EHzürich

Exercise Session 11 Data Structures and Algorithms, D-MATH, ETH Zurich

Program Today

Feedback of last exercise

Repetition of Lecture All Pairs Shortest Paths Kruskal

Hints for current tasks Closeness Centrality TSP

In-Class-Exercise practical

In-Class-Exercise (theoretical)

1. Feedback of last exercise

Starting at ADFS: A, B, C, D, E, F, H, GBFS: A, B, F, C, H, D, G, E

Starting at ADFS: A, B, C, D, E, F, H, GBFS: A, B, F, C, H, D, G, E

There is no starting vertex where the DFS ordering equals the BFS ordering.

Star: DFS ordering equals BFS ordering

Starting at ADFS: A, B, C, D, EBFS: A, B, C, D, E

Star: DFS ordering equals BFS ordering

Starting at ADFS: A, B, C, D, EBFS: A, B, C, D, E Starting at CDFS: C, A, B, D, EBFS: C, A, B, D, E

Graph with cycles

- Graph with cycles
- Two minimal cycles sharing an edge

- Graph with cycles
- Two minimal cycles sharing an edge
- \blacksquare Remove edge \implies cycle-free

- Graph with cycles
- Two minimal cycles sharing an edge
- $\blacksquare Remove edge \implies cycle-free$
- Topological Sorting by "removing" elements with in-degree 0

- Graph with cycles
- Two minimal cycles sharing an edge
- Remove edge \implies cycle-free
- Topological Sorting by "removing" elements with in-degree 0

- Graph with cycles
- Two minimal cycles sharing an edge
- $\blacksquare Remove edge \implies cycle-free$
- Topological Sorting by "removing" elements with in-degree 0

- Graph with cycles
- Two minimal cycles sharing an edge
- $\blacksquare Remove edge \implies cycle-free$
- Topological Sorting by "removing" elements with in-degree 0

- Graph with cycles
- Two minimal cycles sharing an edge
- $\blacksquare Remove edge \implies cycle-free$
- Topological Sorting by "removing" elements with in-degree 0

2. Repetition of Lecture

Runtime: $\Theta(|V|^3)$

Remark: Algorithm can be executed with a single matrix d (in place).

Comparison of the approaches

Algorithm			Runtime
Dijkstra (Heap)	$c_v \ge 0$	1:n	$\mathcal{O}(E \log V)$
Dijkstra (Fibonacci-Heap)	$c_v \ge 0$	1:n	$\mathcal{O}(E + V \log V)^*$
Bellman-Ford		1:n	$\mathcal{O}(E \cdot V)$
Floyd-Warshall		n:n	$\Theta(V ^3)$
Johnson		n:n	$\mathcal{O}(V \cdot E \cdot \log V)$
Johnson (Fibonacci-Heap)		n:n	$\mathcal{O}(V ^2 \log V + V \cdot E) *$
where the set of the set			

* amortized

Johnson (not explained this year) is better than Floyd-Warshall only for sparse graphs ($|E| \approx \Theta(|V|)$).

(Solution is not unique.)

MakeSet, Union, and Find

- Make-Set(*i*): create a new set represented by *i*.
- Find(e): name of the set i that contains e.
- Union(i, j): union of the sets with names *i* and *j*.

MakeSet, Union, and Find

- Make-Set(*i*): create a new set represented by *i*.
- Find(e): name of the set i that contains e.
- Union(i, j): union of the sets with names i and j.

In MST-Kruskal:

- Make-Set(i): New tree with i as root.
- Find(e): Find root of e
- Union(i, j): Union of the trees i and j.

Algorithm MST-Kruskal(G)

Input: Weighted Graph G = (V, E, c)**Output:** Minimum spanning tree with edges A.

```
Sort edges by weight c(e_1) < ... < c(e_m)
A \leftarrow \emptyset
for k = 1 to |V| do
    MakeSet(k)
for k = 1 to m do
    (u,v) \leftarrow e_k
    if Find(u) \neq Find(v) then
       Union(Find(u), Find(v))
        A \leftarrow A \cup e_k
return (V, A, c)
```

Representation as array

Index s t w v u x

Index s t u v w xParent t t t t t v

Link all nodes to the root when Find is called. Find(*i*):

```
\begin{array}{l} j \leftarrow i \\ \text{while } (p[i] \neq i) \text{ do } i \leftarrow p[i] \\ \text{while } (j \neq i) \text{ do} \\ \\ \begin{bmatrix} t \leftarrow j \\ j \leftarrow p[j] \\ p[t] \leftarrow i \end{array}
```

return i

Cost: amortised *nearly* constant (inverse of the Ackermann-function).¹

¹We do not go into details here.

- Sorting of the edges: $\Theta(|E| \log |E|) = \Theta(|E| \log |V|)$.²
- Initialisation of the Union-Find data structure $\Theta(|V|)$
- $|E| \times \text{Union}(\text{Find}(x), \text{Find}(y))$: $\mathcal{O}(|E| \log |E|) = \mathcal{O}(|E| \log |V|)$. Overal $\Theta(|E| \log |V|)$.

²because *G* is connected: $|V| \le |E| \le |V|^2$

3. Hints for current tasks

Closeness Centrality, TSP

Given: an adjacency matrix for an *undirected* graph on n vertices.
Output: the *closeness centrality* C(v) of every vertex v.

$$C(v) = \sum_{u \in V \setminus \{v\}} d(v, u)$$

Given: an adjacency matrix for an *undirected* graph on n vertices.
Output: the *closeness centrality* C(v) of every vertex v.

$$C(v) = \sum_{u \in V \setminus \{v\}} d(v, u)$$

Intuition: If many connected vertices are close to v, then C(v) is small.
"How central is the vertex in its connected component?"

All Pairs Shortest Paths

• We require d(u, v) for all vertex pairs (u, v).

compute all shortest paths using Floyd-Warshall. (APSH.h)

```
template<typename Matrix>
void allPairsShortestPaths(unsigned n, Matrix& m)
{
    // your code here
}
```

- Simply overwrite m with the distance values.
- Attention: initially 0 means "no edge".
- Undirected graph: m[i][j] == m[j][i]

Closeness Centrality

```
Centrality.h
```

```
void printCentrality(unsigned n, vector<vector<unsigned>>
  adjacencies, vector<string> names)
ſ
 for (unsigned i = 0; i < n; ++i)
  ſ
   cout << names[i] << ": ";</pre>
   unsigned centrality = 0;
    // TODO: compute centrality of vertex i here
   cout << centrality << endl:</pre>
```

Closeness Centrality: Input Data

- A graph that stems from collaborations on scientific papers.
- The vertices of the graph are the co-authors of the mathematician Paul Erdős.
- There is an edge between them if the authors have jointly published a paper.
- Source: https://oakland.edu/enp/thedata/

Closeness Centrality: Output

vertices: 511 ABBOTT, HARVEY LESLIE : 1625 ACZEL, JANOS D. : 1681 AGOH, TAKASHI : 2132 AHARONI. RON : 1578 : 1589 AIGNER, MARTIN S. AJTAI, MIKLOS : 1492 ALAOGLU, LEONIDAS* : 0 : 1561 ALAVI, YOUSEF

. . .

Where does the 0 come from?

Travelling Salesperson Problem

Problem

Given a map and list of cities, what is the shortest possible route that visits each city once and returns at the original city?

Mathematical model

On an undirected, weighted graph G, which cycle containing all of G's vertices has the lowest weight sum?

Travelling Salesperson Problem

- The problem has no known polynomial-time solution.
- Many heuristic algorithms exists. They do not always return the optimal solution.

Travelling Salesperson Problem

- The heuristic algorithm that you are asked to implement on CodeExpert (*The Travelling Student*) on CodeExpert uses an MST:
 - 1. Compute the minimum spanning tree ${\cal M}$
 - 2. Make a depth first search on M
- The algorithm is 2-approximate, meaning that the solution it generates has at most twice the cost of the optimal solution.
- The algorithm assumes a complete graph G = (V, E, c) that satisfies the triangle inequality: $c(v, w) \le c(v, x) + c(x, w) \forall v, w, x \in V$

4. In-Class-Exercise practical

Union-Find Experiments (Code-Expert)

5. In-Class-Exercise (theoretical)

Finding a shortest path is easy (BFS, Dijkstra, Bellman-Ford). Finding a long path is incredibly hard! For directed graphs, nobody knows how to even efficiently find paths of length $\gg \log^2 n$.

Finding a shortest path is easy (BFS, Dijkstra, Bellman-Ford). Finding a long path is incredibly hard! For directed graphs, nobody knows how to even efficiently find paths of length $\gg \log^2 n$.

Exercise:

You are given a directed, **acyclic** graph (DAG) G = (V, E).

Design an $\mathcal{O}(|V| + |E|)$ -time algorithm to find the longest path.

Finding a shortest path is easy (BFS, Dijkstra, Bellman-Ford). Finding a long path is incredibly hard! For directed graphs, nobody knows how to even efficiently find paths of length $\gg \log^2 n$.

Exercise:

You are given a directed, **acyclic** graph (DAG) G = (V, E). Design an $\mathcal{O}(|V| + |E|)$ -time algorithm to find the longest path. *Hint:* G is acyclic, meaning you can topologically sort G.

Solution:

1. Topological Sorting. Running time: $\mathcal{O}(|V| + |E|)$.

Solution:

- 1. Topological Sorting. Running time: $\mathcal{O}(|V| + |E|)$.
- 2. Compute for each node all incoming edges: $\mathcal{O}(|V| + |E|)$.

Solution:

- 1. Topological Sorting. Running time: $\mathcal{O}(|V| + |E|)$.
- 2. Compute for each node all incoming edges: $\mathcal{O}(|V| + |E|)$.
- 3. Visit each node v in topological order and consider all incoming edges: O(|V| + |E|).

Solution:

- 1. Topological Sorting. Running time: $\mathcal{O}(|V| + |E|)$.
- 2. Compute for each node all incoming edges: $\mathcal{O}(|V| + |E|)$.
- 3. Visit each node v in topological order and consider all incoming edges: $\mathcal{O}(|V| + |E|)$. $dist[v] = \begin{cases} 0 & \text{no incoming edges,} \\ \max_{(u,v)\in E} \{dist[u] + c(u,v)\} & \text{otherwise.} \end{cases}$

Solution:

- 1. Topological Sorting. Running time: $\mathcal{O}(|V| + |E|)$.
- 2. Compute for each node all incoming edges: $\mathcal{O}(|V| + |E|)$.
- 3. Visit each node v in topological order and consider all incoming edges: $\mathcal{O}(|V| + |E|)$. $dist[v] = \begin{cases} 0 & \text{no incoming edges,} \\ \max_{(u,v)\in E} \{dist[u] + c(u,v)\} & \text{otherwise.} \end{cases}$

Store predècessor!