


Motivation: Paint a Picture (4 Artists)


\section*{Motivation: Paint a Picture (4 Artists)}


Model: parallel execution

Motivation: Paint a Picture (4 Artists, 3 Brushes)




Motivation: Paint a Picture (4 Artists, 3 Brushes)


Motivation: Paint a Picture (4 Artists, 3 Brushes)


Motivation: Paint a Picture (4 Artists, 3 Brushes)



Motivation: Paint a Picture (4 Artists, 3 Brushes)


Model: concurrent execution

Motivation: Paint a Picture (4 Artists, 1 Brush)









Motivation: Paint a Picture (4 Artists, 1 Brush)


Motivation: Paint a Picture (4 Artists, 1 Brush)




\section*{Motivation: Paint a Picture (4 Artists, 1 Brush)}


Model: concurrent execution

\section*{Models}

■ Sequential: the program is executed step-by-step in the prescribed order

\section*{Models}

■ Sequential: the program is executed step-by-step in the prescribed order
■ Parallel: tasks are executed in parallel. No synchronisation necessary, enough resources available.

\section*{Models}

■ Sequential: the program is executed step-by-step in the prescribed order
■ Parallel: tasks are executed in parallel. No synchronisation necessary, enough resources available.
■ Concurrent: Tasks are executed in parallel. But there is a need for synchronisation: tasks have to be interrupted.

\section*{Why Parallelism and Concurrency?}

■ Reactive / Interactive / Multi-User- Systems particularly graphical user interfaces \(\Rightarrow\) Concurrency

\section*{Why Parallelism and Concurrency?}

■ Reactive / Interactive / Multi-User- Systems particularly graphical user interfaces \(\Rightarrow\) Concurrency
- Computation-heavy tasks, like data processing and analysis, where performance is important \(\Rightarrow\) Parallelism

\section*{Why Parallelism and Concurrency?}

■ Reactive / Interactive / Multi-User- Systems particularly graphical user interfaces \(\Rightarrow\) Concurrency
- Computation-heavy tasks, like data processing and analysis, where performance is important \(\Rightarrow\) Parallelism
■ Natural parallelism / concurrency: distributed systems, device drivers.

\section*{A Bit of Technical Background: CPUs}

Today's typical computers (desktops, phones, ...) offer (at least)
■ CPU: central processing unit, general-purpose computation device
■ GPU: graphics processing unit, incredibly efficient for linear- algebra computations (games, graphics; machine learning).
Today's CPUs are typically multi-core:
- Each core is essentially a dedicated CPU that can execute code

■ Examples:
■ Intel i7-8700K has 6 cores (from 2017)
- Intel i9-12900KF has 16 cores (from 2021)

■ AMD Ryzen 9 5950X has 16 cores (from 2020)
- Apple M1 Max has 10 cores (from 2021)


\section*{Moore's Law}

Observation by Gordon E. Moore:
The number of transistors on integrated circuits
 doubles approximately every two years.

Moore's Law: The number of transistors on microchips doubles every two years Our World Moore's law describes the empirical regularity that the number of transistors on integrated circuits doubles approximately every two years. This advancement is important for other aspects of technological progress in computing - such as processing speed or the price of computers.


\section*{For a long time...}

■ the sequential execution became faster ("Instruction Level Parallelism", "Pipelining", Higher Frequencies)
■ more and smaller transistors = more performance
■ programmers simply waited for the next processor generation to improve the performance of their programs.

\section*{Today}

■ the frequency of processors does not increase significantly and more (heat dissipation problems)
■ the instruction level parallelism does not increase significantly any more
■ the execution speed is dominated by memory access times (but caches still become larger and faster)

48 Years of Microprocessor Trend Data


Original data up to the year 2010 collected and plotted by M. Horowitz, F. Labonte, O. Shacham, K. Olukotun, L. Hammond, and C. Batten New plot and data collected for 2010-2019 by K. Rupp

\section*{Multicore}

■ Use transistors for more compute cores
- Parallelism in the software
\(\Rightarrow\) programmers have to write parallel programs to benefit from new hardware

\section*{(Simplified) Assumption: Computing Model}

Independent Computing Cores


Shared Memory

\subsection*{30.1 Multi-Threading, Parallelism and Concurrency}

\section*{Processes and Threads}

■ Process: instance of a program
■ each process has a separate context, even a separate address space ("can only see its own memory")
■ OS manages processes (resource control, scheduling, synchronisation)
- Thread: thread of execution of a program
- Threads share the address space

■ fast context switch between threads

\section*{Why Multithreading?}

■ Avoid "polling" resources (files, network, keyboard)
■ Interactivity (e.g. responsivity of GUI programs)
- Several applications / clients in parallel

■ Parallelism (performance!)

\section*{Multithreading conceptually}

Single Core


Multi Core


Thread switch on one core (Preemption)

Thread switch on one core (Preemption)

thread 2 I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Thread switch on one core (Preemption)


Thread switch on one core (Preemption)


\section*{Thread switch on one core (Preemption)}


\section*{Parallelism vs. Concurrency}

■ Parallelism: Use extra resources to solve a problem faster
■ Concurrency: Correctly and efficiently manage access to shared resources
- The notions overlap. With parallel computations there is nearly always a need to synchronise.


Concurrency
Requests


Resources

\section*{Thread Safety}

Thread Safety means that in a concurrent application of a program this always yields the desired results.
Many optimisations (Hardware, Compiler) target towards the correct execution of a sequential program.
Concurrent programs need an annotation that switches off certain optimisations selectively.
30.2 C++ Threads

\section*{C++11 Threads}
```

\#include <iostream>
\#include <thread>
void hello(){
std::cout << "hello\n";
}
int main(){
// create and launch thread t
std::thread t(hello);
// wait for termination of t
t.join();
return 0;
}

```

\section*{C++11 Threads}
```

void hello(int id){
std::cout << "hello from " << id << "\n";
}
int main(){
std::vectorstd::thread tv(3);
int id = 0;
for (auto \& t:tv)
t = std::thread(hello, ++id);
std::cout << "hello from main \n";
for (auto \& t:tv)
t.join();
return 0;
}

```

\section*{Nondeterministic Execution!}

One execution:
hello from main
hello from 2
hello from 1
hello from 0

\section*{Nondeterministic Execution!}

One execution:
hello from main
hello from 2
hello from 1
hello from 0

Other execution:
hello from 1
hello from main
hello from 0
hello from 2

\section*{Nondeterministic Execution!}

One execution:
hello from main
hello from 2
hello from 1
hello from 0
```

Other execution:
hello from 1
hello from main
hello from 0
hello from 2

```

Other execution:
hello from main
hello from 0
hello from hello from 1
2

\section*{Technical Detail}
```

To let a thread continue as background thread:
void background();
void someFunction(){
std::thread t(background);
t.detach();
} // no problem here, thread is detached

```

\section*{More Technical Details}

■ With allocating a thread, reference parameters are copied, except explicitly std::ref is provided at the construction.
- Can also run Functor or Lambda-Expression on a thread
- In exceptional circumstances, joining threads should be executed in a catch block

More background and details in chapter 2 of the book C++ Concurrency in Action, Anthony Williams, Manning 2012. also available online at the ETH library.

\section*{What can (not) be Parallelized}
```

int pow8(int b){
int b2 = b * b;
int b4 = b2 * b2;
return b4 * b4;
}
int main(){
int x;
std::cin >> x;
x = pow8(x);
std::cout << x;
}

```

\section*{What can (not) be Parallelized}
```

int pow8(int b){
int b2 = b * b;
int b4 = b2 * b2;
return b4 * b4;
}

- Program computes x^{8}
- All parts of the program must be executed in fixed order

```
int main(){
```

int main(){
int x;
int x;
std::cin >> x;
std::cin >> x;
x = pow8(x);
x = pow8(x);
std::cout << x;
std::cout << x;
}

```
```

}

```
```


What can (not) be Parallelized

```
int pow8(int b){
    int b2 = b * b;
    int b4 = b2 * b2;
    return b4 * b4;
}
```

- Program computes x^{8}
- All parts of the program must be executed in fixed order
- Input \rightarrow Computation \rightarrow Output

```
int main(){
```

int main(){
int x;
int x;
std::cin >> x;
std::cin >> x;
x = pow8(x);
x = pow8(x);
std::cout << x;
std::cout << x;
}

```
}
```


What can (not) be Parallelized

```
int pow8(int b){
    int b2 = b * b;
    int b4 = b2 * b2;
    return b4 * b4;
}
```

int main(){

```
int main(){
    int x;
    int x;
    std::cin >> x;
    std::cin >> x;
    x = pow8(x);
    x = pow8(x);
    std::cout << x;
    std::cout << x;
}
```

```
}
```

```
- Program computes \(x^{8}\)
- All parts of the program must be executed in fixed order
- Input \(\rightarrow\) Computation \(\rightarrow\) Output
- b2 \(\rightarrow\) b4 \(\rightarrow\) b8

\section*{What can (not) be Parallelized}
```

int pow8(int b){
int b2 = b * b;
int b4 = b2 * b2;
return b4 * b4;
}

```
```

int main(){

```
int main(){
    int x;
    int x;
    std::cin >> x;
    std::cin >> x;
    x = pow8(x);
    x = pow8(x);
    std::cout << x;
    std::cout << x;
}
```

}

```
- Program computes \(x^{8}\)
- All parts of the program must be executed in fixed order

■ Input \(\rightarrow\) Computation \(\rightarrow\) Output
■ b2 \(\rightarrow\) b4 \(\rightarrow\) b8

■ No two computations are independent

\section*{What can (not) be Parallelized}
```

int pow8(int b){
int b2 = b * b;
int b4 = b2 * b2;
return b4 * b4;
}

```
```

int main(){
int x;
std::cin >> x;
x = pow8(x);
std::cout << x;
}

```
- Program computes \(x^{8}\)
- All parts of the program must be executed in fixed order
- Input \(\rightarrow\) Computation \(\rightarrow\) Output
- b2 \(\rightarrow\) b4 \(\rightarrow\) b8
- No two computations are independent

■ and must all be executed sequentially

\section*{What can (not) be Parallelized}
```

int pow8(int b){
int b2 = b * b;
int b4 = b2 * b2;
return b4 * b4;
}

```
int main(){
```

int main(){
std::vector<int> v =;
std::vector<int> v =;
for (int\& x : v)
for (int\& x : v)
x = pow8(x);

```
```

 x = pow8(x);
    ```
```

\}

- Program computes x^{8} for each $x \in v$

What can (not) be Parallelized

```
int pow8(int b){
    int b2 = b * b;
    int b4 = b2 * b2;
    return b4 * b4;
}
```

int main(){

```
int main(){
```

int main(){
std::vector<int> v =;
std::vector<int> v =;
std::vector<int> v =;
for (int\& x : v)
for (int\& x : v)
for (int\& x : v)
x = pow8(x);

```
```

 x = pow8(x);
    ```
```

 x = pow8(x);
    ```
```

\}

■ Program computes x^{8} for each $x \in v$
■ The computation of x_{i}^{8} does not depend on the computation of x_{j}^{8}.

What can (not) be Parallelized

```
int pow8(int b){
    int b2 = b * b;
    int b4 = b2 * b2;
    return b4 * b4;
}
```

```
int main(){
    std::vector<int> v = ....;
    for (int& x : v)
        x = pow8(x);
```

\}

■ Program computes x^{8} for each $x \in v$
■ The computation of x_{i}^{8} does not depend on the computation of x_{j}^{8}.

- We can parallelise the computation of all x^{8}

What can (not) be Parallelized

```
int pow8(int b){
    int b2 = b * b;
    int b4 = b2 * b2;
    return b4 * b4;
}
int main(){
    std::vector<int> v = ....;
    for (int& x : v)
        x = pow8(x);
```

■ Program computes x^{8} for each $x \in v$
■ The computation of x_{i}^{8} does not depend on the computation of x_{j}^{8}.
■ We can parallelise the computation of all x^{8}

- Parallelisation can reduce runtime if
\}

What can (not) be Parallelized

```
int pow8(int b){
    int b2 = b * b;
    int b4 = b2 * b2;
    return b4 * b4;
}
int main(){
    std::vector<int> v = ....;
    for (int& x : v)
        x = pow8(x);
```

 ...
 - Program computes x^{8} for each $x \in v$
■ The computation of x_{i}^{8} does not depend on the computation of x_{j}^{8}.
■ We can parallelise the computation of all x^{8}
- Parallelisation can reduce runtime if
- the computation to be parallelised runs long enough)

What can (not) be Parallelized

```
int pow8(int b){
    int b2 = b * b;
    int b4 = b2 * b2;
    return b4 * b4;
}
int main(){
    std::vector<int> v = ....;
    for (int& x : v)
        x = pow8(x);
```

\}

- Program computes x^{8} for each $x \in v$
■ The computation of x_{i}^{8} does not depend on the computation of x_{j}^{8}.
- We can parallelise the computation of all x^{8}
- Parallelisation can reduce runtime if
- the computation to be parallelised runs long enough)
- sufficient CPUs are available

What can (not) be Parallelized

```
int main(){
    std::vector<int> v = ....;
    for (int& x : v)
        x = pow8(x);
```

■ Example is obviously parallelisable
■ Solche Probleme nennt man emberassingly parallel
\}
■ Many problems and algorithms are different:
■ can be parallelized but that requires a deeper analyis
■ need preprocessing or postprocessing in order to decompose the problem into parallelisable subproblems or to combine the partial results, respectively.

■ Example: Matrix-Multiplication, Mergesort

30.3 Scalability: Amdahl and Gustafson

Scalability

In parallel Programming:
■ Speedup when increasing number p of processors
■ What happens if $p \rightarrow \infty$?
■ Program scales linearly: Linear speedup.

Parallel Performance

Given a fixed amount of computing work W (number computing steps) T_{1} : Sequential execution time
T_{p} : Parallel execution time on p CPUs
■ Perfection: $T_{p}=T_{1} / p$
■ Performance loss: $T_{p}>T_{1} / p$ (usual case)
■ Sorcery: $T_{p}<T_{1} / p$

Parallel Speedup

Parallel speedup S_{p} on p CPUs:

$$
S_{p}=\frac{W / T_{p}}{W / T_{1}}=\frac{T_{1}}{T_{p}}
$$

■ Perfection: linear speedup $S_{p}=p$
■ Performance loss: sublinear speedup $S_{p}<p$ (the usual case)
■ Sorcery: superlinear speedup $S_{p}>p$
Efficiency: $E_{p}=S_{p} / p$

Reachable Speedup?

Parallel Program

Parallel Part 80% 20%

$$
T_{1}=10
$$

$$
T_{8}=?
$$

Reachable Speedup?

Parallel Program

| Parallel Part | Seq. Part |
| :---: | :---: |
| 80% | 20% |

$$
\begin{aligned}
& T_{1}=10 \\
& T_{8}=\frac{10 \cdot 0.8}{8}+10 \cdot 0.2=1+2=3
\end{aligned}
$$

Reachable Speedup?

Parallel Program

| Parallel Part | Seq. Part |
| :---: | :---: |
| 80% | 20% |

$$
\begin{align*}
& T_{1}=10 \\
& T_{8}=\frac{10 \cdot 0.8}{8}+10 \cdot 0.2=1+2=3 \\
& S_{8}=\frac{T_{1}}{T_{8}}=\frac{10}{3} \approx 3.3<8 \tag{!}
\end{align*}
$$

Amdahl's Law: Ingredients

Computational work W falls into two categories

- Paralellisable part W_{p}

■ Not parallelisable, sequential part W_{s}
Assumption: W can be processed sequentially by one processor in W time units ($T_{1}=W$):

$$
\begin{aligned}
& T_{1}=W_{s}+W_{p} \\
& T_{p} \geq W_{s}+W_{p} / p
\end{aligned}
$$

$$
S_{p}=\frac{T_{1}}{T_{p}} \leq \frac{W_{s}+W_{p}}{W_{s}+\frac{W_{p}}{p}}
$$

Amdahl's Law

With sequential, not parallelizable fraction λ : $W_{s}=\lambda W, W_{p}=(1-\lambda) W$:

$$
S_{p} \leq \frac{1}{\lambda+\frac{1-\lambda}{p}}
$$

Amdahl's Law

With sequential, not parallelizable fraction λ : $W_{s}=\lambda W, W_{p}=(1-\lambda) W$:

$$
S_{p} \leq \frac{1}{\lambda+\frac{1-\lambda}{p}}
$$

Thus

$$
S_{\infty} \leq \frac{1}{\lambda}
$$

Illustration Amdahl's Law

$$
p=1
$$

Illustration Amdahl's Law

$$
p=1 \quad p=2
$$

W_{s}
W_{p}

Illustration Amdahl's Law

$$
p=1 \quad p=2 \quad p=4
$$

Amdahl's Law is bad news

All non-parallel parts of a program can cause problems

Gustafson's Law

■ Fix the time of execution

- Vary the problem size.
- Assumption: the sequential part stays constant, the parallel part becomes larger

Illustration Gustafson's Law

Illustration Gustafson's Law

$$
p=1 \quad p=2
$$

W_{s}

$$
W_{p} \quad W_{p}
$$

Illustration Gustafson's Law

Gustafson's Law

Work that can be executed by one processor in time T :

$$
W_{s}+W_{p}=T
$$

Work that can be executed by p processors in time T :

$$
W_{s}+p \cdot W_{p}=\lambda \cdot T+p \cdot(1-\lambda) \cdot T
$$

Speedup:

$$
\begin{aligned}
S_{p} & =\frac{W_{s}+p \cdot W_{p}}{W_{s}+W_{p}}=p \cdot(1-\lambda)+\lambda \\
& =p-\lambda(p-1)
\end{aligned}
$$

Amdahl vs. Gustafson

Amdahl vs. Gustafson

Amdahl vs. Gustafson

Amdahl vs. Gustafson

The laws of Amdahl and Gustafson are models of speedup for parallelization.
Amdahl assumes a fixed relative sequential portion, Gustafson assumes a fixed absolute sequential part (that is expressed as portion of the work W_{1} and that does not increase with increasing work).
The two models do not contradict each other but describe the runtime speedup of different problems and algorithms.

30.4 Scheduling

Example: Fibonacci

```
int fib_task(int x){
    if (x < 2) {
        return x;
    } else {
        auto f1 = std::async(fib_task, x-1);
        auto f2 = std::async(fib_task, x-2);
        return f1.get() + f2.get();
    }
}
```

Task-Graph

Question

- Each Node (task) takes 1 time unit.

■ Arrows depict dependencies.
■ Minimal execution time when number of processors $=\infty$?

Question

- Each Node (task) takes 1 time unit.
- Arrows depict dependencies.

■ Minimal execution time when number of processors $=\infty$?

Performance Model

- processors

■ Dynamic scheduling
■ T_{p} : Execution time on p processors

Performance Model

■ T_{p} : Execution time on p processors
■ T_{1} : Work: time for executing total work on one processor
■ T_{1} / T_{p} : Speedup

Performance Model

■ T_{∞} : Span: critical path, execution time on ∞ processors. Longest path from root to sink.
■ T_{1} / T_{∞} : Parallelism: wider is better

- Lower bounds:

$$
\begin{aligned}
& T_{p} \geq T_{1} / p \quad \text { Work law } \\
& T_{p} \geq T_{\infty} \quad \text { Span law }
\end{aligned}
$$

Greedy Scheduler

Greedy scheduler: at each time it schedules as many as availbale tasks.

Theorem 38

On an ideal parallel computer with p processors, a greedy scheduler executes a multi-threaded computation with work T_{1} and span T_{∞} in time

$$
T_{p} \leq T_{1} / p+T_{\infty}
$$

Example

Assume $p=2$.

$$
T_{p}=5
$$

Example

Assume $p=2$.

$T_{p}=5$

$T_{p}=4$

Proof of the Theorem

Assume that all tasks provide the same amount of work.
■ Complete step: p tasks are available.
■ incomplete step: less than p steps available.
Assume that number of complete steps larger than $\left\lfloor T_{1} / p\right\rfloor$. Executed work $\geq\left\lfloor T_{1} / p\right\rfloor \cdot p+p=T_{1}-T_{1} \bmod p+p>T_{1}$. Contradiction. Therefore maximally $\left\lfloor T_{1} / p\right\rfloor$ complete steps.
We now consider the graph of tasks to be done. Any maximal (critical) path starts with a node t with $\mathrm{deg}^{-}(t)=0$. An incomplete step executes all available tasks t with $\operatorname{deg}^{-}(t)=0$ and thus decreases the length of the span. Number incomplete steps thus limited by T_{∞}.

Consequence

if $p \ll T_{1} / T_{\infty}$, i.e. $T_{\infty} \ll T_{1} / p$, then

$$
T_{p} \leq T_{1} / p+T_{\infty} \quad \Rightarrow \quad T_{p} \lesssim T_{1} / p
$$

Fibonacci
$T_{1}(n) / T_{\infty}(n)=\Theta\left(\phi^{n} / n\right)$. For moderate sizes of n we can use a lot of processors yielding linear speedup.

Example: Parallelism of Mergesort

- Work (sequential runtime) of Mergesort $T_{1}(n)=$

Example: Parallelism of Mergesort

- Work (sequential runtime) of Mergesort $T_{1}(n)=\Theta(n \log n)$.

Example: Parallelism of Mergesort

- Work (sequential runtime) of Mergesort $T_{1}(n)=\Theta(n \log n)$.
- Span $T_{\infty}(n)=$

Example: Parallelism of Mergesort

- Work (sequential runtime) of Mergesort $T_{1}(n)=\Theta(n \log n)$.
■ Span $T_{\infty}(n)=\Theta(n)$

Example: Parallelism of Mergesort

■ Work (sequential runtime) of Mergesort $T_{1}(n)=\Theta(n \log n)$.

- Span $T_{\infty}(n)=\Theta(n)$
- Parallelism $T_{1}(n) / T_{\infty}(n)=$ (Maximally achievable speedup with $p=\infty$ processors)

Example: Parallelism of Mergesort

■ Work (sequential runtime) of Mergesort $T_{1}(n)=\Theta(n \log n)$.

- Span $T_{\infty}(n)=\Theta(n)$

■ Parallelism $T_{1}(n) / T_{\infty}(n)=\Theta(\log n)$ (Maximally achievable speedup with $p=\infty$ processors)

31. Parallel Programming II

Shared Memory, Concurrency , Mutual Exclusion , Race Conditions [C++ Threads: Williams, Kap. 2.1-2.2], [C++ Race Conditions: Williams, Kap. 3.1] [C++ Mutexes: Williams, Kap. 3.2.1, 3.3.3]
31.1 Shared Memory, Concurrency

Sharing Resources (Memory)

■ Up to now: fork-join algorithms: data parallel or divide-and-conquer
■ Simple structure (data independence of the threads) to avoid race conditions
■ Does not work any more when threads access shared memory.

Managing state

Managing common state: main challenge of concurrent programming.
Approaches:
■ Immutability, for example constants.
■ Isolated Mutability, for example thread-local variables, stack.
■ Shared mutable data, for example references to shared memory, global variables \Rightarrow Need for synchronisation

Protect the shared state

■ Method 1: locks, guarantee exclusive access to shared data.
■ Method 2: lock-free data structures, exclusive access with a much finer granularity.
■ Method 3: transactional memory (not treated in class)

Canonical Example

```
class BankAccount {
    int balance = 0;
public:
    int getBalance(){ return balance; }
    void setBalance(int x) { balance = x; }
    void withdraw(int amount) {
        int b = getBalance();
        setBalance(b - amount);
    }
    // deposit etc.
};
(correct in a single-threaded world)
```


Bad Interleaving

Parallel call to widthdraw(100) on the same account

Thread 1
 int $\mathrm{b}=$ getBalance();

$$
\begin{aligned}
& \text { int } b=\text { getBalance(); } \\
& \text { setBalance(b-amount) }
\end{aligned}
$$

Thread 2

setBalance(b-amount);

Tempting Traps

```
WRONG:
void withdraw(int amount) {
    int b = getBalance();
    if (b==getBalance())
        setBalance(b - amount);
}
```

Bad interleavings cannot be solved with a repeated reading

Tempting Traps

```
also WRONG:
void withdraw(int amount) {
    setBalance(getBalance() - amount);
}
```

Assumptions about atomicity of operations are almost always wrong

Mutual Exclusion

We need a concept for mutual exclusion
Only one thread may execute the operation withdraw on the same account at a time.
The programmer has to make sure that mutual exclusion is used.

More Tempting Traps

```
class BankAccount {
    int balance = 0;
    bool busy = false;
public:
    void withdraw(int amount) {
    while (busy); // spin wait
    busy = true;
    int b = getBalance();
    setBalance(b - amount);
    busy = false;
    }
    // deposit would spin on the same boolean
};
```


More Tempting Traps

```
class BankAccount {
    int balance = 0;
    bool busy = false;
public:
    void withdraw(int amount) {
    while (busy); // spin wait
        busy = true;
        int b = getBalance();
        setBalance(b - amount);
        busy = false;
    }
    // deposit would spin on the same boolean
};
```

```
Thread 1
while (busy); //spin
busy = true;
int b = getBalance();
setBalance(b - amount);
```


Thread 2

while (busy); //spin
busy = true;

$$
\text { int } b=\text { getBalance(); }
$$

setBalance(b - amount);

How ist this correctly implemented?

■ We use locks (mutexes) from libraries
■ They use hardware primitives, so called Read-Modify-Write (RMW) operations that can, in an atomic way, read and write depending on the read result.
■ Without RMW Operations the algorithm is non-trivial and requires at least atomic access to variable of primitive type.
31.2 Mutual Exclusion

Critical Sections and Mutual Exclusion

Critical Section

Piece of code that may be executed by at most one process (thread) at a time.

Mutual Exclusion

Algorithm to implement a critical section

```
acquire_mutex(); // entry algorithm \\
    // critical section
release_mutex(); // exit algorithm
```


Required Properties of Mutual Exclusion

Correctness (Safety)

■ At most one thread executes the critical section code

Liveness
■ Acquiring the mutex must terminate in finite time when no process executes in the critical section

Correct

```
class BankAccount {
    int balance = 0;
    std::mutex m; // requires #include <mutex>
public:
    void withdraw(int amount) {
        m.lock();
        int b = getBalance();
        setBalance(b - amount);
        m.unlock();
    }
};
```


Correct

```
class BankAccount {
    int balance = 0;
    std::mutex m; // requires #include <mutex>
public:
    void withdraw(int amount) {
        m.lock();
        int b = getBalance();
        setBalance(b - amount);
        m.unlock();
    }
};
What if an exception occurs?
```


RAll Approach

```
class BankAccount {
    int balance = 0;
    std::mutex m;
public:
    void withdraw(int amount) {
        std::lock_guard<std::mutex> guard(m);
        int b = getBalance();
        setBalance(b - amount);
    } // Destruction of guard leads to unlocking m
};
```


RAll Approach

```
class BankAccount {
    int balance = 0;
    std::mutex m;
public:
    void withdraw(int amount) {
        std::lock_guard<std::mutex> guard(m);
        int b = getBalance();
        setBalance(b - amount);
    } // Destruction of guard leads to unlocking m
};
```

What about getBalance / setBalance?

Reentrant Locks

Reentrant Lock (recursive lock)
■ remembers the currently affected thread;
■ provides a counter
■ Call of lock: counter incremented
■ Call of unlock: counter is decremented. If counter $=0$ the lock is released.

Account with reentrant lock

```
class BankAccount {
    int balance = 0;
    std::recursive_mutex m;
    using guard = std::lock_guard<std::recursive_mutex>;
public:
    int getBalance(){ guard g(m); return balance;
    }
    void setBalance(int x) { guard g(m); balance = x;
    }
    void withdraw(int amount) { guard g(m);
        int b = getBalance();
        setBalance(b - amount);
    }
};
```

31.3 Race Conditions

Race Condition

- A race condition occurs when the result of a computation depends on scheduling.
■ We make a distinction between bad interleavings and data races
■ Bad interleavings can occur even when a mutex is used.

Example: Stack

Stack with correctly synchronized access:

```
template <typename T>
class stack{
    std::recursive_mutex m;
    using guard = std::lock_guard<std::recursive_mutex>;
public:
    bool isEmpty(){ guard g(m); ... }
    void push(T value){ guard g(m); ... }
    T pop(){ guard g(m); ...}
};
```


Peek

Forgot to implement peek. Like this?

```
template <typename T>
T peek (stack<T> &s){
    T value = s.pop();
    s.push(value);
    return value;
}
```


Peek

Forgot to implement peek. Like this?

```
template <typename T>
T peek (stack<T> &s){
    T value = s.pop();
    s.push(value);
    return value;
}
```


Peek

Forgot to implement peek. Like this?

```
template <typename T>
T peek (stack<T> &s){
    T value = s.pop();
    s.push(value);
    return value;
}
```

Despite its questionable style the code is correct in a sequential world. Not so in concurrent programming.

Bad Interleaving!

Stack s shared between threads 1 and 2. Both threads call peek()

Thread 1

int value $=s . p o p() ;$
s.push(value);
s.push(value);
return value;

```
return value;
```

Elements get swapped: the LIFO-invariant does not hold.

The fix

Peek must be protected with the same lock as the other access methods

Bad Interleavings

Race conditions as bad interleavings can happen on a high level of abstraction

In the following we consider a different form of race condition: data race.

How about this?

```
class counter{
    int count = 0;
    std::recursive_mutex m;
    using guard = std::lock_guard<std::recursive_mutex>;
public:
    int increase(){
        return ++count;
    }
    int get(){
        return count;
    }
}
```


How about this?

```
class counter{
    int count = 0;
    std::recursive_mutex m;
    using guard = std::lock_guard<std::recursive_mutex>;
public:
    int increase(){
        return ++count;
    }
    int get(){
        return count;
    }
    not thread-safe!
}
```


Why wrong?

It looks like nothing can go wrong because the update of count happens in a "tiny step".
But this code is still wrong and depends on language-implementation details you cannot assume.
This problem is called Data-Race
Moral: Do not introduce a data race, even if every interleaving you can think of is correct. Don't make assumptions on the memory order.

A bit more formal

Data Race (low-level Race-Conditions) Erroneous program behavior caused by insufficiently synchronized accesses of a shared resource by multiple threads, e.g. Simultaneous read/write or write/write of the same memory location
Bad Interleaving (High Level Race Condition) Erroneous program behavior caused by an unfavorable execution order of a multithreaded algorithm, even if that makes use of otherwise well synchronized resources.

We look deeper

```
class C {
    int x = 0;
    int y = 0;
public:
    void f() {
        x = 1;
        y = 1;
    }
    void g() {
        int a = y;
        int b = x;
        assert(b >= a);
    }
}
```


We look deeper

```
class C {
    int x = 0;
    int y = 0;
public:
    void f() {
(A) }\textrm{x}=1\mathrm{ ;
(B) y = 1;
    }
    void g() {
(C) int a = y;
(D) int b = x;
        assert(b >= a);r
    }
}

\section*{We look deeper}
```

class C {
int x = 0;
int y = 0;
public:
void f() {
(A) }x=1
(B) y = 1;
}
void g() {
int a = y;
int b = x;
assert(b >= a);
}
}

There is no interleaving of f and g that would cause the assertion to fail:

- ABCD
- ACBD
- ACDB \checkmark
- CABD
- CADB

■CDAB

It can nevertheless fail!

One Resason: Memory Reordering

Rule of thumb: Compiler and hardware allowed to make changes that do not affect the semantics of a sequentially executed program

```
void f() {
    x = 1;
    y = x+1;
    z = x+1;
}
```

sequentially equivalent

```
void f() {
    x = 1;
    z = x+1;
    y = x+1;
}
```


From a Software-Perspective

Modern compilers do not give guarantees that a global ordering of memory accesses is provided as in the sourcecode:
■ Some memory accesses may be even optimized away completely!

- Huge potential for optimizations - and for errors, when you make the wrong assumptions

Example: Self-made Rendevouz

int x; // shared
void wait()\{ x = 1; while(x == 1); \}
void arrive()\{ $\mathrm{x}=2$;
\}

Assume thread 1 calls wait, later thread 2 calls arrive. What happens?

Compilation

```
Source
int x; // shared
void wait(){
    x = 1;
    while(x == 1);
}
void arrive(){
    x = 2;
}
```

```
Without optimisation |ith optimisation
wait:
movl $0x1, x
cmp $0x1, %eax
je test
arrive:
movl $0x2, x
```


Hardware Perspective

Modern multiprocessors do not enforce global ordering of all instructions for performance reasons:

- Most processors have a pipelined architecture and can execute (parts of) multiple instructions simultaneously. They can even reorder instructions internally.
■ Each processor has a local cache, and thus loads/stores to shared memory can become visible to other processors at different times

Memory Hierarchies

Memory Hierarchies

Registers

L1 Cache

L2 Cache

System Memory
fast,low latency, high cost, low capacity
slow,high latency,low cost,high capacity

An Analogy

Memory Models

When and if effects of memory operations become visible for threads, depends on hardware, runtime system and programming language.

Memory Models

When and if effects of memory operations become visible for threads, depends on hardware, runtime system and programming language. A memory model (e.g. that of C^{++}) provides minimal guarantees for the effect of memory operations

- leaving open possibilities for optimisation
- containing guidelines for writing thread-safe programs

Memory Models

When and if effects of memory operations become visible for threads, depends on hardware, runtime system and programming language.
A memory model (e.g. that of C^{++}) provides minimal guarantees for the effect of memory operations

- leaving open possibilities for optimisation
- containing guidelines for writing thread-safe programs

For instance, C++ provides guarantees when synchronisation with a mutex is used.

Fixed

```
class C {
    int x = 0;
    int y = 0;
    std::mutex m;
public:
    void f() {
            m.lock(); x = 1; m.unlock();
            m.lock(); y = 1; m.unlock();
    }
    void g() {
        m.lock(); int a = y; m.unlock();
        m.lock(); int b = x; m.unlock();
        assert(b >= a); // cannot fail
    }
};
```


32. Parallel Programming III

Deadlock and Starvation, Producer-Consumer, The concept of the monitor , Condition Variables [Deadlocks : Williams, Kap. 3.2.4-3.2.5] [Condition Variables: Williams, Kap. 4.1]

Deadlock Motivation

```
class BankAccount {
    int balance = 0;
    std::recursive_mutex m;
    using guard = std::lock_guard<std::recursive_mutex>;
public:
    void withdraw(int amount) { guard g(m); ... }
    void deposit(int amount){ guard g(m); ... }
    void transfer(int amount, BankAccount& to){
        guard g(m);
        withdraw(amount);
        to.deposit(amount);
    }
};
```


Deadlock Motivation

```
class BankAccount {
    int balance = 0;
    std::recursive_mutex m;
    using guard = std::lock_guard<std::recursive_mutex>;
public:
    void withdraw(int amount) { guard g(m); ... }
    void deposit(int amount){ guard g(m); ... }
    void transfer(int amount, BankAccount& to){
        guard g(m);
        withdraw(amount);
        Problem?
        to.deposit(amount);
    }
};
```


Deadlock Motivation

Suppose BankAccount instances x and y

Thread 1: x.transfer (1,y);
acquire lock for x
withdraw from x acquire lock for y

Thread 2: y.transfer(1,x);
acquire lock for y
withdraw from y
acquire lock for x

Deadlock Motivation

Suppose BankAccount instances x and y

Thread 1: x.transfer (1,y); acquire lock for $x \leftarrow$ 즌
withdraw from x acquire lock for y

Thread 2: y.transfer(1,x);
acquire lock for y
withdraw from y
acquire lock for x

Deadlock Motivation

Suppose BankAccount instances x and y

Thread 1: x.transfer (1,y); acquire lock for $x \leftarrow$ 즌
withdraw from x acquire lock for y

Thread 2: y.transfer(1,x);
acquire lock for $y \leftarrow \widehat{y}$ withdraw from y
acquire lock for x

Deadlock Motivation

Suppose BankAccount instances \mathbf{x} and y

Deadlock Motivation

Suppose BankAccount instances x and y

Deadlock

Deadlock: two or more processes are mutually blocked because each process waits for another of these processes to proceed.

Threads and Resources

- Grafically t and Resources (Locks) r

■ Thread t attempts to acquire resource $a: t \longrightarrow a$

- Resource b is held by thread q : $s \longleftarrow b$

Deadlock - Detection

A deadlock for threads t_{1}, \ldots, t_{n} occurs when the graph describing the relation of the n threads and resources r_{1}, \ldots, r_{m} contains a cycle.

Techniques

■ Deadlock detection detects cycles in the dependency graph. Deadlocks can in general not be healed: releasing locks generally leads to inconsistent state
■ Deadlock avoidance amounts to techniques to ensure a cycle can never arise

- Coarser granularity "one lock for all"
- Two-phase locking with retry mechanism
- Lock Hierarchies

■ ..
■ Resource Ordering

Back to the Example

```
class BankAccount {
    int id; // account number, also used for locking order
    std::recursive_mutex m; ...
public:
    void transfer(int amount, BankAccount& to){
        if (id < to.id){
        guard g(m); guard h(to.m);
        withdraw(amount); to.deposit(amount);
        } else {
            guard g(to.m); guard h(m);
            withdraw(amount); to.deposit(amount);
        }
    }
};
```


C++11 Style

```
class BankAccount {
    std::recursive_mutex m;
    using guard = std::lock_guard<std::recursive_mutex>;
public:
    void transfer(int amount, BankAccount& to){
        std::lock(m,to.m); // lock order done by C++
        // tell the guards that the lock is already taken:
        guard g(m,std::adopt_lock); guard h(to.m,std::adopt_lock);
        withdraw(amount);
        to.deposit(amount);
    }
};
```


By the way...

```
class BankAccount {
    int balance = 0;
    std::recursive_mutex m;
    using guard = std::lock_guard<std::recursive_mutex>;
public:
    void withdraw(int amount) { guard g(m); ... }
    void deposit(int amount){ guard g(m); ... }
    void transfer(int amount, BankAccount& to){
        withdraw(amount);
        to.deposit(amount);
    }
};
```


By the way...

```
class BankAccount {
    int balance = 0;
    std::recursive_mutex m;
    using guard = std::lock_guard<std::recursive_mutex>;
public:
    void withdraw(int amount) { guard g(m); ... }
    void deposit(int amount){ guard g(m); ... }
    void transfer(int amount, BankAccount& to){
        withdraw(amount);
        to.deposit(amount);
    }
};
This would have worked here also. But
then for a very short amount of time,money disappears, which does not seemacceptable (transient inconsistency!)
```


Starvation und Livelock

Starvation: the repeated but unsuccessful attempt to acquire a resource that was recently (transiently) free.

Livelock: competing processes are able to detect a potential deadlock but make no progress while trying to resolve it.

$$
F
$$

Producer-Consumer Problem

Two (or more) processes, producers and consumers of data should become decoupled by some data structure.
Fundamental Data structure for building pipelines in software.

Sequential implementation (unbounded buffer)

```
class BufferS {
    std::queue<int> buf;
public:
    void put(int x){
        buf.push(x);
    }
    int get(){
        while (buf.empty()){} // wait until data arrive
        int x = buf.front();
        buf.pop();
        return x;
    }
};
```


Sequential implementation (unbounded buffer)

```
class BufferS {
    std::queue<int> buf;
public:
    void put(int x){
        buf.push(x);
    }
    int get(){
        while (buf.empty()){} // wait until data arrive
        int x = buf.front();
        buf.pop();
        return x;
    }
};
```


How about this?

```
class Buffer {
    std::recursive_mutex m;
    using guard = std::lock_guard<std::recursive_mutex>;
    std::queue<int> buf;
public:
    void put(int x){ guard g(m);
        buf.push(x);
    }
    int get(){ guard g(m);
    while (buf.empty()){}
        int x = buf.front();
        buf.pop();
        return x;
    }
};
```


How about this?

```
class Buffer {
    std::recursive_mutex m;
    using guard = std::lock_guard<std::recursive_mutex>;
    std::queue<int> buf;
public:
    void put(int x){ guard g(m);
        buf.push(x);
    }
    int get(){ guard g(m);
    while (buf.empty()){}
        int x = buf.front();
        buf.pop();
        return x;
    }
};
```


Well, then this?

```
void put(int x){
    guard g(m);
    buf.push(x);
}
int get(){
    m.lock();
    while (buf.empty()){
            m.unlock();
            m.lock();
    }
    int x = buf.front();
    buf.pop();
    m.unlock();
    return x;
}
```


Well, then this?

```
void put(int x){
    guard g(m);
    buf.push(x);
}
int get(){
    m.lock();
    while (buf.empty()){
        m.unlock();
        m.lock();
    }
    int x = buf.front();
    buf.pop();
    m.unlock();
    return x;
}
```


Better?

```
void put(int x){
    guard g(m);
    buf.push(x);
}
int get(){
    m.lock();
    while (buf.empty()){
        m.unlock();
        std::this_thread::sleep_for(std::chrono::milliseconds(10));
        m.lock();
    }
    int x = buf.front(); buf.pop();
    m.unlock();
    return x;
}
```


Better?

```
void put(int x){
    guard g(m);
    buf.push(x);
}
int get(){
    m.lock();
    while (buf.empty()){
        m.unlock();
```

Ok a little bit better, limits reactivity though.

```
        std::this_thread::sleep_for(std::chrono::milliseconds(10));
        m.lock();
    }
    int x = buf.front(); buf.pop();
    m.unlock();
    return x;

\section*{Moral}

We do not want to implement waiting on a condition ourselves. There already is a mechanism for this: condition variables.
The underlying concept is called Monitor.

\section*{Monitor}

Monitor abstract data structure equipped with a set of operations that run in mutual exclusion and that can be synchronized.

Invented by C.A.R. Hoare and Per Brinch Hansen (cf. Monitors - An Operating System Structuring Concept, C.A.R. Hoare 1974)

C.A.R. Hoare, *1934


Per Brinch Hansen
(1938-2007)

Monitors vs. Locks


\section*{Monitor and Conditions}

Monitors provide, in addition to mutual exclusion, the following mechanism:
Waiting on conditions: If a condition does not hold, then
■ Release the monitor lock
- Wait for the condition to become true

■ Check the condition when a signal is raised
Signalling: Thread that might make the condition true:
■ Send signal to potentially waiting threads

\section*{Condition Variables}
```

\#include <mutex>
\#include <condition_variable>
...
class Buffer {
std::queue<int> buf;
std::mutex m;
// need unique_lock guard for conditions
using guard = std::unique_lockstd::mutex;
std::condition_variable cond;
public:
};

```

\section*{Condition Variables}
```

class Buffer {
public:
void put(int x){
guard g(m);
buf.push(x);
cond.notify_one();
}
int get(){
guard g(m);
cond.wait(g, [\&]{return !buf.empty();});
int x = buf.front(); buf.pop();
return x;
}
};

```

\section*{Technical Details}

■ A thread that waits using cond.wait runs at most for a short time on a core. After that it does not utilize compute power and "sleeps".
■ The notify (or signal-) mechanism wakes up sleeping threads that subsequently check their conditions.

■ cond.notify_one signals one waiting thread
■ cond.notify_all signals all waiting threads. Required when waiting thrads wait potentially on different conditions.

\section*{Technical Details}
- Many other programming langauges offer the same kind of mechanism. The checking of conditions (in a loop!) has to be usually implemented by the programmer.
```

Java Example
synchronized long get() {
long x;
while (isEmpty())
try {
wait ();
x = doGet();
return x;
}
synchronized put(long x){
doPut(x);
notify ();
}

```
            \} catch (InterruptedException e)

\section*{33. Parallel Programming IV}

Futures, Read-Modify-Write Instructions, Atomic Variables, Idea of lock-free programming
[C++ Futures: Williams, Kap. 4.2.1-4.2.3] [C++ Atomic: Williams, Kap. 5.2.1-5.2.4, 5.2.7] [C++ Lockfree: Williams, Kap. 7.1-7.2.1]

\section*{Futures: Motivation}

Up to this point, threads have been functions without a result: void action(some parameters)\{
\}
std::thread t(action, parameters);
t.join();
// potentially read result written via ref-parameters

\section*{Futures: Motivation}


\section*{We can do this already!}

■ We make use of the producer/consumer pattern, implemented with condition variables
■ Start the thread with reference to a buffer
- We get the result from the buffer.
- Synchronisation is already implemented

\section*{Reminder}
```

template <typename T>
class Buffer {
std::queue<T> buf;
std::mutex m;
std::condition_variable cond;
public:
void put(T x){ std::unique_lockstd::mutex g(m);
buf.push(x);
cond.notify_one();
}
T get(){ std::unique_lockstd::mutex g(m);
cond.wait(g, [\&]{return (!buf.empty());});
T x = buf.front(); buf.pop(); return x;
}
};

```

\section*{Simpler: only one value}
```

template <typename T>
class Buffer {
T value; bool received = false;
std::mutex m;
std::condition_variable cond;
public:
void put(T x){ std::unique_lockstd::mutex g(m);
value = x; received = true;
cond.notify_one();
}
T get(){ std::unique_lockstd::mutex g(m);
cond.wait(g, [\&]{return received;});
return value;
}
};

```

\section*{Application}
```

void action(Buffer<int>\& c){
// some long lasting operation ...
c.put(42);
}
int main(){
Buffer<int> c;

```

```

 std::thread t(action, std::ref(c));
 t.detach(); // no join required for free running thread
 // can do some more work here in parallel
 int val = c.get();
 // use result
 return 0;
 }

```

\section*{With features of \(\mathrm{C}++11\)}
```

int action(){
// some long lasting operation
return 42;
}
int main(){
std::future<int> f = std::async(action);
// can do some work here in parallel
int val = f.get();
// use result
return 0;
}

```

\section*{Disclaimer}

The explanations above are simplified. The real implementation of a Future can deal with timeouts, exceptions, memory allocators and is generally written more closely to the unerlying operating system.

\subsection*{33.2 Read-Modify-Write}

\section*{Example: Atomic Operations in Hardware}

\section*{CMPXCHG}

\section*{Compare and Exchange}

Compares the value in the \(\mathrm{AL}, \mathrm{AX}\). EAX, or RAX register with the value in a register or a memory ocation (first operand). If the two values are equal, the instruction copies the value in the secon operand to the first operand and sets the ZF flag in the rFLAGS register to 1. Otherwise, it copies the value in the first operand to the \(\mathrm{AL}, \mathrm{AX}, \mathrm{EAX}\), or RAX register and clears the ZF flag to 0 .

\section*{The OF, SF,}

When the firs memory oper memory opera

\section*{The forms of \(t\)} about the LOC

Mnemonic
CMPXCHG ro

CMPXCHG re
CMPXCHG re
CMPXCHG mem, reg
«compares the value in Register A with the value in a memory location If the two values are equal, the instruction copies the value in the second operand to the first operand and sets the ZF flag in the flag regsiters to 1 . Otherwise it copies the value in the first operand to A register and clears ZF flag to 0»

\section*{CMPXCHG re}

Related Instructions
CMPXCHG8B CMPXCHG16B
1.2.5 Lock Prefix

The LOCK prefix causes certain kinds of memory read-modify-write instructions to occur atomically The mechanism for doing so is implementation-dependent (for example, the mechanism may involve
\({ }^{8}\) «The lock prefix causes certain kinds of memory read-modify-write instructions to occur atomically»

\section*{ondify-write on the c same value to the}

\section*{AMD64 Architecture Programmer's Manual}
gister or memory
erand to the first perand to the
perand to AL
gister or memory erand to AX gister or memory doperand or men

\section*{struction Formats}
\(\qquad\)  -


\section*{Read-Modify-Write}

Concept of Read-Modify-Write: The effect of reading, modifying and writing back becomes visible at one point in time (happens atomically).

\section*{Psudocode for CAS - Compare-And-Swap}
```

bool CAS(int\& variable, int\& expected, int desired){
if (variable == expected){
variable = desired;
return true;
|}
else{
expected = variable;
return false;
}
}

```

\section*{Application example CAS in C++11}
```

We build our own (spin-)lock:
class Spinlock{
std::atomic<bool> taken {false};
public:
void lock(){
bool old = false;
while (!taken.compare_exchange_strong(old=false, true)){}
}
void unlock(){
bool old = true;
assert(taken.compare_exchange_strong(old, false));
}
};

```

\subsection*{33.3 Lock-Free Programming}

Ideas

\section*{Lock-free programming}

Data structure is called
■ lock-free: at least one thread always makes progress in bounded time even if other algorithms run concurrently. Implies system-wide progress but not freedom from starvation.
■ wait-free: all threads eventually make progress in bounded time. Implies freedom from starvation.

\section*{Progress Conditions}
\begin{tabular}{c|c|c|} 
& Non-Blocking & Blocking \\
\hline \begin{tabular}{c} 
Everyone makes \\
progress
\end{tabular} & Wait-free & Starvation-free \\
\hline \begin{tabular}{c} 
Someone makes \\
progress
\end{tabular} & Lock-free & Deadlock-free \\
\hline
\end{tabular}

\section*{Implication}
- Programming with locks: each thread can block other threads indefinitely.
■ Lock-free: failure or suspension of one thread cannot cause failure or suspension of another thread!

\section*{Lock-free programming: how?}

Beobachtung:
- RMW-operations are implemented wait-free by hardware.

■ Every thread sees his result of a CAS in bounded time.
Idea of lock-free programming: read the state of a data sructure and change the data structure atomically if and only if the previously read state remained unchanged meanwhile.

\section*{Example: lock-free stack}

Simplified variant of a stack in the following
■ pop does not check for an empty stack
- pop does not return a value

\section*{(Node)}


\section*{(Blocking Version)}
```

template <typename T>
class Stack {
Node<T> *top=nullptr;
std::mutex m;
public:
void push(T val){ guard g(m);
top = new Node<T>(val, top);
}
void pop(){ guard g(m);
Node<T>* old_top = top;
top = top->next;
delete old_top;
}
};

```


\section*{Lock-Free}
```

template <typename T>
class Stack {
std::atomic<Node<T>*> top {nullptr};
public:
void push(T val){
Node<T>* new_node = new Node<T> (val, top);
while (!top.compare_exchange_weak(new_node->next, new_node));
}
void pop(){
Node<T>* old_top = top;
while (!top.compare_exchange_weak(old_top, old_top->next));
delete old_top;
}
};

```

\section*{Push}
```

void push(T val){
Node<T>* new_node = new Node<T> (val, top);
while (!top.compare_exchange_weak(new_node->next, new_node));
}
2 Threads:

```


\section*{Push}
```

void push(T val){
Node<T>* new_node = new Node<T> (val, top);
while (!top.compare_exchange_weak(new_node->next, new_node));
}
2 Threads:

```


\section*{Push}
```

void push(T val){
Node<T>* new_node = new Node<T> (val, top);
while (!top.compare_exchange_weak(new_node->next, new_node));
}
2 Threads:

```


\section*{Push}
```

void push(T val){
Node<T>* new_node = new Node<T> (val, top);
while (!top.compare_exchange_weak(new_node->next, new_node));
}

```

2 Threads:


\section*{Push}
```

void push(T val){
Node<T>* new_node = new Node<T> (val, top);
while (!top.compare_exchange_weak(new_node->next, new_node));
}

```

2 Threads:


\section*{Pop}
```

void pop(){
Node<T>* old_top = top;
while (!top.compare_exchange_weak(old_top, old_top->next));
delete old_top;
}
2 Threads:

```


\section*{Pop}
```

void pop(){
Node<T>* old_top = top;
while (!top.compare_exchange_weak(old_top, old_top->next));
delete old_top;
}
2 Threads:

```


\section*{Pop}
```

void pop(){
Node<T>* old_top = top;
while (!top.compare_exchange_weak(old_top, old_top->next));
delete old_top;
}
2 Threads:

```


\section*{Pop}
```

void pop(){
Node<T>* old_top = top;
while (!top.compare_exchange_weak(old_top, old_top->next));
delete old_top;
}
2 Threads:

```


\section*{Pop}
```

void pop(){
Node<T>* old_top = top;
while (!top.compare_exchange_weak(old_top, old_top->next));
delete old_top;
}
2 Threads:

```


\section*{Lock-Free Programming - Limits}

■ Lock-Free Programming is complicated.
- If more than one value has to be changed in an algorithm (example: queue), it is becoming even more complicated: threads have to "help each other" in order to make an algorithm lock-free.
- The ABA problem can occur if memory is reused in an algorithm. A solution of this problem can be quite expensive.```


[^0]:    ${ }^{1}$ Ausgesprochen: Set of all functions $f: \mathbb{N} \rightarrow \mathbb{R}$ that satisfy: there is some (real valued) $c>0$ and some $n_{0} \in \mathbb{N}$ such that $0 \leq f(n) \leq n \cdot g(n)$ for all $n \geq n_{0}$.

[^1]:    $A=$ amortized, $P=$ expected, otherwise worst case

[^2]:    ${ }^{2}$ Number fundamental operations

[^3]:    ${ }^{3}$ Also known as russian multiplication

[^4]:    ${ }^{3}$ Also known as russian multiplication

[^5]:    ${ }^{3}$ Also known as russian multiplication

[^6]:    ${ }^{3}$ Also known as russian multiplication

[^7]:    ${ }^{3}$ Also known as russian multiplication

[^8]:    ${ }^{3}$ Also known as russian multiplication

[^9]:    ${ }^{3}$ Also known as russian multiplication

[^10]:    ${ }^{5}$ Analogously so for the copy-constructor and the move constructor

