

Exercise Session 7

Data Structures and Algorithms, D-MATH, ETH Zurich

Program of today

Feedback of last exercise(s)
Repetition theory
Quadtrees
Dynamic Programming
In-Class Exercises
Hints for the Upcoming Exercises

1. Feedback of last exercise(s)

AVL insertion

■ Given an AVL tree, is there an order that produces the same tree and does not cause any rotations

AVL insertion

■ Given an AVL tree, is there an order that produces the same tree and does not cause any rotations

AVL insertion - sketch of proof

■ Any sequence that keeps the height order intact is fine

- Proof?

■ By induction over the height of the tree.

AVL insertion - sketch of proof

■ Any sequence that keeps the height order intact is fine
■ Proof?
■ By induction over the height of the tree.
■ Hypothesis: Keys at height h and lower are placed in the same place and do not cause rotation.

AVL insertion - sketch of proof

■ Any sequence that keeps the height order intact is fine

- Proof?
- By induction over the height of the tree.

■ Hypothesis: Keys at height h and lower are placed in the same place and do not cause rotation.
■ Step: Show that the traversal is the same as in the original tree, yields same position. Use AVL property of T to show that there will not be a height difference bigger than 1 , and therefore no rotation.
2. Repetition theory

2.1 Quadtrees

```
\(\mathcal{P}\) Partition
\(\gamma \geq 0\) regularization parameter
\(f_{\mathcal{P}}\) approxmation \(z\) image \(=\) 'data'
```

Goal: Efficient mimization of the functional

$$
H_{\gamma, z}: \mathfrak{S} \rightarrow \mathbb{R}, \quad\left(\mathcal{P}, f_{\mathcal{P}}\right) \mapsto \gamma \cdot|\mathcal{P}|+\left\|z-f_{\mathcal{P}}\right\|_{2}^{2}
$$

Result $\left(\hat{\mathcal{P}}, \hat{f}_{\hat{\mathcal{P}}}\right) \in \operatorname{argmin}_{\left(\mathcal{P}, f_{\mathcal{P}}\right)} H_{\gamma, z}$ can be interpreted as optimal compromise between regularity and fidelity to data.

Minimization of a Functional using Quadtrees

Separation of a two-dimensional range into 4 equally seized parts.

Algorithmus: Minimize (z, r, γ)

Input: Image data $z \in \mathbb{R}^{S}$, rectangle $r \subset S$, regularization $\gamma>0$ Output: $\min _{T} \gamma|L(T)|+\left\|z-\mu_{L(T)}\right\|_{2}^{2}$
if $|r|=0$ then return 0
$m \leftarrow \gamma+\sum_{s \in r}\left(z_{s}-\mu_{r}\right)^{2}$
if $|r|>1$ then
Split r into $r_{l l}, r_{l r}, r_{u l}, r_{u r}$
$m_{1} \leftarrow \operatorname{Minimize}\left(z, r_{l l}, \gamma\right) ; m_{2} \leftarrow \operatorname{Minimize}\left(z, r_{l r}, \gamma\right)$
$m_{3} \leftarrow \operatorname{Minimize}\left(z, r_{u l}, \gamma\right) ; m_{4} \leftarrow \operatorname{Minimize}\left(z, r_{u r}, \gamma\right)$
$m^{\prime} \leftarrow m_{1}+m_{2}+m_{3}+m_{4}$
else
$L m^{\prime} \leftarrow \infty$
if $m^{\prime}<m$ then $m \leftarrow m^{\prime}$
return m

2.2 Dynamic Programming

Dynamic Programming: Idea

■ Divide a complex problem into a reasonable number of sub-problems
■ The solution of the sub-problems will be used to solve the more complex problem
■ Identical problems will be computed only once

Dynamic Programming = Divide-And-Conquer ?

■ In both cases the original problem can be solved (more easily) by utilizing the solutions of sub-problems. The problem provides optimal substructure.
■ Divide-And-Conquer algorithms (such as Mergesort): sub-problems are independent; their solutions are required only once in the algorithm.
■ DP: sub-problems are dependent. The problem is said to have overlapping sub-problems that are required multiple-times in the algorithm.

- In order to avoid redundant computations, results are tabulated. For sub-problems there must not be any circular dependencies.

Dynamic programming

A complete description of a dynamic program always consists of the following aspects:

Dynamic programming

A complete description of a dynamic program always consists of the following aspects:
■ Definition of the subproblems / the DP table:

Dynamic programming

A complete description of a dynamic program always consists of the following aspects:
■ Definition of the subproblems / the DP table: What are the dimensions of the table? What is the meaning of each entry?

Dynamic programming

A complete description of a dynamic program always consists of the following aspects:
■ Definition of the subproblems / the DP table: What are the dimensions of the table? What is the meaning of each entry?
■ Recursion: Computation of an entry:

Dynamic programming

A complete description of a dynamic program always consists of the following aspects:
■ Definition of the subproblems / the DP table: What are the dimensions of the table? What is the meaning of each entry?
■ Recursion: Computation of an entry: How can an entry be computed from the values of other entries? Which entries do not depend on others?

Dynamic programming

A complete description of a dynamic program always consists of the following aspects:
■ Definition of the subproblems / the DP table: What are the dimensions of the table? What is the meaning of each entry?
■ Recursion: Computation of an entry: How can an entry be computed from the values of other entries? Which entries do not depend on others?
■ Toplogocial order: calculation order:

Dynamic programming

A complete description of a dynamic program always consists of the following aspects:
■ Definition of the subproblems / the DP table: What are the dimensions of the table? What is the meaning of each entry?
■ Recursion: Computation of an entry: How can an entry be computed from the values of other entries? Which entries do not depend on others?
■ Toplogocial order: calculation order: In which order can entries be computed so that values needed for each entry have been determined in previous steps?

Dynamic programming

A complete description of a dynamic program always consists of the following aspects:
■ Definition of the subproblems / the DP table: What are the dimensions of the table? What is the meaning of each entry?
■ Recursion: Computation of an entry: How can an entry be computed from the values of other entries? Which entries do not depend on others?
■ Toplogocial order: calculation order: In which order can entries be computed so that values needed for each entry have been determined in previous steps?
■ Solution and Running Time:

Dynamic programming

A complete description of a dynamic program always consists of the following aspects:
■ Definition of the subproblems / the DP table: What are the dimensions of the table? What is the meaning of each entry?
■ Recursion: Computation of an entry: How can an entry be computed from the values of other entries? Which entries do not depend on others?

- Toplogocial order: calculation order: In which order can entries be computed so that values needed for each entry have been determined in previous steps?
■ Solution and Running Time: How can the final solution be extracted once the table has been filled? Running time of the DP algorithm.

Dynamic programming

A complete description of a dynamic program always consists of the following aspects:
■ Definition of the subproblems / the DP table: What are the dimensions of the table? What is the meaning of each entry?
■ Recursion: Computation of an entry: How can an entry be computed from the values of other entries? Which entries do not depend on others?

- Toplogocial order: calculation order: In which order can entries be computed so that values needed for each entry have been determined in previous steps?
■ Solution and Running Time: How can the final solution be extracted once the table has been filled? Running time of the DP algorithm.

3. In-Class Exercises

Longest Ascending Sequence on a Grid

Longest Ascending "2D" Sequence

Given $n \times m$ matrix A :

9	27	42	41	48
35	39	8	3	5
12	49	2	38	4
15	47	29	28	6
19	1	25	33	10

Want the longest ascending sequence:

$$
4,6,28,29,47,49
$$

Definition of the DP table

- What are the dimensions of the table?

Definition of the DP table

- What are the dimensions of the table?
- $n \times m$

Definition of the DP table

- What are the dimensions of the table?
- $n \times m(\times 2)$

Definition of the DP table

- What are the dimensions of the table?
- $n \times m(\times 2)$
- What is the meaning of each entry?

Definition of the DP table

■ What are the dimensions of the table?

- $n \times m(\times 2)$

■ What is the meaning of each entry?

- In $T[x][y]$ is the length of the longest ascending sequence that ends in $A[x][y]$
■ In $S[x][y]$ are the coordinates of the predecessor in ascending sequence (if exists)

Computation of an entry

■ How can an entry be computed from the values of other entries? Which entries do not depend on others?

Computation of an entry

■ How can an entry be computed from the values of other entries? Which entries do not depend on others?

- Consider neighbors with smaller entry in A

Computation of an entry

■ How can an entry be computed from the values of other entries? Which entries do not depend on others?

- Consider neighbors with smaller entry in A

■ From the smaller entries choose entry with the largest entry in T

Computation of an entry

■ How can an entry be computed from the values of other entries? Which entries do not depend on others?

- Consider neighbors with smaller entry in A
- From the smaller entries choose entry with the largest entry in T

■ Update T and S (S gets coordinate from selected neighbor, T gets value from selected neighbor increased by one).

Calculation order

- In which order can entries be computed so that values needed for each entry have been determined in previous steps?

Calculation order

- In which order can entries be computed so that values needed for each entry have been determined in previous steps?

■ Bottom-Up: Start with smallest element in A and so on. (Means that one has to sort A)

Calculation order

- In which order can entries be computed so that values needed for each entry have been determined in previous steps?

■ Bottom-Up: Start with smallest element in A and so on. (Means that one has to sort A)

■ Recursively: Arbitrary order, if entry is already computed skip it otherwise compute for smaller neighbor recursively.

Extracting the solution

■ How can the final solution be extracted once the table has been filled?

Extracting the solution

■ How can the final solution be extracted once the table has been filled?

- Consider all entries to find one with a longest sequence. From there, we can reconstruct the solution by following the corresponding predecessors.

3. In-Class Exercises

Implement a DP solution in the prepared CodeExpert program. \longrightarrow CodeExpert

4. Hints for the Upcoming Exercises

Piecewise Constant Approximation

Piecewise Constant Approximation

$$
H_{\gamma, y}: \mathcal{P} \mapsto \gamma|\mathcal{P}|+\sum_{I \in \mathcal{P}} \sum_{i \in I}\left(y_{i}-\mu_{I}\right)^{2}
$$

Piecewise Constant Approximation

$$
H_{\gamma, y}: \mathcal{P} \mapsto \gamma|\mathcal{P}|+\sum_{I \in \mathcal{P}} \sum_{i \in I}\left(y_{i}-\mu_{I}\right)^{2}
$$

■ \mathcal{P} : (set of intervals I_{i}, such that $\bigcup_{i} I_{i}=S$).
Example

$$
\begin{aligned}
S & =\{1, \cdots, 128\} \\
\mathcal{P} & =\{[1,20],[21,27],[28,69],[70,128]\} \\
H_{\gamma, y}(\mathcal{P}) & =\gamma \cdot 4+\sum_{I \in \mathcal{P}} \sum_{i \in I}\left(y_{i}-\mu_{I}\right)^{2}
\end{aligned}
$$

■ Goal: find the partition $\hat{\mathcal{P}}$ such that $H_{\gamma, y}(\hat{\mathcal{P}})$ is minimal

Piecewise Constant Approximation

Minimize

$$
H_{\gamma, y}: \mathcal{P} \mapsto \gamma|\mathcal{P}|+\sum_{I \in \mathcal{P}} \sum_{i \in I}\left(y_{i}-\mu_{I}\right)^{2}
$$

Explanation of the (Hyper-)parameter γ :
■ $\gamma=0$:
Arbitrary number of intervals \Rightarrow Approximation = Data, many steps
■ $\gamma \approx \infty$:
A single interval \Rightarrow Approximation = Constant, no step
γ controls the balance between regularity and fidelity to data

Trick: Prefix-sums

Goal: fast computation of

$$
M_{i, j}:=\sum_{k=i}^{j} y_{k} \quad(1 \leq i \leq j \leq n)
$$

Prefix-Sums:

$$
Y_{i}=\sum_{k=1}^{i} y_{k} \quad(1 \leq k \leq n)
$$

Dann

$$
\begin{aligned}
Y_{i} & =Y_{i-1}+y_{i} \quad(1 \leq i \leq n) \quad \text { with } Y_{0}:=0 \\
M_{i, j} & =Y_{j}-Y_{i-1}
\end{aligned}
$$

$\Rightarrow M_{i, j}$ can be computed for each pair (i, j) in $\mathcal{O}(1)$ after Y has been initialized in $\mathcal{O}(n)$.

Trick

$$
\begin{aligned}
\mu_{[i, j]} & =\frac{1}{(j-i+1)} \sum_{k=i}^{j} y_{i} \\
& =\frac{1}{(j-i+1)}\left(Y_{j}-Y_{i-1}\right)
\end{aligned}
$$

We can also apply the same trick on

$$
e_{i, j}:=\sum_{k=i}^{j}\left(y_{k}-\mu_{[i, j]}\right)^{2}
$$

(how?)

Piecewise Constant Approximation

$$
H_{\gamma, y}: \mathcal{P} \mapsto \gamma|\mathcal{P}|+\sum_{I \in \mathcal{P}} \sum_{i \in I}\left(y_{i}-\mu_{I}\right)^{2}
$$

■ Goal: find the partition $\hat{\mathcal{P}}$ such that $H_{\gamma, y}(\hat{\mathcal{P}})$ is minimal
■ Dynamic programming: definition of the table, computation of an entry, calculation order, extracting solution
■ Utilize ${ }^{*}: H_{\gamma, y}(\mathcal{P} \cup\{[l, r)\})=H_{\gamma, y}(\mathcal{P})+\gamma+e_{[l, r)}$

[^0]
[^0]: *Assumption: $\mathcal{P} \cup\{[l, r)\}$ is a partition

