

Exercise Session 9

Data Structures and Algorithms, D-MATH, ETH Zurich

Program of today

Feedback of last exercise
Repetition Theory
Activity Selection
Huffman Coding
Recursive Problem-Solving Strategies
In-Class-Exercise (practical)
Hints for current tasks

1. Feedback of last exercise

2. Repetition Theory

Greedy Choice

A problem with a recursive solution can be solved with a greedy algorithm if it has the following properties:
■ The problem has optimal substructure: the solution of a problem can be constructed with a combination of solutions of sub-problems.

- The problem has the greedy choice property: The solution to a problem can be constructed, by using a local property that does not depend on the solution of the sub-problems.

Activity Selection

Coordination of activities that use a common resource exclusively. Activities $S=\left\{a_{1}, a_{2}, \ldots, a_{n}\right\}$ with start- and finishing times $0 \leq s_{i} \leq f_{i}<\infty$, increasingly sorted by finishing times.

$$
\begin{aligned}
& a_{1}=(1,4) \\
& a_{3}=(0,6) \quad a_{2}=(3,5) \\
& a_{5}=(3,9) \\
& a_{4}=(5,7) \\
& a_{6}=(5,9) \\
& a_{7}=(6,9)
\end{aligned}
$$

Activity Selection Problem: Find a maximal subset (maxium number of elements) of compatible (non-intersecting) activities.

Dynamic Programming Approach?

$$
\text { Let } S_{i j}=\left\{a_{k}: f_{i} \leq s_{k} \wedge f_{k} \leq s_{j}\right\} .
$$

Dynamic Programming Approach?

Let $S_{i j}=\left\{a_{k}: f_{i} \leq s_{k} \wedge f_{k} \leq s_{j}\right\}$.
Let $A_{i j}$ be a maximal subset of compatible activities from $S_{i j}$.

Dynamic Programming Approach?

Let $S_{i j}=\left\{a_{k}: f_{i} \leq s_{k} \wedge f_{k} \leq s_{j}\right\}$.
Let $A_{i j}$ be a maximal subset of compatible activities from $S_{i j}$.
Let $a_{k} \in A_{i j}$ and $A_{i k}=S_{i k} \cap A_{i j}, A_{k i}=S_{k j} \cap A_{i j}$, thus $A_{i j}=A_{i k}+\left\{a_{k}\right\}+A_{k j}$.

$A_{i k}$	a_{k}	$A_{k j}$
f_{i}		

Dynamic Programming Approach?

Let $S_{i j}=\left\{a_{k}: f_{i} \leq s_{k} \wedge f_{k} \leq s_{j}\right\}$.
Let $A_{i j}$ be a maximal subset of compatible activities from $S_{i j}$.
Let $a_{k} \in A_{i j}$ and $A_{i k}=S_{i k} \cap A_{i j}, A_{k i}=S_{k j} \cap A_{i j}$, thus $A_{i j}=A_{i k}+\left\{a_{k}\right\}+A_{k j}$.

Straightforward: $A_{i k}$ and $A_{k j}$ must be maximal, otherwise $A_{i j}=A_{i k}+\left\{a_{k}\right\}+A_{k j}$ would not be maximal.

Dynamic Programming Approach?

Let $c_{i j}=\left|A_{i j}\right|$.
Then the following recursion holds

$$
c_{i j}= \begin{cases}0 & \text { falls } S_{i j}=\emptyset, \\ \max _{a_{k} \in S_{i j}}\left\{c_{i k}+c_{k j}+1\right\} & \text { falls } S_{i j} \neq \emptyset .\end{cases}
$$

\Rightarrow Dynamic programming.

Dynamic Programming Approach?

Let $c_{i j}=\left|A_{i j}\right|$.
Then the following recursion holds

$$
c_{i j}= \begin{cases}0 & \text { falls } S_{i j}=\emptyset, \\ \max _{a_{k} \in S_{i j}}\left\{c_{i k}+c_{k j}+1\right\} & \text { falls } S_{i j} \neq \emptyset .\end{cases}
$$

\Rightarrow Dynamic programming.

But there is a simpler alternative.

Greedy

Intuition: choose the activity that provides the earliest end time (a_{1}). That leaves maximal space for other activities.

Greedy

Intuition: choose the activity that provides the earliest end time (a_{1}). That leaves maximal space for other activities.
Remaining problem: activities that start after a_{1} ends. (There are no activites that can end before a_{1} starts.)

Greedy

Intuition: choose the activity that provides the earliest end time (a_{1}). That leaves maximal space for other activities.
Remaining problem: activities that start after a_{1} ends. (There are no activites that can end before a_{1} starts.)

Greedy

Theorem 1

Given: The set of subproblem S_{k}, and an activity a_{m} from S_{k} with the earliest end time. Then a_{m} is contained in a maximal subset of compatible activities from S_{k}.

Let A_{k} be a maximal subset with compatible activities from S_{k}, and a_{j} be an activity from A_{k} with the earliest end time. If $a_{j}=a_{m} \Rightarrow$ done. If $a_{j} \neq a_{m}$, then consider
$A_{k}^{\prime}=A_{k}-\left\{a_{j}\right\} \cup\left\{a_{m}\right\} . A_{k}^{\prime}$ consists of compatible activities and is also maximal because $\left|A_{k}^{\prime}\right|=\left|A_{k}\right|$.

Algorithm RecursiveActivitySelect(s, f, k, n)

Input: Sequence of start and end points $\left(s_{i}, f_{i}\right), 1 \leq i \leq n, s_{i}<f_{i}, f_{i} \leq f_{i+1}$ for all $i .1 \leq k \leq n$
Output: Set of all compatible activitivies.

```
m\leftarrowk+1
while m}\leqn\mathrm{ and }\mp@subsup{s}{m}{}\leq\mp@subsup{f}{k}{}\mathrm{ do
    m\leftarrowm+1
if m}\leqn\mathrm{ then
    return {am}}\cup\mathrm{ RecursiveActivitySelect(s,f,m,n)
else
    return \emptyset
```


Algorithm IterativeActivitySelect(s, f, n)

Input: Sequence of start and end points $\left(s_{i}, f_{i}\right), 1 \leq i \leq n, s_{i}<f_{i}, f_{i} \leq f_{i+1}$ for all i.
Output: Maximal set of compatible activities.

$$
\begin{aligned}
& A \leftarrow\left\{a_{1}\right\} \\
& k \leftarrow 1 \\
& \text { for } m \leftarrow 2 \text { to } n \text { do } \\
& \qquad \begin{array}{r}
\text { if } s_{m} \geq f_{k} \text { then } \\
A \leftarrow A \cup\left\{a_{m}\right\} \\
k \leftarrow m
\end{array}
\end{aligned}
$$

return A
Runtime of both algorithms:

Algorithm IterativeActivitySelect(s, f, n)

Input: Sequence of start and end points $\left(s_{i}, f_{i}\right), 1 \leq i \leq n, s_{i}<f_{i}, f_{i} \leq f_{i+1}$ for all i.
Output: Maximal set of compatible activities.

$$
\begin{aligned}
& A \leftarrow\left\{a_{1}\right\} \\
& k \leftarrow 1 \\
& \text { for } m \leftarrow 2 \text { to } n \text { do } \\
& \text { if } s_{m} \geq f_{k} \text { then } \\
& \begin{array}{l}
A \leftarrow A \cup\left\{a_{m}\right\} \\
k \leftarrow m
\end{array}
\end{aligned}
$$

return A
Runtime of both algorithms: $\Theta(n)$

Huffman's Idea

Tree construction bottom up

- Start with the set C of code words

$$
\begin{array}{llllll}
\text { a:45 } & \text { b:13 } & \mathrm{c}: 12 & \mathrm{~d}: 16 & \mathrm{e}: 9 & \mathrm{f}: 5
\end{array}
$$

Huffman's Idea

Tree construction bottom up

- Start with the set C of code words
■ Replace iteriatively the two nodes with smallest frequency by a new parent node.

Huffman's Idea

Tree construction bottom up

- Start with the set C of code words
■ Replace iteriatively the two nodes with smallest frequency by a new parent node.

Huffman's Idea

Tree construction bottom up

- Start with the set C of code words
- Replace iteriatively the two nodes with smallest frequency by a new parent node.

Huffman's Idea

Tree construction bottom up

- Start with the set C of code words
- Replace iteriatively the two nodes with smallest frequency by a new parent node.

Huffman's Idea

Tree construction bottom up
■ Start with the set C of code words
■ Replace iteriatively the two nodes with smallest frequency by a new parent node.

Algorithm Huffman(C)

Input: code words $c \in C$
Output: Root of an optimal code tree
$n \leftarrow|C|$
$Q \leftarrow C$
for $i=1$ to $n-1$ do
allocate a new node z
z. left $\leftarrow \operatorname{ExtractMin}(Q)$
z.right $\leftarrow \operatorname{ExtractMin}(Q)$
z.freq $\leftarrow z$.left.freq $+z$.right.freq Insert (Q, z)
return ExtractMin(Q)

Recursive Problem-Solving Strategies

Brute Force Enumeration	Backtracking	Divide and Conquer	Dynamic Programming	Greedy

Recursive Problem-Solving Strategies

| Brute Force |
| :--- | :--- | :--- | :--- | :--- |
| Enumeration |\quad Backtracking \quad| Divide and |
| :--- |
| Conquer |\quad| Dynamic |
| :--- |
| Programming |\quad Greedy | Recursive Enu- |
| :--- |
| Constraint Satis-
 merability |
| faction, Partial
 Validation | | Optimal |
| :--- |
| Substructure |\quad| Optimal |
| :--- |
| Substructure, |
| Overlapping |
| Subproblems |\quad| Optimal |
| :--- |
| Substructure, |
| Greedy Choice |
| Property |

Recursive Problem-Solving Strategies

Brute Force Enumeration	Backtracking	Divide and Conquer	Dynamic Programming	Greedy
Recursive Enumerability	Constraint Satisfaction, Partial Validation	Optimal Substructure	Optimal Substructure, Overlapping Subproblems	Optimal Substructure, Greedy Choice Property
DFS, BFS, all Permutations, Tree Traversal	n-Queen, Sudoku, m-Coloring, SATSolving, naive TSP	Binary Search, Mergesort, Quicksort, Hanoi Towers, FFT	Bellman Ford, Warshall, Rod- Cutting, LAS, Editing Dis- tance, Knapsack Problem DP	Dijkstra, Kruskal, Huffmann Coding

3. In-Class-Exercise (practical)

Complement the DP implementation to compute an optimal search tree. \longrightarrow CodeExpert

4. Hints for current tasks

Huffman Coding

Huffman Code:

```
Use std::map (#include <map>)
std::map<std::string,int> observations;
// simple access to elements
++observations["cat"];
++observations["mouse"];
++observations["mouse"];
// a map is a collection of std::pair
// show all entries
for (auto x:observations){
    std::cout << "observations of " << x.first << ":" << x.second << std::enc
}
```


Huffman Code:

```
Use std::priority_queue (#include <queue>)
struct MyClass {
    int x;
    MyClass(int X): x{X} {};
};
struct compare{
    bool operator() (const MyClass& a, const MyClass& b){
        return a.x < b.x;
    }
};
//..
std::priority_queue<MyClass, std::vector<MyClass>, compare> q;
q.push(MyClass(10));
```


Huffman Code:

```
Use Smart Pointers std::shared_ptr (#include <memory>)
struct List {
    int value;
    std::shared_ptr<List> next;
    List(std::shared_ptr<List> n, int v): value{v}, next{n} {};
};
// automatic memory management, we do not need to care
std::shared_ptr<List> l = std::make_shared<List>(nullptr, 10);
l = std::make_shared<List>(l, 20);
while (l != nullptr){ // output: 20 10
    std::cout << l->value << std::endl;
    l = l->next;
}
```


Huffman Node

```
using SharedNode=std::shared_ptr<Node>;
struct Node{
    char value;
    int frequency;
    SharedNode left;
    SharedNode right;
    // constructor for leafs
    Node(char v, int f): value{v}, frequency{f},
        left{nullptr}, right{nullptr} {}
    // constructor for inner nodes
    Node(SharedNode l, SharedNode r): value{0},
        frequency{l->frequency + r->frequency}, left{l}, right{r} {};
};
```

