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Program of today

Feedback of last exercise(s)

Repetition theory
Quadtrees
Dynamic Programming

In-Class Exercises

Hints for the Upcoming Exercises
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1. Feedback of last exercise(s)
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AVL insertion

Given an AVL tree, is there an order that produces the same tree and
does not cause any rotations
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AVL insertion - sketch of proof

Any sequence that keeps the height order intact is �ne
Proof?
By induction over the height of the tree.

Hypothesis: Keys at height h and lower are placed in the same place
and do not cause rotation.
Step: Show that the traversal is the same as in the original tree, yields
same position. Use AVL property of T to show that there will not be a
height di�erence bigger than 1, and therefore no rotation.

4



AVL insertion - sketch of proof

Any sequence that keeps the height order intact is �ne
Proof?
By induction over the height of the tree.
Hypothesis: Keys at height h and lower are placed in the same place
and do not cause rotation.

Step: Show that the traversal is the same as in the original tree, yields
same position. Use AVL property of T to show that there will not be a
height di�erence bigger than 1, and therefore no rotation.

4



AVL insertion - sketch of proof

Any sequence that keeps the height order intact is �ne
Proof?
By induction over the height of the tree.
Hypothesis: Keys at height h and lower are placed in the same place
and do not cause rotation.
Step: Show that the traversal is the same as in the original tree, yields
same position. Use AVL property of T to show that there will not be a
height di�erence bigger than 1, and therefore no rotation.

4



2. Repetition theory
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2.1 Quadtrees
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Minimization of a functional for signal
segmentation

P Partition γ ≥ 0 regularization parameter
fP approxmation z image = ‘data’

Goal: E�cient mimization of the functional

Hγ,z : S→ R, (P , fP) 7→ γ · |P|+ ‖z − fP‖2
2.

Result (P̂ , f̂P̂) ∈ argmin(P,fP ) Hγ,z can be interpreted as optimal
compromise between regularity and �delity to data.
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Minimization of a Functional using Quadtrees

Separation of a two-dimensional range into 4 equally seized parts.
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Algorithmus: Minimize(z,r,γ)

Input: Image data z ∈ RS , rectangle r ⊂ S, regularization γ > 0
Output: minT γ|L(T )|+ ‖z − µL(T )‖22
if |r| = 0 then return 0
m← γ +

∑
s∈r(zs − µr)

2

if |r| > 1 then
Split r into rll,rlr,rul,rur
m1 ← Minimize(z, rll, γ); m2 ← Minimize(z, rlr, γ)
m3 ← Minimize(z, rul, γ); m4 ← Minimize(z, rur, γ)
m′ ← m1 +m2 +m3 +m4

else
m′ ←∞

if m′ < m then m← m′

return m
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Minimization of a Functional using Quadtrees
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2.2 Dynamic Programming
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Dynamic Programming: Idea

Divide a complex problem into a reasonable number of sub-problems
The solution of the sub-problems will be used to solve the more
complex problem
Identical problems will be computed only once
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Dynamic Programming = Divide-And-Conquer ?

In both cases the original problem can be solved (more easily) by
utilizing the solutions of sub-problems. The problem provides optimal
substructure.
Divide-And-Conquer algorithms (such as Mergesort): sub-problems are
independent; their solutions are required only once in the algorithm.
DP: sub-problems are dependent. The problem is said to have
overlapping sub-problems that are required multiple-times in the
algorithm.
In order to avoid redundant computations, results are tabulated. For
sub-problems there must not be any circular dependencies.
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Dynamic programming
A complete description of a dynamic program always consists of the
following aspects:

De�nition of the subproblems / the DP table: What are the dimensions
of the table? What is the meaning of each entry?
Recursion: Computation of an entry: How can an entry be computed
from the values of other entries? Which entries do not depend on
others?
Toplogocial order: calculation order: In which order can entries be
computed so that values needed for each entry have been determined
in previous steps?
Solution and Running Time: How can the �nal solution be extracted
once the table has been �lled? Running time of the DP algorithm.
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3. In-Class Exercises

Longest Ascending Sequence on a Grid
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Longest Ascending “2D" Sequence

Given n×m matrix A:

9 27 42 41 48
35 39 8 3 5
12 49 2 38 4
15 47 29 28 6
19 1 25 33 10

Want the longest ascending sequence:

4, 6, 28, 29, 47, 49
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De�nition of the DP table

What are the dimensions of the table?

n×m(×2)

What is the meaning of each entry?

In T [x][y] is the length of the longest ascending sequence that ends
in A[x][y]
In S[x][y] are the coordinates of the predecessor in ascending
sequence (if exists)
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Computation of an entry

How can an entry be computed from the values of other entries? Which
entries do not depend on others?

Consider neighbors with smaller entry in A
From the smaller entries choose entry with the largest entry in T
Update T and S (S gets coordinate from selected neighbor, T gets
value from selected neighbor increased by one).
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Calculation order

In which order can entries be computed so that values needed for
each entry have been determined in previous steps?

Bottom-Up: Start with smallest
element in A and so on. (Means
that one has to sort A)

Recursively: Arbitrary order, if
entry is already computed skip
it otherwise compute for
smaller neighbor recursively.
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Extracting the solution

How can the �nal solution be extracted once the table has been �lled?

Consider all entries to �nd one with a longest sequence. From
there, we can reconstruct the solution by following the
corresponding predecessors.
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3. In-Class Exercises

Implement a DP solution in the prepared CodeExpert
program. −→ CodeExpert
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4. Hints for the Upcoming Exercises
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Piecewise Constant Approximation
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Piecewise Constant Approximation

Hγ,y : P 7→ γ|P|+
∑
I∈P

∑
i∈I

(yi − µI)2

P : (set of intervals Ii, such that
⋃
i Ii = S).

Example

S = {1, · · · , 128}
P = {[1, 20], [21, 27], [28, 69], [70, 128]}

Hγ,y(P) = γ · 4 +
∑
I∈P

∑
i∈I

(yi − µI)2

Goal: �nd the partition P̂ such that Hγ,y(P̂) is minimal
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Piecewise Constant Approximation

Minimize

Hγ,y : P 7→ γ|P|+
∑
I∈P

∑
i∈I

(yi − µI)2

Explanation of the (Hyper-)parameter γ:
γ = 0:
Arbitrary number of intervals⇒ Approximation = Data, many steps
γ ≈ ∞:
A single interval⇒ Approximation = Constant, no step

γ controls the balance between regularity and �delity to data
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Trick: Pre�x-sums
Goal: fast computation of

Mi,j :=
j∑
k=i

yk (1 ≤ i ≤ j ≤ n)

Pre�x-Sums:
Yi =

i∑
k=1

yk (1 ≤ k ≤ n)

Dann
Yi = Yi−1 + yi (1 ≤ i ≤ n) withY0 := 0

Mi,j = Yj − Yi−1

⇒Mi,j can be computed for each pair (i, j) in O(1) after Y has been
initialized in O(n).
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Trick

µ[i,j] = 1
(j − i+ 1)

j∑
k=i

yi

= 1
(j − i+ 1)(Yj − Yi−1)

We can also apply the same trick on

ei,j :=
j∑
k=i

(yk − µ[i,j])2

(how?)
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Piecewise Constant Approximation

Hγ,y : P 7→ γ|P|+
∑
I∈P

∑
i∈I

(yi − µI)2

Goal: �nd the partition P̂ such that Hγ,y(P̂) is minimal
Dynamic programming: de�nition of the table, computation of an
entry, calculation order, extracting solution
Utilize*: Hγ,y(P ∪ {[l, r)}) = Hγ,y(P) + γ + e[l,r)

*Assumption: P ∪ {[l, r)} is a partition
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