EHzürich

Exercise Session 9

Data Structures and Algorithms, D-MATH, ETH Zurich

Program of today

Feedback of last exercise

Repetition Theory Activity Selection Huffman Coding Recursive Problem-Solving Strategies

In-Class-Exercise (practical)

Hints for current tasks

1. Feedback of last exercise

2. Repetition Theory

A problem with a recursive solution can be solved with a **greedy algorithm** if it has the following properties:

- The problem has optimal substructure: the solution of a problem can be constructed with a combination of solutions of sub-problems.
- The problem has the greedy choice property: The solution to a problem can be constructed, by using a local property that does not depend on the solution of the sub-problems.

Activity Selection

Coordination of activities that use a common resource exclusively. Activities $S = \{a_1, a_2, \ldots, a_n\}$ with start- and finishing times $0 \le s_i \le f_i < \infty$, increasingly sorted by finishing times.

Activity Selection Problem: Find a maximal subset (maxium number of elements) of compatible (non-intersecting) activities.

Let
$$S_{ij} = \{a_k : f_i \leq s_k \land f_k \leq s_j\}.$$

Let $S_{ij} = \{a_k : f_i \leq s_k \land f_k \leq s_j\}.$

Let A_{ij} be a maximal subset of compatible activities from S_{ij} .

Let $S_{ij} = \{a_k : f_i \leq s_k \land f_k \leq s_j\}.$

Let A_{ij} be a maximal subset of compatible activities from S_{ij} .

Let $a_k \in A_{ij}$ and $A_{ik} = S_{ik} \cap A_{ij}$, $A_{ki} = S_{kj} \cap A_{ij}$, thus $A_{ij} = A_{ik} + \{a_k\} + A_{kj}$.

Let $S_{ij} = \{a_k : f_i \leq s_k \land f_k \leq s_j\}.$

Let A_{ij} be a maximal subset of compatible activities from S_{ij} .

Let $a_k \in A_{ij}$ and $A_{ik} = S_{ik} \cap A_{ij}$, $A_{ki} = S_{kj} \cap A_{ij}$, thus $A_{ij} = A_{ik} + \{a_k\} + A_{kj}$.

Straightforward: A_{ik} and A_{kj} must be maximal, otherwise $A_{ij} = A_{ik} + \{a_k\} + A_{kj}$ would not be maximal.

Let $c_{ij} = |A_{ij}|$. Then the following recursion holds

$$c_{ij} = \begin{cases} 0 & \text{falls } S_{ij} = \emptyset, \\ \max_{a_k \in S_{ij}} \{ c_{ik} + c_{kj} + 1 \} & \text{falls } S_{ij} \neq \emptyset. \end{cases}$$

 \Rightarrow Dynamic programming.

Let $c_{ij} = |A_{ij}|$. Then the following recursion holds

$$c_{ij} = \begin{cases} 0 & \text{falls } S_{ij} = \emptyset, \\ \max_{a_k \in S_{ij}} \{ c_{ik} + c_{kj} + 1 \} & \text{falls } S_{ij} \neq \emptyset. \end{cases}$$

 \Rightarrow Dynamic programming.

But there is a simpler alternative.

Intuition: choose the activity that provides the earliest end time (a_1) . That leaves maximal space for other activities.

Intuition: choose the activity that provides the earliest end time (a_1) . That leaves maximal space for other activities.

Remaining problem: activities that start after a_1 ends. (There are no activites that can end before a_1 starts.)

Intuition: choose the activity that provides the earliest end time (a_1) . That leaves maximal space for other activities.

Remaining problem: activities that start after a_1 ends. (There are no activites that can end before a_1 starts.)

Theorem 1

Given: The set of subproblem S_k , and an activity a_m from S_k with the earliest end time. Then a_m is contained in a maximal subset of compatible activities from S_k .

Let A_k be a maximal subset with compatible activities from S_k , and a_j be an activity from A_k with the earliest end time. If $a_j = a_m \Rightarrow$ done. If $a_j \neq a_m$, then consider $A'_k = A_k - \{a_j\} \cup \{a_m\}$. A'_k consists of compatible activities and is also maximal because $|A'_k| = |A_k|$.

Algorithm RecursiveActivitySelect(s, f, k, n)

Input: Sequence of start and end points (s_i, f_i) , $1 \le i \le n$, $s_i < f_i$, $f_i \le f_{i+1}$ for all i. $1 \le k \le n$

Output: Set of all compatible activitivies.

```
\begin{array}{l} m \leftarrow k+1 \\ \textbf{while } m \leq n \text{ and } s_m \leq f_k \text{ do} \\ \begin{tabular}{l} m \leftarrow m+1 \\ \textbf{if } m \leq n \text{ then} \\ \end{tabular} | \textbf{ return } \{a_m\} \cup \texttt{RecursiveActivitySelect}(s, f, m, n) \\ \textbf{else} \\ \begin{tabular}{l} \textbf{return } \emptyset \end{array}
```

Algorithm IterativeActivitySelect(s, f, n)

Input: Sequence of start and end points (s_i, f_i) , $1 \le i \le n$, $s_i < f_i$, $f_i \le f_{i+1}$ for all i.

Output: Maximal set of compatible activities.

return A

Runtime of both algorithms:

Algorithm IterativeActivitySelect(s, f, n)

Input: Sequence of start and end points (s_i, f_i) , $1 \le i \le n$, $s_i < f_i$, $f_i \le f_{i+1}$ for all i.

Output: Maximal set of compatible activities.

return A

Runtime of both algorithms: $\Theta(n)$

Start with the set *C* of code words

- Start with the set *C* of code words
- Replace iteriatively the two nodes with smallest frequency by a new parent node.

- Start with the set *C* of code words
- Replace iteriatively the two nodes with smallest frequency by a new parent node.

- Start with the set *C* of code words
- Replace iteriatively the two nodes with smallest frequency by a new parent node.

- Start with the set *C* of code words
- Replace iteriatively the two nodes with smallest frequency by a new parent node.

- Start with the set *C* of code words
- Replace iteriatively the two nodes with smallest frequency by a new parent node.

Algorithm Huffman(*C*)

```
Input:
          code words c \in C
Output: Root of an optimal code tree
n \leftarrow |C|
Q \leftarrow C
for i = 1 to n - 1 do
    allocate a new node z
    z.left \leftarrow ExtractMin(Q)
    z.right \leftarrow ExtractMin(Q)
    z.freq \leftarrow z.left.freq + z.right.freq
    lnsert(Q, z)
```

return ExtractMin(Q)

// extract word with minimal frequency.

Recursive Problem-Solving Strategies

Brute Force Enumeration	Backtracking	Divide and Conquer	Dynamic Programming	Greedy
Enumeration		Conquer	Programming	

Recursive Problem-Solving Strategies

Brute Force Enumeration	Backtracking	Divide and Conquer	Dynamic Programming	Greedy
Recursive Enu- merability	Constraint Satis- faction, Partial Validation	Optimal Substructure	Optimal Substructure, Overlapping Subproblems	Optimal Substructure, Greedy Choice Property

Recursive Problem-Solving Strategies

Brute Force Enumeration	Backtracking	Divide and Conquer	Dynamic Programming	Greedy
Recursive Enu- merability	Constraint Satis- faction, Partial Validation	Optimal Substructure	Optimal Substructure, Overlapping Subproblems	Optimal Substructure, Greedy Choice Property
DFS, BFS, all Per- mutations, Tree Traversal	n-Queen, Sudoku, m-Coloring, SAT- Solving, naive TSP	Binary Search, Mergesort, Quicksort, Hanoi Towers, FFT	Bellman Ford, Warshall, Rod- Cutting, LAS, Editing Dis- tance, Knapsack Problem DP	Dijkstra, Kruskal, Huffmann Coding

3. In-Class-Exercise (practical)

Complement the DP implementation to compute an optimal search tree. \longrightarrow CodeExpert

4. Hints for current tasks

Huffman Coding

Huffman Code:

```
Use std::map (#include <map>)
```

```
std::map<std::string,int> observations;
// simple access to elements
++observations["cat"];
++observations["mouse"];
++observations["mouse"];
```

```
// a map is a collection of std::pair
// show all entries
for (auto x:observations){
   std::cout << "observations of " << x.first << ":" << x.second << std::end
}</pre>
```

Huffman Code:

```
Use std::priority_queue (#include <queue>)
struct MyClass {
   int x:
   MyClass(int X): x{X} {};
};
struct compare{
   bool operator() (const MyClass& a, const MyClass& b){
       return a.x < b.x:
   }
}:
//...
std::priority_queue<MyClass, std::vector<MyClass>, compare> q;
q.push(MyClass(10));
```

Huffman Code:

Use Smart Pointers std::shared_ptr (#include <memory>)

```
struct List {
    int value;
    std::shared_ptr<List> next;
    List(std::shared_ptr<List> n, int v): value{v}, next{n} {};
};
```

```
// automatic memory management, we do not need to care
std::shared_ptr<List> l = std::make_shared<List>(nullptr, 10);
l = std::make_shared<List>(l, 20);
while (l != nullptr){ // output: 20 10
std::cout << l->value << std::endl;
l = l->next;
}
```

Huffman Node

```
using SharedNode=std::shared_ptr<Node>;
struct Node{
    char value;
    int frequency;
    SharedNode left;
    SharedNode right;
    // constructor for leafs
    Node(char v, int f): value{v}, frequency{f},
    left[mulletm] fl
```

Node(char v, int i): value(v, irequency(i), left{nullptr}, right{nullptr} {} // constructor for inner nodes Node(SharedNode 1, SharedNode r): value{0}, frequency{l->frequency + r->frequency}, left{l}, right{r} {};