Exercise Session 14
Data Structures and Algorithms, D-MATH, ETH Zurich

Program of today

Feedback of last exercise

k

X

r

Dining Philosophers

m To avoid deadlocks, break cyclic dependency. As discussed last time.
m Max/Min numbers of philosophers eating concurrently?
m |t's possible that only one philosopher eats.

Bundle forks! Then always two can eat.

Race conditions

m Make functions of Item class thread safe.
m Simple approach: Get lock at beginning of function, release at the end.

Ratings

class Item {
private:

int rating_sum = O;

int rating_count = O;

std::recursive_mutex mtx; // re-entrant lock for out_rating
public:

Item() {};

/* Returns average rating. O if no rating occured */
double get_rating() {
// minimal requirement: do not forget the lock
std::lock_guard<std::recursive_mutex> lock(mtx) ;
if (rating_count == 0) return 0.0; // some forgot this
return (double)rating_sum / rating_count;

3

Ratings

void add_rating(int stars){
assert(l <= stars && stars <= 5);
std::lock_guard<std::recursive_mutex> lock(mtx) ;
// some put the computation of the rating here,
// which is quite clever
rating_sum += stars;
rating_count++;

Ratings

// when you do not protect this, you might run into two kind of problems:
// 1.) Inconsistent result
// when call to add__rating between rating_count and get_rating
// 2.) scrumbled output when threads call out_rating in parallel
void out_rating(){
std :: lock__guard<std::recursive_ mutex> lock(mtx); // required!
std ::cout << "ratings:" << rating_count << ", ";
std :: cout << "score:" << get_rating() << "\n";

}
};

Ensure that at most three cars or one truck is on the bridge
Use condition variable and a counter

Bridge

class Bridge {
public:
std: :mutex mtx;
std::condition_variable cv;

int car_count = O;

void check_bridge(){
if (car_count > 3){
std::cout << "Bridge collapsed!" << std::endl;
exit (0);

Bridge

void enter_car(){
std::unique_lock<std::mutex> lock(mtx);
cv.wait(lock, [&]{return car_count < 3;});
car_count++;
check_bridge();

void leave_car(){
std::lock_guard<std::mutex> lock(mtx);
car_count--;
cv.notify_all();

Bridge

void enter_truck(){
std: :unique_lock<std::mutex> lock(mtx);
cv.wait(lock, [&]{return car_count == 0;});
car_count += 3;
check_bridge();

void leave_truck(){
std::lock_guard<std: :mutex> lock(mtx);
car_count -= 3;
cv.notify_all();

Problem with this Approach?

What happens if there are cars and trucks waiting at the bridge?

Problem with this Approach?

What happens if there are cars and trucks waiting at the bridge?
The trucks do not make progress because cars.

Problem with this Approach?

What happens if there are cars and trucks waiting at the bridge?
The trucks do not make progress because cars.
Solution?

Problem with this Approach?

What happens if there are cars and trucks waiting at the bridge?
The trucks do not make progress because cars.

Solution? Prohibt convoys: Admit cars only if there is no truck waiting
and less than 3 cars (and no truck) on the bridge or there are no cars on
the bridge.

The fairness is reduced to the fairness of scheduling by the runtime
system.

Fairness

class Bridge {
std: :mutex mtx;
std::condition_variable cv;

int car_count = 0; // count car equivalence
int trucks_waiting = 0; // count trucks waiting

public:

Fairness

void enter_car(){
std::unique_lock<std::mutex> lock(mtx);
cv.wait(lock, [&]{
return (car_count < 3)
&& (trucks_waiting == || car_count == 0);}
);
car_count++;
check_bridge();
}

void leave_car(){
std::lock_guard<std::mutex> lock(mtx);
car_count--;
cv.notify_all();
} 15

Fairness

void enter_truck(){
std::unique_lock<std::mutex> lock(mtx);
trucks_waiting++;
cv.wait(lock, [&]{return car_count = 0;});
trucks_waiting--;
car_count += 3;
check_bridge();

void leave_truck(){
std: :lock_guard<std: :mutex> lock(mtx) ;
car_count -= 3;
cv.notify_all();
}
}; 16

	Feedback of last exercise

