Exercise Session 7
Data Structures and Algorithms, D-MATH, ETH Zurich

Program of today

Feedback of last exercise(s)

Repetition theory
Quadtrees
Dynamic Programming

In-Class Exercises

Hints for the Upcoming Exercises

1. Feedback of last exercise(s)

AVL insertion

m Given an AVL tree, is there an order that produces the same tree and
does not cause any rotations

30/9&141
11/ \50 \
\ /\

20 4 0 70

16 0

AVL insertion

m Given an AVL tree, is there an order that produces the same tree and
does not cause any rotations

(/\/\\>

b D

=

AVL insertion - sketch of proof

m Any sequence that keeps the height order intact is fine
m Proof?
m By induction over the height of the tree.

AVL insertion - sketch of proof

m Any sequence that keeps the height order intact is fine
m Proof?
m By induction over the height of the tree.

m Hypothesis: Keys at height h and lower are placed in the same place
and do not cause rotation.

AVL insertion - sketch of proof

m Any sequence that keeps the height order intact is fine
m Proof?
m By induction over the height of the tree.

m Hypothesis: Keys at height h and lower are placed in the same place
and do not cause rotation.

m Step: Show that the traversal is the same as in the original tree, yields
same position. Use AVL property of T' to show that there will not be a
height difference bigger than 1, and therefore no rotation.

2. Repetition theory

21 Quadtrees

Minimization 0

cgmentation

P Partition ~ > 0 regularization parameter
fp approxmation z Image = ‘data’

Goal: Efficient mimization of the functional

H’y,z :G%Ra (Pafp)}_)’7|7)|+”z_f79“g

Result (P, fz) € argminp) H, . can be interpreted as optimal
compromise between regularity and fidelity to data.

Minimization of a Functional using Quadtrees

Separation of a two-dimensional range into 4 equally seized parts.

/
g
J /U, DD
palira od

OO

Algorithmus: Minimize(z,r,7)

Input: Image data z € RY, rectangle r C S, regularization v > 0

Output: ming y|L(T)| + ||z — prer I3

if |r| = 0 then return 0

M=+ Peer(2s — NT)Q

if |r| > 1 then
Split 7 into 7,71, ul s Tur
mq < Minimize(z, 7y, y); me < Minimize(z, 7., y)
ms < Minimize(z, ry,y); ma < Minimize(z, 7y, y)
m' <+ mq +ma +ms+mu

else

L om/
if m’ <m then m < m/
return m

Minimization of a Functional using Quadtrees

2.2 Dynamic Programming

Dynamic Programming: |dea

m Divide a complex problem into a reasonable number of sub-problems

m The solution of the sub-problems will be used to solve the more
complex problem

m |dentical problems will be computed only once

Dynamic Programming = Divide-And-Conquer ?

m In both cases the original problem can be solved (more easily) by
utilizing the solutions of sub-problems. The problem provides optimal
substructure.

m Divide-And-Conquer algorithms (such as Mergesort): sub-problems are
independent; their solutions are required only once in the algorithm.

m DP: sub-problems are dependent. The problem is said to have
overlapping sub-problems that are required multiple-times in the
algorithm.

m |n order to avoid redundant computations, results are tabulated. For
sub-problems there must not be any circular dependencies.

Dynamic programming

A complete description of a dynamic program always consists of the
following aspects:

Dynamic programming

A complete description of a dynamic program always consists of the
following aspects:
m Definition of the subproblems / the DP table:

Dynamic programming

A complete description of a dynamic program always consists of the

following aspects:

m Definition of the subproblems / the DP table: What are the dimensions
of the table? What is the meaning of each entry?

Dynamic programming

A complete description of a dynamic program always consists of the
following aspects:

m Definition of the subproblems / the DP table: What are the dimensions
of the table? What is the meaning of each entry?

m Recursion: Computation of an entry:

Dynamic programming

A complete description of a dynamic program always consists of the

following aspects:

m Definition of the subproblems / the DP table: What are the dimensions
of the table? What is the meaning of each entry?

m Recursion: Computation of an entry: How can an entry be computed
from the values of other entries? Which entries do not depend on
others?

Dynamic programming

A complete description of a dynamic program always consists of the

following aspects:

m Definition of the subproblems / the DP table: What are the dimensions
of the table? What is the meaning of each entry?

m Recursion: Computation of an entry: How can an entry be computed
from the values of other entries? Which entries do not depend on
others?

m Toplogocial order: calculation order:

Dynamic programming

A complete description of a dynamic program always consists of the
following aspects:

m Definition of the subproblems / the DP table: What are the dimensions
of the table? What is the meaning of each entry?

m Recursion: Computation of an entry: How can an entry be computed
from the values of other entries? Which entries do not depend on
others?

m Toplogocial order: calculation order: In which order can entries be
computed so that values needed for each entry have been determined
In previous steps?

Dynamic programming

A complete description of a dynamic program always consists of the
following aspects:

m Definition of the subproblems / the DP table: What are the dimensions
of the table? What is the meaning of each entry?

m Recursion: Computation of an entry: How can an entry be computed
from the values of other entries? Which entries do not depend on
others?

m Toplogocial order: calculation order: In which order can entries be
computed so that values needed for each entry have been determined
In previous steps?

m Solution and Running Time:

Dynamic programming

A complete description of a dynamic program always consists of the
following aspects:

m Definition of the subproblems / the DP table: What are the dimensions
of the table? What is the meaning of each entry?

m Recursion: Computation of an entry: How can an entry be computed
from the values of other entries? Which entries do not depend on
others?

m Toplogocial order: calculation order: In which order can entries be
computed so that values needed for each entry have been determined
In previous steps?

m Solution and Running Time: How can the final solution be extracted
once the table has been filled? Running time of the DP algorithm.

Dynamic programming

A complete description of a dynamic program always consists of the
following aspects:

m Definition of the subproblems / the DP table: What are the dimensions
of the table? What is the meaning of each entry?

m Recursion: Computation of an entry: How can an entry be computed
from the values of other entries? Which entries do not depend on
others?

m Toplogocial order: calculation order: In which order can entries be
computed so that values needed for each entry have been determined
In previous steps?

m Solution and Running Time: How can the final solution be extracted
once the table has been filled? Running time of the DP algorithm.

3. In-Class Exercises

Longest Ascending Sequence on a Grid

Longest Ascending “2D" Sequence

Given n x m matrix A:

9 | 27 | 42 | 41 | 48
351398 | 3|5
12149 | 2 |38 &
15147129128 6
191112513310

Want the longest ascending sequence:

4,6,28,29, 47,49

Definition of the DP table

m What are the dimensions of the table?

16

Definition of the DP table

m What are the dimensions of the table?

BEnXm

16

Definition of the DP table

m What are the dimensions of the table?

B nxm(x2)

16

Definition of the DP table

m What are the dimensions of the table?

B nxm(x2)

m What is the meaning of each entry?

16

Definition of the DP table

m What are the dimensions of the table?

B nxm(x2)

m What is the meaning of each entry?

m In T'[z][y] is the length of the longest ascending sequence that ends
in Afz][y]

m In S[x][y] are the coordinates of the predecessor in ascending

sequence (if exists)

16

Computation of an entry

m How can an entry be computed from the values of other entries? Which
entries do not depend on others?

Computation of an entry

m How can an entry be computed from the values of other entries? Which
entries do not depend on others?

m Consider neighbors with smaller entry in A

Computation of an entry

m How can an entry be computed from the values of other entries? Which
entries do not depend on others?

m Consider neighbors with smaller entry in A
m From the smaller entries choose entry with the largest entry in T’

Computation of an entry

m How can an entry be computed from the values of other entries? Which
entries do not depend on others?

m Consider neighbors with smaller entry in A

m From the smaller entries choose entry with the largest entry in T’

m Update T and S (S gets coordinate from selected neighbor, T gets
value from selected neighbor increased by one).

Calculation order

m In which order can entries be computed so that values needed for
each entry have been determined in previous steps?

Calculation order

m In which order can entries be computed so that values needed for
each entry have been determined in previous steps?

m Bottom-Up: Start with smallest
element in A and so on. (Means
that one has to sort A)

Calculation order

m In which order can entries be computed so that values needed for
each entry have been determined in previous steps?

m Bottom-Up: Start with smallest ~ m Recursively: Arbitrary order, if
element in A and so on. (Means entry is already computed skip
that one has to sort A) it otherwise compute for

smaller neighbor recursively.

Extracting the solution

m How can the final solution be extracted once the table has been filled?

Extracting the solution

m How can the final solution be extracted once the table has been filled?

m Consider all entries to find one with a longest sequence. From
there, we can reconstruct the solution by following the
corresponding predecessors.

3. In-Class Exercises

Implement a DP solution in the prepared CodeExpert
program. — CodeExpert

20

4. Hints for the Upcoming Exercises

Piecewise Constant Approximation

1 —o— data y N
—m—approximation fp

0.5 |
°
ol ° ®e 3 ." .. -
F JL I'. ,P a
\ | ‘
0 50 100 150 200

22

Piecewise Constant Approximation

H,,:P— P+ Z Z(yz — ur)?

IeP iel

23

Piecewise Constant Approximation

Hyy: P AyPl+ YD (v —)’

IeP iel

m P: (set of intervals I;, such that U, I, = S).

S={1,--,128}
P = {[1,20], [21, 27], [28, 69], [70, 128]}

H%y(P) =7-4+ Z Z(@/z — ,UI)2

IeP icl

m Goal: find the partition P such that H,,(P) is minimal

Piecewise Constant Approximation

Minimize
Hyy:P=APl+ YD (v — pr)?
IeP iel

Explanation of the (Hyper-)parameter ~:

my=0
Arbitrary number of intervals = Approximation = Data, many steps

H v~ oo
A single interval = Approximation = Constant, no step

~ controls the balance between regularity and fidelity to data

24

Trick: Prefix-sums

Goal: fast computation of

J
M=y (1<i<j<n)
k=i

Prefix-Sumes: ,
Vi=> y (1<k<n)
k=1
Dann
Y=Y, 14y (1<i<n) withYy:=0
Mij=Y;—Yi,

= M, ; can be computed for each pair (i,7) in O(1) after Y has been
initialized in O(n).

25

Trick

1 J
/L[i,j]_i(j_i_i_l);yi
1
- T .~ Y‘—Yz‘—
(J—Z+1)<” 2

We can also apply the same trick on
J 2
€ij = D (Y6 — Hiig))

k=i

(how?)

26

Piecewise Constant Approximation

Hyy:P=APl+ >0 (v — pr)?

1eP icl

m Goal: find the partition P such that H,,(P) is minimal

m Dynamic programming: definition of the table, computation of an
entry, calculation order, extracting solution

m Utilize™: H, (P U{[l,r)}) = H,,(P) + 7+ ep

“Assumption: P U {[l,7)} is a partition
27

	Feedback of last exercise(s)
	Repetition theory
	Quadtrees
	Dynamic Programming

	In-Class Exercises
	Hints for the Upcoming Exercises

