
Exercise Session 7
Data Structures and Algorithms, D-MATH, ETH Zurich

Program of today

Feedback of last exercise(s)

Repetition theory
Quadtrees
Dynamic Programming

In-Class Exercises

Hints for the Upcoming Exercises

1

1. Feedback of last exercise(s)

2

AVL insertion

Given an AVL tree, is there an order that produces the same tree and
does not cause any rotations

3

AVL insertion

Given an AVL tree, is there an order that produces the same tree and
does not cause any rotations

3

AVL insertion - sketch of proof

Any sequence that keeps the height order intact is �ne
Proof?
By induction over the height of the tree.

Hypothesis: Keys at height h and lower are placed in the same place
and do not cause rotation.
Step: Show that the traversal is the same as in the original tree, yields
same position. Use AVL property of T to show that there will not be a
height di�erence bigger than 1, and therefore no rotation.

4

AVL insertion - sketch of proof

Any sequence that keeps the height order intact is �ne
Proof?
By induction over the height of the tree.
Hypothesis: Keys at height h and lower are placed in the same place
and do not cause rotation.

Step: Show that the traversal is the same as in the original tree, yields
same position. Use AVL property of T to show that there will not be a
height di�erence bigger than 1, and therefore no rotation.

4

AVL insertion - sketch of proof

Any sequence that keeps the height order intact is �ne
Proof?
By induction over the height of the tree.
Hypothesis: Keys at height h and lower are placed in the same place
and do not cause rotation.
Step: Show that the traversal is the same as in the original tree, yields
same position. Use AVL property of T to show that there will not be a
height di�erence bigger than 1, and therefore no rotation.

4

2. Repetition theory

5

2.1 Quadtrees

6

Minimization of a functional for signal
segmentation

P Partition γ ≥ 0 regularization parameter
fP approxmation z image = ‘data’

Goal: E�cient mimization of the functional

Hγ,z : S→ R, (P , fP) 7→ γ · |P|+ ‖z − fP‖2
2.

Result (P̂ , f̂P̂) ∈ argmin(P,fP) Hγ,z can be interpreted as optimal
compromise between regularity and �delity to data.

7

Minimization of a Functional using Quadtrees

Separation of a two-dimensional range into 4 equally seized parts.

8

Algorithmus: Minimize(z,r,γ)

Input: Image data z ∈ RS , rectangle r ⊂ S, regularization γ > 0
Output: minT γ|L(T)|+ ‖z − µL(T)‖22
if |r| = 0 then return 0
m← γ +

∑
s∈r(zs − µr)

2

if |r| > 1 then
Split r into rll,rlr,rul,rur
m1 ← Minimize(z, rll, γ); m2 ← Minimize(z, rlr, γ)
m3 ← Minimize(z, rul, γ); m4 ← Minimize(z, rur, γ)
m′ ← m1 +m2 +m3 +m4

else
m′ ←∞

if m′ < m then m← m′

return m

9

Minimization of a Functional using Quadtrees

10

2.2 Dynamic Programming

11

Dynamic Programming: Idea

Divide a complex problem into a reasonable number of sub-problems
The solution of the sub-problems will be used to solve the more
complex problem
Identical problems will be computed only once

12

Dynamic Programming = Divide-And-Conquer ?

In both cases the original problem can be solved (more easily) by
utilizing the solutions of sub-problems. The problem provides optimal
substructure.
Divide-And-Conquer algorithms (such as Mergesort): sub-problems are
independent; their solutions are required only once in the algorithm.
DP: sub-problems are dependent. The problem is said to have
overlapping sub-problems that are required multiple-times in the
algorithm.
In order to avoid redundant computations, results are tabulated. For
sub-problems there must not be any circular dependencies.

13

Dynamic programming
A complete description of a dynamic program always consists of the
following aspects:

De�nition of the subproblems / the DP table: What are the dimensions
of the table? What is the meaning of each entry?
Recursion: Computation of an entry: How can an entry be computed
from the values of other entries? Which entries do not depend on
others?
Toplogocial order: calculation order: In which order can entries be
computed so that values needed for each entry have been determined
in previous steps?
Solution and Running Time: How can the �nal solution be extracted
once the table has been �lled? Running time of the DP algorithm.

14

Dynamic programming
A complete description of a dynamic program always consists of the
following aspects:
De�nition of the subproblems / the DP table:

What are the dimensions
of the table? What is the meaning of each entry?
Recursion: Computation of an entry: How can an entry be computed
from the values of other entries? Which entries do not depend on
others?
Toplogocial order: calculation order: In which order can entries be
computed so that values needed for each entry have been determined
in previous steps?
Solution and Running Time: How can the �nal solution be extracted
once the table has been �lled? Running time of the DP algorithm.

14

Dynamic programming
A complete description of a dynamic program always consists of the
following aspects:
De�nition of the subproblems / the DP table: What are the dimensions
of the table? What is the meaning of each entry?

Recursion: Computation of an entry: How can an entry be computed
from the values of other entries? Which entries do not depend on
others?
Toplogocial order: calculation order: In which order can entries be
computed so that values needed for each entry have been determined
in previous steps?
Solution and Running Time: How can the �nal solution be extracted
once the table has been �lled? Running time of the DP algorithm.

14

Dynamic programming
A complete description of a dynamic program always consists of the
following aspects:
De�nition of the subproblems / the DP table: What are the dimensions
of the table? What is the meaning of each entry?
Recursion: Computation of an entry:

How can an entry be computed
from the values of other entries? Which entries do not depend on
others?
Toplogocial order: calculation order: In which order can entries be
computed so that values needed for each entry have been determined
in previous steps?
Solution and Running Time: How can the �nal solution be extracted
once the table has been �lled? Running time of the DP algorithm.

14

Dynamic programming
A complete description of a dynamic program always consists of the
following aspects:
De�nition of the subproblems / the DP table: What are the dimensions
of the table? What is the meaning of each entry?
Recursion: Computation of an entry: How can an entry be computed
from the values of other entries? Which entries do not depend on
others?

Toplogocial order: calculation order: In which order can entries be
computed so that values needed for each entry have been determined
in previous steps?
Solution and Running Time: How can the �nal solution be extracted
once the table has been �lled? Running time of the DP algorithm.

14

Dynamic programming
A complete description of a dynamic program always consists of the
following aspects:
De�nition of the subproblems / the DP table: What are the dimensions
of the table? What is the meaning of each entry?
Recursion: Computation of an entry: How can an entry be computed
from the values of other entries? Which entries do not depend on
others?
Toplogocial order: calculation order:

In which order can entries be
computed so that values needed for each entry have been determined
in previous steps?
Solution and Running Time: How can the �nal solution be extracted
once the table has been �lled? Running time of the DP algorithm.

14

Dynamic programming
A complete description of a dynamic program always consists of the
following aspects:
De�nition of the subproblems / the DP table: What are the dimensions
of the table? What is the meaning of each entry?
Recursion: Computation of an entry: How can an entry be computed
from the values of other entries? Which entries do not depend on
others?
Toplogocial order: calculation order: In which order can entries be
computed so that values needed for each entry have been determined
in previous steps?

Solution and Running Time: How can the �nal solution be extracted
once the table has been �lled? Running time of the DP algorithm.

14

Dynamic programming
A complete description of a dynamic program always consists of the
following aspects:
De�nition of the subproblems / the DP table: What are the dimensions
of the table? What is the meaning of each entry?
Recursion: Computation of an entry: How can an entry be computed
from the values of other entries? Which entries do not depend on
others?
Toplogocial order: calculation order: In which order can entries be
computed so that values needed for each entry have been determined
in previous steps?
Solution and Running Time:

How can the �nal solution be extracted
once the table has been �lled? Running time of the DP algorithm.

14

Dynamic programming
A complete description of a dynamic program always consists of the
following aspects:
De�nition of the subproblems / the DP table: What are the dimensions
of the table? What is the meaning of each entry?
Recursion: Computation of an entry: How can an entry be computed
from the values of other entries? Which entries do not depend on
others?
Toplogocial order: calculation order: In which order can entries be
computed so that values needed for each entry have been determined
in previous steps?
Solution and Running Time: How can the �nal solution be extracted
once the table has been �lled? Running time of the DP algorithm.

14

Dynamic programming
A complete description of a dynamic program always consists of the
following aspects:
De�nition of the subproblems / the DP table: What are the dimensions
of the table? What is the meaning of each entry?
Recursion: Computation of an entry: How can an entry be computed
from the values of other entries? Which entries do not depend on
others?
Toplogocial order: calculation order: In which order can entries be
computed so that values needed for each entry have been determined
in previous steps?
Solution and Running Time: How can the �nal solution be extracted
once the table has been �lled? Running time of the DP algorithm.

14

3. In-Class Exercises

Longest Ascending Sequence on a Grid

15

Longest Ascending “2D" Sequence

Given n×m matrix A:

9 27 42 41 48
35 39 8 3 5
12 49 2 38 4
15 47 29 28 6
19 1 25 33 10

Want the longest ascending sequence:

4, 6, 28, 29, 47, 49

15

De�nition of the DP table

What are the dimensions of the table?

n×m(×2)

What is the meaning of each entry?

In T [x][y] is the length of the longest ascending sequence that ends
in A[x][y]
In S[x][y] are the coordinates of the predecessor in ascending
sequence (if exists)

16

De�nition of the DP table

What are the dimensions of the table?

n×m

(×2)

What is the meaning of each entry?

In T [x][y] is the length of the longest ascending sequence that ends
in A[x][y]
In S[x][y] are the coordinates of the predecessor in ascending
sequence (if exists)

16

De�nition of the DP table

What are the dimensions of the table?

n×m(×2)

What is the meaning of each entry?

In T [x][y] is the length of the longest ascending sequence that ends
in A[x][y]
In S[x][y] are the coordinates of the predecessor in ascending
sequence (if exists)

16

De�nition of the DP table

What are the dimensions of the table?

n×m(×2)

What is the meaning of each entry?

In T [x][y] is the length of the longest ascending sequence that ends
in A[x][y]
In S[x][y] are the coordinates of the predecessor in ascending
sequence (if exists)

16

De�nition of the DP table

What are the dimensions of the table?

n×m(×2)

What is the meaning of each entry?

In T [x][y] is the length of the longest ascending sequence that ends
in A[x][y]
In S[x][y] are the coordinates of the predecessor in ascending
sequence (if exists)

16

Computation of an entry

How can an entry be computed from the values of other entries? Which
entries do not depend on others?

Consider neighbors with smaller entry in A
From the smaller entries choose entry with the largest entry in T
Update T and S (S gets coordinate from selected neighbor, T gets
value from selected neighbor increased by one).

17

Computation of an entry

How can an entry be computed from the values of other entries? Which
entries do not depend on others?

Consider neighbors with smaller entry in A

From the smaller entries choose entry with the largest entry in T
Update T and S (S gets coordinate from selected neighbor, T gets
value from selected neighbor increased by one).

17

Computation of an entry

How can an entry be computed from the values of other entries? Which
entries do not depend on others?

Consider neighbors with smaller entry in A
From the smaller entries choose entry with the largest entry in T

Update T and S (S gets coordinate from selected neighbor, T gets
value from selected neighbor increased by one).

17

Computation of an entry

How can an entry be computed from the values of other entries? Which
entries do not depend on others?

Consider neighbors with smaller entry in A
From the smaller entries choose entry with the largest entry in T
Update T and S (S gets coordinate from selected neighbor, T gets
value from selected neighbor increased by one).

17

Calculation order

In which order can entries be computed so that values needed for
each entry have been determined in previous steps?

Bottom-Up: Start with smallest
element in A and so on. (Means
that one has to sort A)

Recursively: Arbitrary order, if
entry is already computed skip
it otherwise compute for
smaller neighbor recursively.

18

Calculation order

In which order can entries be computed so that values needed for
each entry have been determined in previous steps?

Bottom-Up: Start with smallest
element in A and so on. (Means
that one has to sort A)

Recursively: Arbitrary order, if
entry is already computed skip
it otherwise compute for
smaller neighbor recursively.

18

Calculation order

In which order can entries be computed so that values needed for
each entry have been determined in previous steps?

Bottom-Up: Start with smallest
element in A and so on. (Means
that one has to sort A)

Recursively: Arbitrary order, if
entry is already computed skip
it otherwise compute for
smaller neighbor recursively.

18

Extracting the solution

How can the �nal solution be extracted once the table has been �lled?

Consider all entries to �nd one with a longest sequence. From
there, we can reconstruct the solution by following the
corresponding predecessors.

19

Extracting the solution

How can the �nal solution be extracted once the table has been �lled?

Consider all entries to �nd one with a longest sequence. From
there, we can reconstruct the solution by following the
corresponding predecessors.

19

3. In-Class Exercises

Implement a DP solution in the prepared CodeExpert
program. −→ CodeExpert

20

4. Hints for the Upcoming Exercises

21

Piecewise Constant Approximation

0 50 100 150 200

0

0.5

1

P

S

data y
approximation fP

22

Piecewise Constant Approximation

Hγ,y : P 7→ γ|P|+
∑
I∈P

∑
i∈I

(yi − µI)2

P : (set of intervals Ii, such that
⋃
i Ii = S).

Example

S = {1, · · · , 128}
P = {[1, 20], [21, 27], [28, 69], [70, 128]}

Hγ,y(P) = γ · 4 +
∑
I∈P

∑
i∈I

(yi − µI)2

Goal: �nd the partition P̂ such that Hγ,y(P̂) is minimal

23

Piecewise Constant Approximation

Hγ,y : P 7→ γ|P|+
∑
I∈P

∑
i∈I

(yi − µI)2

P : (set of intervals Ii, such that
⋃
i Ii = S).

Example

S = {1, · · · , 128}
P = {[1, 20], [21, 27], [28, 69], [70, 128]}

Hγ,y(P) = γ · 4 +
∑
I∈P

∑
i∈I

(yi − µI)2

Goal: �nd the partition P̂ such that Hγ,y(P̂) is minimal
23

Piecewise Constant Approximation

Minimize

Hγ,y : P 7→ γ|P|+
∑
I∈P

∑
i∈I

(yi − µI)2

Explanation of the (Hyper-)parameter γ:
γ = 0:
Arbitrary number of intervals⇒ Approximation = Data, many steps
γ ≈ ∞:
A single interval⇒ Approximation = Constant, no step

γ controls the balance between regularity and �delity to data

24

Trick: Pre�x-sums
Goal: fast computation of

Mi,j :=
j∑
k=i

yk (1 ≤ i ≤ j ≤ n)

Pre�x-Sums:
Yi =

i∑
k=1

yk (1 ≤ k ≤ n)

Dann
Yi = Yi−1 + yi (1 ≤ i ≤ n) withY0 := 0

Mi,j = Yj − Yi−1

⇒Mi,j can be computed for each pair (i, j) in O(1) after Y has been
initialized in O(n).

25

Trick

µ[i,j] = 1
(j − i+ 1)

j∑
k=i

yi

= 1
(j − i+ 1)(Yj − Yi−1)

We can also apply the same trick on

ei,j :=
j∑
k=i

(yk − µ[i,j])2

(how?)
26

Piecewise Constant Approximation

Hγ,y : P 7→ γ|P|+
∑
I∈P

∑
i∈I

(yi − µI)2

Goal: �nd the partition P̂ such that Hγ,y(P̂) is minimal
Dynamic programming: de�nition of the table, computation of an
entry, calculation order, extracting solution
Utilize*: Hγ,y(P ∪ {[l, r)}) = Hγ,y(P) + γ + e[l,r)

*Assumption: P ∪ {[l, r)} is a partition
27

	Feedback of last exercise(s)
	Repetition theory
	Quadtrees
	Dynamic Programming

	In-Class Exercises
	Hints for the Upcoming Exercises

