Exercise Session 6
Data Structures and Algorithms, D-MATH, ETH Zurich

Program of today

Feedback of last exercise

Repetition theory
Binary Trees

Repetition Theory
AVL Condition
AVL Insert

Code-Example

Open hashing:
m 7/ (k) =[In(k+1)] mod ¢

Open hashing:
m 7/(k) = [In(k + 1)] mod ¢ — not suitable: (k =0) — 0

Open hashing:
m 7/(k) = [In(k + 1)] mod ¢ — not suitable: (k =0) — 0
m s(j,k) =k mod p

Open hashing:
m 7/(k) = [In(k + 1)] mod ¢ — not suitable: (k =0) — 0
m s(j,k) = K/ mod p — not suitable: (k=0)—0,(k=1)—1

Open hashing:
m 7/(k) = [In(k +1)] mod ¢ — not suitable: (k=0) ~ 0
m s(j,k) = K/ mod p — not suitable: (k=0)—0,(k=1)—1
m s(j, k) = ((k-j) mod ¢) +1

Open hashing:
m 7/(k) = [In(k + 1)] mod ¢ — not suitable: (k =0) — 0
m s(j,k) = K/ mod p — not suitable: (k=0)—0,(k=1)—1

m s(j,k) = ((k-j)mod q) + 1 — not suitable: 1if k is multiple of ¢, and
range p — ¢ is not covered

Coocoo hashing
m Ay (k) =k mod 5, hy(k) = | k/5] mod 5

m add 27 2, 32
T1: , _, 27, , T2: , ., 5 .,
T1 s , 2, s T 2: 27, s s s

T 1: s , 27, R T 2: 2, 32, s ,

Coocoo hashing
m Ay (k) = k mod 5, hy(k) = | k/5] mod 5
m add 7: infinite loop

T1: , _,27, , __ T2: 2,32, , , _
7: T 1: ., ., T, __, __ T 2: 27, 32, , _, _
2: T 1: __, __, 2, __, __ T 227, 7, __, __, __
32: T.1: _, , 32, , _ T2: 2, 7, _, __, __
27: T 1: , , 27, s T 2: 2, 32, , s

Finding a Sub-Array

// calculating hash_a, hash_b, c_to_k
Itl window_end = from;

for(It2 current = begin; current != end;
++current, ++window_end) {
if (window_end == to) return to;
hash_b = (C * hash_b % M + *current) % M;
hash a = (C * hash_a % M + *window_end) % M;
c_to_k = c_to_k * C % M;

Finding a Sub-Array

// looking for b and updating hash_a
for(Itl window_begin = from; ;
++window_begin, ++window_end) {
if (hash_a == hash_b)
if(std::equal(window_begin, window_end, begin, end))
return window_begin;
if (window_end == to) return to;
hash_a = (C * hash_a % M + *window_end
+ (M - c_to_k) * *window_begin % M) % M;

2. Repetition theory

Comparison of binary Trees

Search trees Heaps Balanced trees AVL,
Min- / Max- Heap red-black tree
in C++: std: :make_heap std: map
9
/5\/ - 16\ / \
L O / \ / \ \2 / \6
1 4 /
5 1 \7
Insertion ©(h(T)) O(logn) O©(logn)
Search ©(h(T)) O(n) (1) O©(logn)
Deletion O(h(T)) Search + ©(logn) O(logn)

https://en.cppreference.com/w/cpp/algorithm/make_heap
https://en.cppreference.com/w/cpp/container/map

Comparison of binary Trees

Search trees Heaps Balanced trees AVL,
Min- / Max- Heap red-black tree
in C++: std: :make_heap std: map
9
/5\/ - 16\ / \
L O / \ / \ \2 / \6
1 4 /
5 1 \7
Insertion ©(h(T)) O(logn) O©(logn)
Search ©(h(T)) O(n) (1) O©(logn)
Deletion O(h(T)) Search + ©(logn) O(logn)

Remark: O(logn)< O(h(T))< O(n)

https://en.cppreference.com/w/cpp/algorithm/make_heap
https://en.cppreference.com/w/cpp/container/map

Repetition: Binary Trees, Inserting a Key

Binary Search Trees MinHeap
m Search for Key. m Insert at the very back of the Array.
m Insert at the reached empty m Restore Heap-Condition: siftUp (climb

leaf (null). successively).

Repetition: Binary Trees, Inserting a Key

Binary Search Trees MinHeap
m Search for Key. m Insert at the very back of the Array.
m Insert at the reached empty m Restore Heap-Condition: siftUp (climb
leaf (null). successively).

Exercise: Insert 4,8,16,1,6,7 into empty Tree/Heap.

Repetition: Binary Trees, Inserting a Key

Binary Search Trees MinHeap
m Search for Key. m Insert at the very back of the Array.
m Insert at the reached empty m Restore Heap-Condition: siftUp (climb

leaf (null). successively).

Repetition: Binary Trees, Inserting a Key

Binary Search Trees MinHeap
m Search for Key. m Insert at the very back of the Array.
m Insert at the reached empty m Restore Heap-Condition: siftUp (climb
leaf (null). successively).

Repetition: Binary Trees, Deleting a Key

Binary Search Trees MinHeap
m Replace key k by symmetric m Replace key by last element of the array.
Successor n. m Restore Heap-Condition: siftDown oOr
m Careful: What about right siftUp.

child of n?

Repetition: Binary Trees, Deleting a Key

Binary Search Trees MinHeap
m Replace key k by symmetric m Replace key by last element of the array.
Successor n. m Restore Heap-Condition: siftDown oOr
m Careful: What about right siftUp.
child of n?

Exercise: Delete 4 from Example Tree/Heap.

Repetition: Binary Trees, Deleting a Key

Binary Search Trees MinHeap
m Replace key k by symmetric m Replace key by last element of the array.
Successor n. m Restore Heap-Condition: siftDown oOr
m Careful: What about right siftUp.

child of n?
@ (1)
(6] O,

Traversal possibilities

m preorder: v, then Tieg (v), then g (v). 8
3 \/ \/13
5 10
/
4

m postorder: Tieq (v), then Tiigne (v), then v.

\

19
m inorder: Tier (v), then v, then Thign (v).

/

9

Traversal possibilities

m preorder: v, then Tieg (v), then g (v). 8
8,3,5, 413,10, 9,19 / \
3 13
m postorder: Tieq (v), then Tiigne (v), then v. \ / \
5 10
4

19
m inorder: Tier (v), then v, then Thign (v).

/

9

Traversal possibilities

m preorder: v, then Tieg (v), then g (v). 8
8,3,5, 413,10, 9,19 / \
m postorder: Tieq (v), then Tiigne (v), then v. 3\ /13
4,5,3,9 10,19, 13, 8 5 o
4

m inorder: Tier (v), then v, then Thign (v).

\

19

/

9

Traversal possibilities

m preorder: v, then T (v), then T (v). 8

g, 3,5, 4,13, 10, 9,1‘19&() () / \

m postorder: Tieq (v), then Tiigne (v), then v. 3\ /13
4,5,3,9 10,1913, 8 5 o

m inorder: Tier (v), then v, then Thign (v). /
3,4,5,8,910,13,19 4

\

19

/

9

Quiz

Draw a binary search tree each that represents the following traversals. Is
the tree unique?

inorder 12345678

preorder | 43128657

postorder | 1325687 4
Provide for each order a sequence of numbers from {1,...,4} such that it
cannot result from a valid binary search tree

Answers

inorder: any binary search tree with numbers {1,...,8} is valid.

The tree is not unique
There is no search tree for any non-sorted sequence. Counterexample 12 4

3

Answers

preorder 43128657

3/ \8
1/ 6/
VA

Tree is unique

It must hold recursively that first there is a group of numbers with lower and then
with higher number than the first value. Counterexample: 314 2

Answers

postorder 13256874

Tree is unique

Construction here: https://www.techiedelight.com/

build-binary-search-tree-from-postorder-sequence/, similar argument as
before, but backwards. Counterexample 4213

https://www.techiedelight.com/build-binary-search-tree-from-postorder-sequence/
https://www.techiedelight.com/build-binary-search-tree-from-postorder-sequence/

On the following Min-Heap, perform an extract-min operation, including
re-establishing the heap-condition, as shown in class. What does the heap
look like after the operation?

16

Quiz: Number of MaxHeaps on n keys

Let N(n) denote the number of distinct Max-Heaps which can be built
from all the keys 1,2, ...,n. For example we have

N(1)=1, N(2)=1, N(3) =2, N(4) =3 und N(5) =8.

Find the values N(6) and N (7).

Number of MaxHeaps on n distinct keys

A MaxHeap containing the elements 1,2, 3,4, 5,6 has the structure:

Number of combinations to choose elements for the left subtree: (g)
= N(6) = (2) “N(3)-N(2)=10-2-1 = 20.

and N(7) = (g) N(3)- N(3) = 20-2-2 = 80.

AVL Condition

h+2

h h+1

AVL Condition: for eacn node v of a tree
bal(v) € {—1,0,1}

20

Balance at Insertion Point

VANEVAN /NN
ANVANA ANEERVAR A
case 1: bal(p) = +1 case 2: bal(p) = —1

Finished in both cases because the subtree height did not change

21

Balance at Insertion Point

/N /N ANEVAN
- A

case 3.1: bal(p) = 0 right case 3.2: bal(p) = 0, left

Not finished in both case. Call of upin(p)

22

upin(p) - invariant

When upin(p) is called it holds that

m the subtree from p is grown and
m bal(p) € {—1,+1}

23

upin(p)

Assumption: p is left son of pp'
AR R R
ANEEA AV A

case 1: bal(pp) = +1, done. case 2: bal(pp) = 0, upin(pp)

In both cases the AVL-Condition holds for the subtree from pp

TIf p is a right son: symmetric cases with exchange of +1 and —1
2

upin(p)

Assumption: p is left son of pp

pp -1

o/ N\
/\

case 3: bal(pp) = —1,

This case is problematic: adding n to the subtree from pp has violated the
AVL-condition. Re-balance!

Two cases bal(p) = —1, bal(p) = +1

25

case 11 bal(p) = —1. 2

h/j:Q
pp Yy -2
pxz -1

7N\

to

ty
h

- right

}L:Fl h,j:l
ppx 0

7 N
rota:ti>on / \

Zp right son: = bal(pp) = bal(p) = +1, left rotation

26

case 11 bal(p) = —1.

h+2
pp

e

px +1

3

z

t3

-2

N
N

ty

=
double
rotation

h-1 left-right

h—1 h—2

B D) S

1

3p right son = bal(p']vo) - 41, bal(p) = —1, double rotation right left

7N\

t
h—1

pp Yy 0
z 0/—-1 z +1/0
t; t;
ty
h—1 h—2 h —
h—2 h—1

27

In the following AVL tree, insert key 12 and rebalance (as shown in class).
What does the AVL tree look like after performing the operation that has
been shown in class ?

28

c
(@)
=)
=
o
g}

Code-Example

Exercise class 06: Binary Trees on Code-Expert

m Binary Tree: Simple Tasks
m Augmenting a Binary Search Tree: Preparation for AVL- trees

30

Questions ?

	Feedback of last exercise
	Repetition theory
	Binary Trees

	Repetition Theory
	AVL Condition
	AVL Insert

	Code-Example

