
Exercise Session 9
Data Structures and Algorithms, D-MATH, ETH Zurich

Program of today

Feedback of last exercise

Repetition Theory
Activity Selection
Hu�man Coding
Recursive Problem-Solving Strategies

In-Class-Exercise (practical)

Hints for current tasks

1

1. Feedback of last exercise

2

2. Repetition Theory

3

Greedy Choice

A problem with a recursive solution can be solved with a greedy algorithm
if it has the following properties:
The problem has optimal substructure: the solution of a problem can
be constructed with a combination of solutions of sub-problems.
The problem has the greedy choice property: The solution to a problem
can be constructed, by using a local property that does not depend on
the solution of the sub-problems.

4

Activity Selection

Coordination of activities that use a common resource exclusively.
Activities S = {a1, a2, . . . , an} with start- and �nishing times
0 ≤ si ≤ fi <∞, increasingly sorted by �nishing times.

a1 = (1, 4)
a2 = (3, 5)

a3 = (0, 6)
a4 = (5, 7)

a5 = (3, 9)
a6 = (5, 9)

a7 = (6, 9)
a8 = (8, 11)
a9 = (8, 12)

a10 = (2, 14)
a11 = (12, 16)

Activity Selection Problem: Find a maximal subset (maxium number of
elements) of compatible (non-intersecting) activities.

5

Dynamic Programming Approach?

Let Sij = {ak : fi ≤ sk ∧ fk ≤ sj}.

Let Aij be a maximal subset of compatible activities from Sij .
Let ak ∈ Aij and Aik = Sik ∩Aij , Aki = Skj ∩Aij , thus Aij = Aik + {ak}+ Akj .

Aik ak Akj

fi
sj

Straightforward: Aik and Akj must be maximal, otherwise
Aij = Aik + {ak}+ Akj would not be maximal.

6

Dynamic Programming Approach?

Let Sij = {ak : fi ≤ sk ∧ fk ≤ sj}.
Let Aij be a maximal subset of compatible activities from Sij .

Let ak ∈ Aij and Aik = Sik ∩Aij , Aki = Skj ∩Aij , thus Aij = Aik + {ak}+ Akj .

Aik ak Akj

fi
sj

Straightforward: Aik and Akj must be maximal, otherwise
Aij = Aik + {ak}+ Akj would not be maximal.

6

Dynamic Programming Approach?

Let Sij = {ak : fi ≤ sk ∧ fk ≤ sj}.
Let Aij be a maximal subset of compatible activities from Sij .
Let ak ∈ Aij and Aik = Sik ∩Aij , Aki = Skj ∩Aij , thus Aij = Aik + {ak}+ Akj .

Aik ak Akj

fi
sj

Straightforward: Aik and Akj must be maximal, otherwise
Aij = Aik + {ak}+ Akj would not be maximal.

6

Dynamic Programming Approach?

Let Sij = {ak : fi ≤ sk ∧ fk ≤ sj}.
Let Aij be a maximal subset of compatible activities from Sij .
Let ak ∈ Aij and Aik = Sik ∩Aij , Aki = Skj ∩Aij , thus Aij = Aik + {ak}+ Akj .

Aik ak Akj

fi
sj

Straightforward: Aik and Akj must be maximal, otherwise
Aij = Aik + {ak}+ Akj would not be maximal.

6

Dynamic Programming Approach?

Let cij = |Aij|.
Then the following recursion holds

cij =

0 falls Sij = ∅,
maxak∈Sij

{cik + ckj + 1} falls Sij 6= ∅.

⇒ Dynamic programming.

But there is a simpler alternative.

7

Dynamic Programming Approach?

Let cij = |Aij|.
Then the following recursion holds

cij =

0 falls Sij = ∅,
maxak∈Sij

{cik + ckj + 1} falls Sij 6= ∅.

⇒ Dynamic programming.

But there is a simpler alternative.

7

Greedy

Intuition: choose the activity that provides the earliest end time (a1). That
leaves maximal space for other activities.

Remaining problem: activities that start after a1 ends. (There are no
activites that can end before a1 starts.)

8

Greedy

Intuition: choose the activity that provides the earliest end time (a1). That
leaves maximal space for other activities.
Remaining problem: activities that start after a1 ends. (There are no
activites that can end before a1 starts.)

8

Greedy

Intuition: choose the activity that provides the earliest end time (a1). That
leaves maximal space for other activities.
Remaining problem: activities that start after a1 ends. (There are no
activites that can end before a1 starts.)

8

Greedy

Theorem 1
Given: The set of subproblem Sk, and an activity am from Sk with the ear-
liest end time. Then am is contained in a maximal subset of compatible
activities from Sk.

Let Ak be a maximal subset with compatible activities from Sk , and aj be an activity from
Ak with the earliest end time. If aj = am ⇒ done. If aj 6= am, then consider
A′

k = Ak − {aj} ∪ {am}. A′
k consists of compatible activities and is also maximal because

|A′
k| = |Ak|.

�

9

Algorithm RecursiveActivitySelect(s, f, k, n)
Input: Sequence of start and end points (si, fi), 1 ≤ i ≤ n, si < fi, fi ≤ fi+1

for all i. 1 ≤ k ≤ n
Output: Set of all compatible activitivies.

m← k + 1
while m ≤ n and sm ≤ fk do

m← m + 1
if m ≤ n then

return {am} ∪ RecursiveActivitySelect(s, f, m, n)
else

return ∅

10

Algorithm IterativeActivitySelect(s, f, n)

Input: Sequence of start and end points (si, fi), 1 ≤ i ≤ n, si < fi, fi ≤ fi+1
for all i.

Output: Maximal set of compatible activities.

A← {a1}
k ← 1
for m← 2 to n do

if sm ≥ fk then
A← A ∪ {am}
k ← m

return A

Runtime of both algorithms:

Θ(n)

11

Algorithm IterativeActivitySelect(s, f, n)

Input: Sequence of start and end points (si, fi), 1 ≤ i ≤ n, si < fi, fi ≤ fi+1
for all i.

Output: Maximal set of compatible activities.

A← {a1}
k ← 1
for m← 2 to n do

if sm ≥ fk then
A← A ∪ {am}
k ← m

return A

Runtime of both algorithms: Θ(n)

11

Hu�man’s Idea

Tree construction bottom up
Start with the set C of code
words

Replace iteriatively the two
nodes with smallest
frequency by a new parent
node.

a:45 b:13 c:12 d:16 e:9 f:5

1425
30

55

100

12

Hu�man’s Idea

Tree construction bottom up
Start with the set C of code
words
Replace iteriatively the two
nodes with smallest
frequency by a new parent
node. a:45 b:13 c:12 d:16 e:9 f:5

14

25
30

55

100

12

Hu�man’s Idea

Tree construction bottom up
Start with the set C of code
words
Replace iteriatively the two
nodes with smallest
frequency by a new parent
node. a:45 b:13 c:12 d:16 e:9 f:5

1425

30

55

100

12

Hu�man’s Idea

Tree construction bottom up
Start with the set C of code
words
Replace iteriatively the two
nodes with smallest
frequency by a new parent
node. a:45 b:13 c:12 d:16 e:9 f:5

1425
30

55

100

12

Hu�man’s Idea

Tree construction bottom up
Start with the set C of code
words
Replace iteriatively the two
nodes with smallest
frequency by a new parent
node. a:45 b:13 c:12 d:16 e:9 f:5

1425
30

55

100

12

Hu�man’s Idea

Tree construction bottom up
Start with the set C of code
words
Replace iteriatively the two
nodes with smallest
frequency by a new parent
node. a:45 b:13 c:12 d:16 e:9 f:5

1425
30

55

100

12

Algorithm Hu�man(C)

Input: code words c ∈ C
Output: Root of an optimal code tree

n← |C|
Q← C
for i = 1 to n− 1 do

allocate a new node z
z.left← ExtractMin(Q) // extract word with minimal frequency.
z.right← ExtractMin(Q)
z.freq← z.left.freq + z.right.freq
Insert(Q, z)

return ExtractMin(Q)

13

Recursive Problem-Solving Strategies

Brute Force
Enumeration

Backtracking Divide and
Conquer

Dynamic
Programming

Greedy

Recursive Enu-
merability

Constraint Satis-
faction, Partial
Validation

Optimal
Substructure

Optimal
Substructure,
Overlapping
Subproblems

Optimal
Substructure,
Greedy Choice
Property

DFS, BFS, all Per-
mutations, Tree
Traversal

n-Queen,
Sudoku,
m-Coloring, SAT-
Solving, naive
TSP

Binary Search,
Mergesort,
Quicksort,
Hanoi Towers,
FFT

Bellman Ford,
Warshall, Rod-
Cutting, LAS,
Editing Dis-
tance, Knapsack
Problem DP

Dijkstra,
Kruskal,
Hu�mann
Coding

14

Recursive Problem-Solving Strategies

Brute Force
Enumeration

Backtracking Divide and
Conquer

Dynamic
Programming

Greedy

Recursive Enu-
merability

Constraint Satis-
faction, Partial
Validation

Optimal
Substructure

Optimal
Substructure,
Overlapping
Subproblems

Optimal
Substructure,
Greedy Choice
Property

DFS, BFS, all Per-
mutations, Tree
Traversal

n-Queen,
Sudoku,
m-Coloring, SAT-
Solving, naive
TSP

Binary Search,
Mergesort,
Quicksort,
Hanoi Towers,
FFT

Bellman Ford,
Warshall, Rod-
Cutting, LAS,
Editing Dis-
tance, Knapsack
Problem DP

Dijkstra,
Kruskal,
Hu�mann
Coding

14

Recursive Problem-Solving Strategies

Brute Force
Enumeration

Backtracking Divide and
Conquer

Dynamic
Programming

Greedy

Recursive Enu-
merability

Constraint Satis-
faction, Partial
Validation

Optimal
Substructure

Optimal
Substructure,
Overlapping
Subproblems

Optimal
Substructure,
Greedy Choice
Property

DFS, BFS, all Per-
mutations, Tree
Traversal

n-Queen,
Sudoku,
m-Coloring, SAT-
Solving, naive
TSP

Binary Search,
Mergesort,
Quicksort,
Hanoi Towers,
FFT

Bellman Ford,
Warshall, Rod-
Cutting, LAS,
Editing Dis-
tance, Knapsack
Problem DP

Dijkstra,
Kruskal,
Hu�mann
Coding

14

3. In-Class-Exercise (practical)

Complement the DP implementation to compute an
optimal search tree. −→ CodeExpert

15

4. Hints for current tasks

Hu�man Coding

16

Hu�man Code:

Use std::map (#include <map>)
std::map<std::string,int> observations;
// simple access to elements
++observations["cat"];
++observations["mouse"];
++observations["mouse"];

// a map is a collection of std::pair
// show all entries
for (auto x:observations){

std::cout << "observations of " << x.first << ":" << x.second << std::endl;
}

17

Hu�man Code:
Use std::priority_queue (#include <queue>)
struct MyClass {

int x;
MyClass(int X): x{X} {};

};

struct compare{
bool operator() (const MyClass& a, const MyClass& b){

return a.x < b.x;
}

};
//...
std::priority_queue<MyClass, std::vector<MyClass>, compare> q;
q.push(MyClass(10));

18

Hu�man Code:
Use Smart Pointers std::shared_ptr (#include <memory>)
struct List {

int value;
std::shared_ptr<List> next;
List(std::shared_ptr<List> n, int v): value{v}, next{n} {};

};
...
// automatic memory management, we do not need to care
std::shared_ptr<List> l = std::make_shared<List>(nullptr, 10);
l = std::make_shared<List>(l, 20);
while (l != nullptr){ // output: 20 10

std::cout << l->value << std::endl;
l = l->next;

}
19

Hu�man Node

using SharedNode=std::shared_ptr<Node>;
struct Node{

char value;
int frequency;
SharedNode left;
SharedNode right;

// constructor for leafs
Node(char v, int f): value{v}, frequency{f},

left{nullptr}, right{nullptr} {}
// constructor for inner nodes
Node(SharedNode l, SharedNode r): value{0},

frequency{l->frequency + r->frequency}, left{l}, right{r} {};
};

20

	Feedback of last exercise
	Repetition Theory
	Activity Selection
	Huffman Coding
	Recursive Problem-Solving Strategies

	In-Class-Exercise (practical)
	Hints for current tasks

