
Exercise Session 11
Data Structures and Algorithms, D-MATH, ETH Zurich

Program Today

Feedback of last exercise

Repetition of Lecture
All Pairs Shortest Paths
Kruskal

Hints for current tasks
Closeness Centrality
TSP

In-Class-Exercise practical

In-Class-Exercise (theoretical)

1

1. Feedback of last exercise

2

Depth-�rst-search and Breadth-�rst-search

A

B

C D

E

FG

H

Starting at A
DFS: A, B, C, D, E, F, H, G
BFS: A, B, F, C, H, D, G, E

There is no starting vertex where the DFS ordering equals the BFS ordering.

3

Depth-�rst-search and Breadth-�rst-search

A

B

C D

E

FG

H

Starting at A
DFS: A, B, C, D, E, F, H, G
BFS: A, B, F, C, H, D, G, E
There is no starting vertex where the DFS ordering equals the BFS ordering.

3

Depth-�rst-search and Breadth-�rst-search

Star: DFS ordering equals BFS ordering

A

B

C D

E

Starting at A
DFS: A, B, C, D, E
BFS: A, B, C, D, E

Starting at C
DFS: C, A, B, D, E
BFS: C, A, B, D, E

4

Depth-�rst-search and Breadth-�rst-search

Star: DFS ordering equals BFS ordering

A

B

C D

E

Starting at A
DFS: A, B, C, D, E
BFS: A, B, C, D, E

Starting at C
DFS: C, A, B, D, E
BFS: C, A, B, D, E

4

Topological Sorting

A B

C

D

E

Graph with cycles

Two minimal cycles sharing an
edge
Remove edge =⇒ cycle-free
Topological Sorting by
“removing” elements with
in-degree 0

5

Topological Sorting

A B

C

D

E

Graph with cycles
Two minimal cycles sharing an
edge

Remove edge =⇒ cycle-free
Topological Sorting by
“removing” elements with
in-degree 0

5

Topological Sorting

A B

C

D

E

Graph with cycles
Two minimal cycles sharing an
edge
Remove edge =⇒ cycle-free

Topological Sorting by
“removing” elements with
in-degree 0

5

Topological Sorting

A B

C

D

E

Graph with cycles
Two minimal cycles sharing an
edge
Remove edge =⇒ cycle-free
Topological Sorting by
“removing” elements with
in-degree 0

5

Topological Sorting

A B

C

D

E

A Graph with cycles
Two minimal cycles sharing an
edge
Remove edge =⇒ cycle-free
Topological Sorting by
“removing” elements with
in-degree 0

5

Topological Sorting

A B

C

D

E

A B Graph with cycles
Two minimal cycles sharing an
edge
Remove edge =⇒ cycle-free
Topological Sorting by
“removing” elements with
in-degree 0

5

Topological Sorting

A B

C

D

E

A B

C

Graph with cycles
Two minimal cycles sharing an
edge
Remove edge =⇒ cycle-free
Topological Sorting by
“removing” elements with
in-degree 0

5

Topological Sorting

A B

C

D

E

A B

C E

Graph with cycles
Two minimal cycles sharing an
edge
Remove edge =⇒ cycle-free
Topological Sorting by
“removing” elements with
in-degree 0

5

2. Repetition of Lecture

6

DP Algorithm Floyd-Warshall(G)

Input: Acyclic Graph G = (V, E, c)
Output: Minimal weights of all paths d
d0 ← c
for k ← 1 to |V | do

for i← 1 to |V | do
for j ← 1 to |V | do

dk(vi, vj) = min{dk−1(vi, vj), dk−1(vi, vk) + dk−1(vk, vj)}

Runtime: Θ(|V |3)
Remark: Algorithm can be executed with a single matrix d (in place).

7

Comparison of the approaches

Algorithm Runtime
Dijkstra (Heap) cv ≥ 0 1:n O(|E| log |V |)
Dijkstra (Fibonacci-Heap) cv ≥ 0 1:n O(|E|+ |V | log |V |) ∗

Bellman-Ford 1:n O(|E| · |V |)
Floyd-Warshall n:n Θ(|V |3)
Johnson n:n O(|V | · |E| · log |V |)
Johnson (Fibonacci-Heap) n:n O(|V |2 log |V |+ |V | · |E|) ∗

* amortized
Johnson (not explained this year) is better than Floyd-Warshall only for sparse graphs
(|E| ≈ Θ(|V |)).

8

Minimum Spanning Trees

s

t

u

v

w

x

1

1

2

4
3

2

2
6

t

s u v w

x

1

1

23 2

9

Minimum Spanning Trees

s

t

u

v

w

x

1

1

2

4
3

2

2
6

t

s u v w

x

1

1

23 2

9

Minimum Spanning Trees

s

t

u

v

w

x

1

1

2

4
3

2

2
6

t

s u v w

x

1

1

23 2

9

Minimum Spanning Trees

s

t

u

v

w

x

1

1

2

4
3

2

2
6

t

s u v w

x

1

1

23 2

(Solution is not unique.)

9

MakeSet, Union, and Find

Make-Set(i): create a new set represented by i.
Find(e): name of the set i that contains e .
Union(i, j): union of the sets with names i and j.

In MST-Kruskal:
Make-Set(i): New tree with i as root.
Find(e): Find root of e

Union(i, j): Union of the trees i and j.

10

MakeSet, Union, and Find

Make-Set(i): create a new set represented by i.
Find(e): name of the set i that contains e .
Union(i, j): union of the sets with names i and j.

In MST-Kruskal:
Make-Set(i): New tree with i as root.
Find(e): Find root of e

Union(i, j): Union of the trees i and j.

10

Algorithm MST-Kruskal(G)

Input: Weighted Graph G = (V, E, c)
Output: Minimum spanning tree with edges A.

Sort edges by weight c(e1) ≤ ... ≤ c(em)
A← ∅
for k = 1 to |V | do

MakeSet(k)

for k = 1 to m do
(u, v)← ek

if Find(u) 6= Find(v) then
Union(Find(u),Find(v))
A← A ∪ ek

return (V, A, c)

11

Representation as array

s

t

u

v

w

x

1

1

2

4
3

2

2
6

Index s t w v u x

t

s u v w

x

1

1

23 2

Index s t u v w x
Parent t t t t t v

12

Di�erent kind of improvement

Link all nodes to the root when Find is called.
Find(i):
j ← i
while (p[i] 6= i) do i← p[i]
while (j 6= i) do

t← j
j ← p[j]
p[t]← i

return i

Cost: amortised nearly constant (inverse of the Ackermann-function).1

1We do not go into details here.
13

Running time of Kruskal’s Algorithm

Sorting of the edges: Θ(|E| log |E|) = Θ(|E| log |V |). 2

Initialisation of the Union-Find data structure Θ(|V |)
|E|× Union(Find(x),Find(y)): O(|E| log |E|) = O(|E| log |V |).

Overal Θ(|E| log |V |).

2because G is connected: |V | ≤ |E| ≤ |V |2
14

3. Hints for current tasks

Closeness Centrality, TSP

15

Closeness Centrality

Given: an adjacency matrix for an undirected graph on n vertices.
Output: the closeness centrality C(v) of every vertex v.

C(v) =
∑

u∈V \{v}
d(v, u)

Intuition: If many connected vertices are close to v, then C(v) is small.
“How central is the vertex in its connected component?”

16

Closeness Centrality

Given: an adjacency matrix for an undirected graph on n vertices.
Output: the closeness centrality C(v) of every vertex v.

C(v) =
∑

u∈V \{v}
d(v, u)

Intuition: If many connected vertices are close to v, then C(v) is small.
“How central is the vertex in its connected component?”

16

All Pairs Shortest Paths

We require d(u, v) for all vertex pairs (u, v).
=⇒ compute all shortest paths using Floyd-Warshall. (APSH.h)

template<typename Matrix>
void allPairsShortestPaths(unsigned n, Matrix& m)
{

// your code here
}

Simply overwrite m with the distance values.
Attention: initially 0 means “no edge”.
Undirected graph: m[i][j] == m[j][i]

17

Closeness Centrality

Centrality.h

void printCentrality(unsigned n, vector<vector<unsigned>>
adjacencies, vector<string> names)

{
for(unsigned i = 0; i < n; ++i)
{

cout << names[i] << ": ";
unsigned centrality = 0;
// TODO: compute centrality of vertex i here
cout << centrality << endl;

}
}

18

Closeness Centrality: Input Data

A graph that stems from collaborations on scienti�c papers.
The vertices of the graph are the co-authors of the mathematician
Paul Erdős.
There is an edge between them if the authors have jointly published a
paper.
Source: https://oakland.edu/enp/thedata/

19

https://oakland.edu/enp/thedata/

Closeness Centrality: Output

vertices: 511
ABBOTT, HARVEY LESLIE : 1625
ACZEL, JANOS D. : 1681
AGOH, TAKASHI : 2132
AHARONI, RON : 1578
AIGNER, MARTIN S. : 1589
AJTAI, MIKLOS : 1492
ALAOGLU, LEONIDAS* : 0
ALAVI, YOUSEF : 1561
...

Where does the 0 come from?

20

Travelling Salesperson Problem

Problem
Given a map and list of cities, what is the shortest possible route that
visits each city once and returns at the original city?

Mathematical model
On an undirected, weighted graph G, which cycle containing all of G’s
vertices has the lowest weight sum?

21

Travelling Salesperson Problem

22

Travelling Salesperson Problem

The problem has no known polynomial-time solution.
Many heuristic algorithms exists. They do not always return the optimal
solution.

23

Travelling Salesperson Problem

The heuristic algorithm that you are asked to implement on CodeExpert
(The Travelling Student) on CodeExpert uses an MST:

1. Compute the minimum spanning tree M
2. Make a depth �rst search on M

The algorithm is 2-approximate, meaning that the solution it generates
has at most twice the cost of the optimal solution.
The algorithm assumes a complete graph G = (V, E, c)that satis�es the
triangle inequality: c(v, w) ≤ c(v, x) + c(x, w) ∀ v, w, x ∈ V

24

4. In-Class-Exercise practical

Union-Find Experiments (Code-Expert)

25

5. In-Class-Exercise (theoretical)

26

In-Class-Exercises: Longest Path in DAGs

Finding a shortest path is easy (BFS, Dijkstra, Bellman-Ford). Finding a long path is
incredibly hard! For directed graphs, nobody knows how to even e�ciently �nd
paths of length� log2 n.

Exercise:
You are given a directed, acyclic graph (DAG) G = (V, E).
Design an O(|V |+ |E|)-time algorithm to �nd the longest path.
Hint: G is acyclic, meaning you can topologically sort G.

27

In-Class-Exercises: Longest Path in DAGs

Finding a shortest path is easy (BFS, Dijkstra, Bellman-Ford). Finding a long path is
incredibly hard! For directed graphs, nobody knows how to even e�ciently �nd
paths of length� log2 n.
Exercise:
You are given a directed, acyclic graph (DAG) G = (V, E).
Design an O(|V |+ |E|)-time algorithm to �nd the longest path.

Hint: G is acyclic, meaning you can topologically sort G.

27

In-Class-Exercises: Longest Path in DAGs

Finding a shortest path is easy (BFS, Dijkstra, Bellman-Ford). Finding a long path is
incredibly hard! For directed graphs, nobody knows how to even e�ciently �nd
paths of length� log2 n.
Exercise:
You are given a directed, acyclic graph (DAG) G = (V, E).
Design an O(|V |+ |E|)-time algorithm to �nd the longest path.
Hint: G is acyclic, meaning you can topologically sort G.

27

In-Class-Exercises: Longest Path in DAGs

Solution:
1. Topological Sorting. Running time: O(|V |+ |E|).

2. Compute for each node all incoming edges: O(|V |+ |E|).
3. Visit each node v in topological order and consider all incoming
edges: O(|V |+ |E|).

dist[v] =


0 no incoming edges,
max

(u,v)∈E
{dist[u] + c(u, v)} otherwise.

Store predecessor!

28

In-Class-Exercises: Longest Path in DAGs

Solution:
1. Topological Sorting. Running time: O(|V |+ |E|).
2. Compute for each node all incoming edges: O(|V |+ |E|).

3. Visit each node v in topological order and consider all incoming
edges: O(|V |+ |E|).

dist[v] =


0 no incoming edges,
max

(u,v)∈E
{dist[u] + c(u, v)} otherwise.

Store predecessor!

28

In-Class-Exercises: Longest Path in DAGs

Solution:
1. Topological Sorting. Running time: O(|V |+ |E|).
2. Compute for each node all incoming edges: O(|V |+ |E|).
3. Visit each node v in topological order and consider all incoming
edges: O(|V |+ |E|).

dist[v] =


0 no incoming edges,
max

(u,v)∈E
{dist[u] + c(u, v)} otherwise.

Store predecessor!

28

In-Class-Exercises: Longest Path in DAGs

Solution:
1. Topological Sorting. Running time: O(|V |+ |E|).
2. Compute for each node all incoming edges: O(|V |+ |E|).
3. Visit each node v in topological order and consider all incoming
edges: O(|V |+ |E|).

dist[v] =


0 no incoming edges,
max

(u,v)∈E
{dist[u] + c(u, v)} otherwise.

Store predecessor!

28

In-Class-Exercises: Longest Path in DAGs

Solution:
1. Topological Sorting. Running time: O(|V |+ |E|).
2. Compute for each node all incoming edges: O(|V |+ |E|).
3. Visit each node v in topological order and consider all incoming
edges: O(|V |+ |E|).

dist[v] =


0 no incoming edges,
max

(u,v)∈E
{dist[u] + c(u, v)} otherwise.

Store predecessor!

28

	Feedback of last exercise
	Repetition of Lecture
	All Pairs Shortest Paths
	Kruskal

	Hints for current tasks
	Closeness Centrality
	TSP

	In-Class-Exercise practical
	In-Class-Exercise (theoretical)

