ETH zürich

Übung 11

Datenstrukturen und Algorithmen, D-MATH, ETH Zurich

Heutiges Programm

```
Feedback letzte Übung
Wiederholung Vorlesung
All Pairs Shortest Paths
```

Kruskal

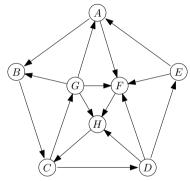
Hinweise zu den Aufgaben Closeness Centrality TSP

In-Class-Exercise praktisch

In-Class-Exercise (theoretisch)

1

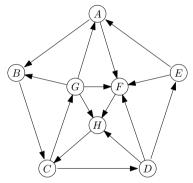
1. Feedback letzte Übung



Start bei A

 $\mathsf{DFS} \mathpunct{:} A, B, C, D, E, F, H, G$

 $\mathsf{BFS}\!:A,B,F,C,H,D,G,E$



Start bei A

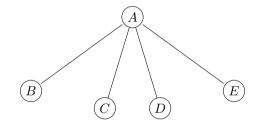
 $\mathsf{DFS} \mathpunct{:} A, B, C, D, E, F, H, G$

 $\mathsf{BFS}\!:A,B,F,C,H,D,G,E$

Es gibt keinen Startknoten, sodass die DFS-Ordnung der BFS-Ordnung entspricht.

3

Stern: DFS-Ordnung entspricht BFS-Ordnung

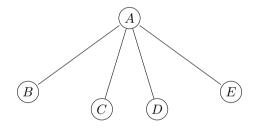


Start bei A

 $\mathsf{DFS} \mathpunct{:} A, B, C, D, E$

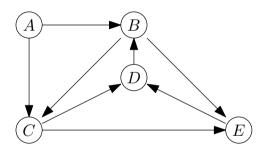
 $\mathsf{BFS}\!:A,B,C,D,E$

Stern: DFS-Ordnung entspricht BFS-Ordnung

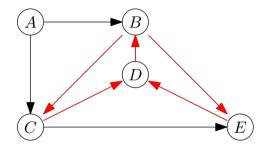


Start bei *A*DFS: *A*, *B*, *C*, *D*, *E*BFS: *A*, *B*, *C*, *D*, *E*

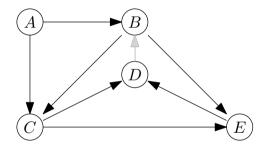
Start bei CDFS: C, A, B, D, EBFS: C, A, B, D, E



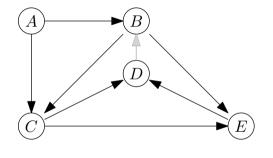
der Graph hat Kreise



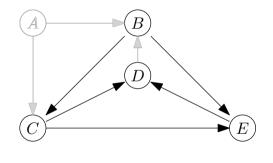
- der Graph hat Kreise
- zwei minimale Kreise teilen sich eine Kante



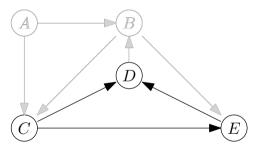
- der Graph hat Kreise
- zwei minimale Kreise teilen sich eine Kante
- entferne die Kante ⇒ kreisfrei



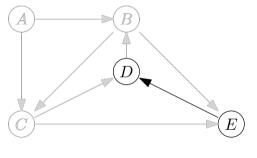
- der Graph hat Kreise
- zwei minimale Kreise teilen sich eine Kante
- entferne die Kante ⇒ kreisfrei
- topologische Sortierung durch "Entfernen" von Knoten mit Eingangsgrad 0



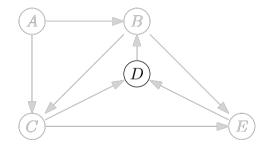
- der Graph hat Kreise
- zwei minimale Kreise teilen sich eine Kante
- entferne die Kante ⇒ kreisfrei
- topologische Sortierung durch "Entfernen" von Knoten mit Eingangsgrad 0



- der Graph hat Kreise
- zwei minimale Kreise teilen sich eine Kante
- entferne die Kante ⇒ kreisfrei
- topologische Sortierung durch "Entfernen" von Knoten mit Eingangsgrad 0



- der Graph hat Kreise
- zwei minimale Kreise teilen sich eine Kante
- entferne die Kante ⇒ kreisfrei
- topologische Sortierung durch "Entfernen" von Knoten mit Eingangsgrad 0



- der Graph hat Kreise
- zwei minimale Kreise teilen sich eine Kante
- entferne die Kante ⇒ kreisfrei
- topologische Sortierung durch "Entfernen" von Knoten mit Eingangsgrad 0

2. Wiederholung Vorlesung

DP-Algorithmus Floyd-Warshall(G)

Laufzeit: $\Theta(|V|^3)$

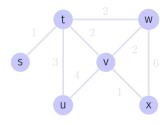
Bemerkung: Der Algorithmus kann auf einer einzigen Matrix d (in place) ausgeführt werden.

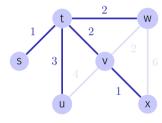
Vergleich der Verfahren

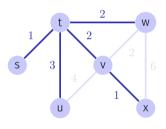
Algorithmus			Laufzeit
Dijkstra (Heap)	$c_v \ge 0$	1:n	$\mathcal{O}(E \log V)$
Dijkstra (Fibonacci-Heap)	$c_v \ge 0$	1:n	$\mathcal{O}(E + V \log V)^*$
Bellman-Ford		1:n	$\mathcal{O}(E \cdot V)$
Floyd-Warshall		n:n	$\Theta(V ^3)$
Johnson		n:n	$\mathcal{O}(V \cdot E \cdot \log V)$
Johnson (Fibonacci-Heap)		n:n	$\mathcal{O}(V ^2 \log V + V \cdot E)^*$

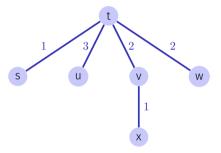
^{*} amortisiert

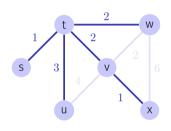
Johnson (dieses Jahr nicht erklärt) ist besser als Floyd-Warshall nur für dünn besetzte Graphen ($|E| \approx \Theta(|V|)$).

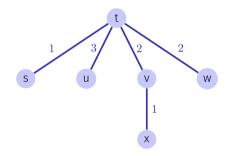












(Lösung ist nicht eindeutig.)

MakeSet, Union, und Find

- \blacksquare Make-Set(*i*): Hinzufügen einer neuen Menge *i*.
- Find(e): Name i der Menge, welche e enthält.
- Union(i, j): Vereinigung der Mengen mit Namen i und j.

MakeSet, Union, und Find

- \blacksquare Make-Set(*i*): Hinzufügen einer neuen Menge *i*.
- Find(e): Name i der Menge, welche e enthält.
- Union(i, j): Vereinigung der Mengen mit Namen i und j.

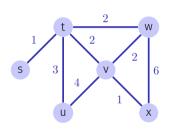
In MST-Kruskal:

- \blacksquare Make-Set(i): Neuer Baums mit Wurzel i.
- Find(*e*): Finde Wurzel von *e*
- Union(i, j): Vereinigung der Bäume i und j.

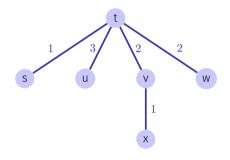
Algorithmus MST-Kruskal(G)

```
Input: Gewichteter Graph G = (V, E, c)
Output: Minimaler Spannbaum mit Kanten A.
Sortiere Kanten nach Gewicht c(e_1) \leq ... \leq c(e_m)
A \leftarrow \emptyset
for k=1 to |V| do
     MakeSet(k)
for k=1 to m do
     (u,v) \leftarrow e_k
     if Find(u) \neq Find(v) then
          \begin{array}{l} \mathsf{Union}\big(\mathsf{Find}(u),\mathsf{Find}(v)\big) \\ A \leftarrow A \cup e_k \end{array} 
return (V, A, c)
```

Repräsentation als Array



Index s t w v u x



Index s t u v w xParent t t t t t v

Andere Verbesserung

Bei jedem Find alle Knoten direkt an den Wurzelknoten hängen.

```
\begin{aligned} & \text{Find}(i) : \\ & j \leftarrow i \\ & \text{while } (p[i] \neq i) \text{ do } i \leftarrow p[i] \\ & \text{while } (j \neq i) \text{ do} \\ & & t \leftarrow j \\ & j \leftarrow p[j] \\ & p[t] \leftarrow i \end{aligned}
```

return i

Laufzeit: amortisiert fast konstant (Inverse der Ackermannfunktion).¹

¹Wird hier nicht vertieft.

Laufzeit des Kruskal Algorithmus

- Sortieren der Kanten: $\Theta(|E|\log|E|) = \Theta(|E|\log|V|)$. ²
- lacktriangle Initialisieren der Union-Find Datenstruktur $\Theta(|V|)$
- $|E| \times \text{Union}(\text{Find}(x),\text{Find}(y))$: $\mathcal{O}(|E| \log |E|) = \mathcal{O}(|E| \log |V|)$. Insgesamt $\Theta(|E| \log |V|)$.

 $^{^2}$ da G zusammenhängend: $|V| \leq |E| \leq |V|^2$

3. Hinweise zu den Aufgaben

Closeness Centrality, TSP

Closeness Centrality

- Gegeben: Eine Adjazenzmatrix für einen *ungerichteten* Graphen auf *n* Knoten.
- lacktriangle Aufgabe: für jeden Knoten v die Closeness Centrality C(v) von v.

$$C(v) = \sum_{u \in V \setminus \{v\}} d(v, u)$$

Closeness Centrality

- Gegeben: Eine Adjazenzmatrix für einen *ungerichteten* Graphen auf *n* Knoten.
- lacktriangle Aufgabe: für jeden Knoten v die Closeness Centrality C(v) von v.

$$C(v) = \sum_{u \in V \setminus \{v\}} d(v, u)$$

- Intuitiv: Wenn viele verbundene Knoten nahe bei v liegen, dann ist C(v) klein.
- "Wie zentral ist ein Knoten in seiner Zusammenhangskomponente?"

Alle kürzesten Pfade

- Wir brauchen d(u, v) für alle Knotenpaare (u, v).
- ⇒ berechne alle kürzesten Pfade mit Floyd-Warshall. (APSH.h)

```
template<typename Matrix>
void allPairsShortestPaths(unsigned n, Matrix& m)
{
    // your code here
}
```

- Das Feld m soll mit den Distanzen überschrieben werden.
- Achtung: anfangs bedeutet 0 "keine Kante".
- Ungerichteter Graph: m[i][j] == m[j][i]

Closeness Centrality

```
Centrality.h
void printCentrality(unsigned n, vector<vector<unsigned>>
  adjacencies, vector<string> names)
 for (unsigned i = 0; i < n; ++i)
   cout << names[i] << ": ":
   unsigned centrality = 0;
   // TODO: compute centrality of vertex i here
   cout << centrality << endl:</pre>
```

Closeness Centrality: Eingabedaten

- Der Eingabegraph beschreibt die Zusammenarbeit von gewissen Autoren an wissenschaftlichen Publikationen.
- Die Knoten des Graphen stehen für die Co-Autoren des Mathematikers Paul Erdős.
- Wenn sie zusammen eine Arbeit veröffentlicht haben, sind sie durch eine Kante verbunden.
- Quelle: https://oakland.edu/enp/thedata/

Closeness Centrality: Output

vertices: 511 ABBOTT, HARVEY LESLIE : 1625 ACZEL, JANOS D. : 1681 AGOH, TAKASHI : 2132 AHARONI, RON : 1578 : 1589 AIGNER, MARTIN S. AJTAI, MIKLOS : 1492 ALAOGLU, LEONIDAS* : 0 : 1561 ALAVI, YOUSEF . . .

Wo kommt die 0 her?

Travelling Salesperson Problem

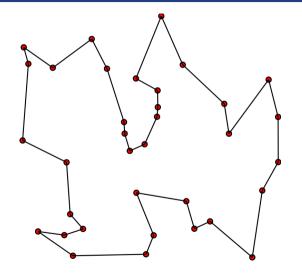
Problem

Gegeben ist eine Karte und eine Liste von Städten. Welches ist die kürzeste Route, die jede Stadt einmal besucht und in die ursprüngliche Stadt zurückkehrt?

Mathematical model

Auf einem ungerichteten, gewichteten Graph G ist nach dem Kreis gesucht, welcher jede der Knoten von G genau einmal enthält und die kleinste Kantensumme aufweist.

Travelling Salesperson Problem



Travelling Salesperson Problem

- Es ist kein Polynomialzeitalgorithmus zum Lösen des Problems bekannt.
- Es gibt verschiedene heuristische Algorithmen. Diese liefern oft nicht die optimale Lösung.

Travelling Salesperson Problem

- Der heuristische Algorithmus, den Sie auf CodeExpert implementieren sollen (*The Travelling Student*) benutzt einen Minimalen Spannbaum:
 - 1. Berechne den Minimalen Spannbaum M
 - 2. Mache eine Tiefensuche auf M
- Der Algorithmus ist eine 2-Approximation. Das bedeutet, dass er eine Lösung liefert, die maximal 2 mal die Kosten einer optimalen Lösung aufweist.
- Der Algorithmus geht von einem vollständigen Graphen G = (V, E, c) aus, auf dem die Dreiechsungleichung gilt: $c(v, w) < c(v, x) + c(x, w) \ \forall \ v, w, x \in V$

4. In-Class-Exercise praktisch

Union-Find Experiments (Code-Expert)

5. In-Class-Exercise (theoretisch)

Das Kürzeste-Pfad-Problem hat einfache Lösungen (BFS, Dijkstra, Bellman-Ford). Das Längste-Pfad-Problem hingegen ist sehr schwierig! Für gerichtete Graphen gibt es vermutlich keinen schnellen Algorithmus, um Pfade der Länge $\gg \log^2 n$ zu finden

Das Kürzeste-Pfad-Problem hat einfache Lösungen (BFS, Dijkstra, Bellman-Ford). Das Längste-Pfad-Problem hingegen ist sehr schwierig! Für gerichtete Graphen gibt es vermutlich keinen schnellen Algorithmus, um Pfade der Länge $\gg \log^2 n$ zu finden.

Aufgabe:

Gegeben sei ein gerichteter, **kreisfreier** Graph (DAG) G=(V,E). Entwerfen Sie einen $\mathcal{O}(|V|+|E|)$ -Laufzeit Algorithmus, um den *längsten Pfad* zu finden.

Das Kürzeste-Pfad-Problem hat einfache Lösungen (BFS, Dijkstra, Bellman-Ford). Das Längste-Pfad-Problem hingegen ist sehr schwierig! Für gerichtete Graphen gibt es vermutlich keinen schnellen Algorithmus, um Pfade der Länge $\gg \log^2 n$ zu finden.

Aufgabe:

Gegeben sei ein gerichteter, **kreisfreier** Graph (DAG) G = (V, E).

Entwerfen Sie einen $\mathcal{O}(|V|+|E|)$ -Laufzeit Algorithmus, um den *längsten Pfad* zu finden.

Tipp: G ist kreisfrei, Sie können also zuerst topologisch sortieren.

Lösung:

1. Topologisch Sortieren. Laufzeit: $\mathcal{O}(|V| + |E|)$.

Lösung:

- 1. Topologisch Sortieren. Laufzeit: $\mathcal{O}(|V| + |E|)$.
- 2. Berechne für jeden Knoten alle eingehenden Kanten: $\mathcal{O}(|V| + |E|)$.

Lösung:

- 1. Topologisch Sortieren. Laufzeit: $\mathcal{O}(|V| + |E|)$.
- 2. Berechne für jeden Knoten alle eingehenden Kanten: $\mathcal{O}(|V| + |E|)$.
- 3. Besuche jeden Knoten v in Reihenfolge der topologischen Sortierung und betrachte die Eingangs-Kanten: $\mathcal{O}(|V| + |E|)$.

Lösung:

- 1. Topologisch Sortieren. Laufzeit: $\mathcal{O}(|V| + |E|)$.
- 2. Berechne für jeden Knoten alle eingehenden Kanten: $\mathcal{O}(|V| + |E|)$.
- 3. Besuche jeden Knoten v in Reihenfolge der topologischen Sortierung und betrachte die Eingangs-Kanten: $\mathcal{O}(|V|+|E|)$.

$$\mathtt{dist}[v] = egin{cases} 0 & \text{keine Kanten,} \\ \max_{(u,v) \in E} \{\mathtt{dist}[u] + c(u,v)\} & \text{sonst.} \end{cases}$$

Lösung:

- 1. Topologisch Sortieren. Laufzeit: $\mathcal{O}(|V| + |E|)$.
- 2. Berechne für jeden Knoten alle eingehenden Kanten: $\mathcal{O}(|V| + |E|)$.
- 3. Besuche jeden Knoten v in Reihenfolge der topologischen Sortierung und betrachte die Eingangs-Kanten: $\mathcal{O}(|V|+|E|)$.

$$\mathbf{dist}[v] = \begin{cases} 0 & \text{keine Kanten,} \\ \max_{(u,v) \in E} \{\mathbf{dist}[u] + c(u,v)\} & \text{sonst.} \end{cases}$$

Vorgänger merken!