

Exercise Session 6

Data Structures and Algorithms, D-MATH, ETH Zurich

Program of today

Feedback of last exercise
Repetition theory
Binary Trees
Repetition Theory
AVL Condition
AVL Insert
Code-Example

Feedback

Open hashing:
■ $h^{\prime}(k)=\lceil\ln (k+1)\rceil \bmod q$

Feedback

Open hashing:
■ $h^{\prime}(k)=\lceil\ln (k+1)\rceil \bmod q \rightarrow$ not suitable: $(k=0) \mapsto 0$

Feedback

Open hashing:

- $h^{\prime}(k)=\lceil\ln (k+1)\rceil \bmod q \rightarrow$ not suitable: $(k=0) \mapsto 0$

■ $s(j, k)=k^{j} \bmod p$

Feedback

Open hashing:
■ $h^{\prime}(k)=\lceil\ln (k+1)\rceil \bmod q \rightarrow$ not suitable: $(k=0) \mapsto 0$
$\square s(j, k)=k^{j} \bmod p \rightarrow$ not suitable: $(k=0) \mapsto 0,(k=1) \mapsto 1$

Feedback

Open hashing:
■ $h^{\prime}(k)=\lceil\ln (k+1)\rceil \bmod q \rightarrow$ not suitable: $(k=0) \mapsto 0$
■ $s(j, k)=k^{j} \bmod p \rightarrow$ not suitable: $(k=0) \mapsto 0,(k=1) \mapsto 1$
■ $s(j, k)=((k \cdot j) \bmod q)+1$

Feedback

Open hashing:

- $h^{\prime}(k)=\lceil\ln (k+1)\rceil \bmod q \rightarrow$ not suitable: $(k=0) \mapsto 0$

■ $s(j, k)=k^{j} \bmod p \rightarrow$ not suitable: $(k=0) \mapsto 0,(k=1) \mapsto 1$
■ $s(j, k)=((k \cdot j) \bmod q)+1 \rightarrow$ not suitable: 1 if k is multiple of q, and range $p-q$ is not covered

Feedback

Coocoo hashing

■ $h_{1}(k)=k \bmod 5, h_{2}(k)=\lfloor k / 5\rfloor \bmod 5$
■ add $27,2,32$

$$
\begin{aligned}
& \text { T_1: __, __, 27, __, _- } \\
& \text { T_2: __, __, __, __, _- } \\
& \text { T_1: __, __, 2, __, _- } \\
& \text { T_2: 27, __, __, __, _- } \\
& \text { T_1: __, __, 27, __, __ } \\
& \text { T_2: 2, 32, } \\
& \text { _-, } \\
& \text {-_ }
\end{aligned}
$$

Feedback

Coocoo hashing

■ $h_{1}(k)=k \bmod 5, h_{2}(k)=\lfloor k / 5\rfloor \bmod 5$
■ add 7: infinite loop

Feedback

Finding a Sub-Array

```
// calculating hash_a, hash_b, c_to_k
It1 window_end = from;
for(It2 current = begin; current != end;
    ++current, ++window_end) {
    if(window_end == to) return to;
    hash_b = (C * hash_b % M + *current) % M;
    hash_a = (C * hash_a % M + *window_end) % M;
    c_to_k = c_to_k * C % M;
}
```


Feedback

```
Finding a Sub-Array
// looking for b and updating hash_a
for(It1 window_begin = from; ;
    ++window_begin, ++window_end) {
    if(hash_a == hash_b)
        if(std::equal(window_begin, window_end, begin, end))
            return window_begin;
    if(window_end == to) return to;
    hash_a = (C * hash_a % M + *window_end
        + (M - c_to_k) * *window_begin % M) % M;
}
```


2. Repetition theory

Comparison of binary Trees

	Search trees	Heaps Min- / Max- Heap	Balanced trees AVL, red-black tree
in C++:		std::make_heap	std::map
Insertion $\Theta(h(T))$	$\Theta(\log n)$	$\Theta(\log n)$	
Search $\Theta(h(T))$	$\Theta(n)(!!)$	$\Theta(\log n)$	
Deletion $\Theta(h(T))$	Search $+\Theta(\log n)$	$\Theta(\log n)$	

Comparison of binary Trees

	Search trees	Heaps Min-/ Max-Heap	Balanced trees red-black tree
in C++:		std::make_heap	std::map
Insertion	$\Theta(h(T))$	$\Theta(\log n)$	$\Theta(\log n)$
Search $\Theta(h(T))$	$\Theta(n)(!!)$	$\Theta(\log n)$	
Deletion	$\Theta(h(T))$	$\operatorname{Search}+\Theta(\log n)$	$\Theta(\log n)$
	Remark: $\Theta(\log n) \leq \Theta(h(T)) \leq \Theta(n)$		

Repetition: Binary Trees, Inserting a Key

Binary Search Trees

■ Search for Key.
■ Insert at the reached empty leaf (null).

MinHeap

■ Insert at the very back of the Array.
■ Restore Heap-Condition: siftUp (climb successively).

Repetition: Binary Trees, Inserting a Key

Binary Search Trees

- Search for Key.

■ Insert at the reached empty leaf (null).

MinHeap

■ Insert at the very back of the Array.
■ Restore Heap-Condition: siftUp (climb successively).

Exercise: Insert 4, 8, 16, 1, 6, 7 into empty Tree/Heap.

Repetition: Binary Trees, Inserting a Key

Binary Search Trees

■ Search for Key.
■ Insert at the reached empty leaf (null).

MinHeap

■ Insert at the very back of the Array.
■ Restore Heap-Condition: siftUp (climb successively).

Repetition: Binary Trees, Inserting a Key

Binary Search Trees

■ Search for Key.
■ Insert at the reached empty leaf (null).

MinHeap

■ Insert at the very back of the Array.
■ Restore Heap-Condition: siftUp (climb successively).

Repetition: Binary Trees, Deleting a Key

Binary Search Trees

■ Replace key k by symmetric successor n.

- Careful: What about right child of n ?

MinHeap

■ Replace key by last element of the array.
■ Restore Heap-Condition: siftDown or siftUp.

Repetition: Binary Trees, Deleting a Key

Binary Search Trees

■ Replace key k by symmetric successor n.
■ Careful: What about right child of n ?

MinHeap

■ Replace key by last element of the array.

- Restore Heap-Condition: siftDown or siftUp.

Exercise: Delete 4 from Example Tree/Heap.

Repetition: Binary Trees, Deleting a Key

Binary Search Trees

■ Replace key k by symmetric successor n.
■ Careful: What about right child of n ?

MinHeap

■ Replace key by last element of the array.
■ Restore Heap-Condition: siftDown or siftUp.

Traversal possibilities

■ preorder: v, then $T_{\text {left }}(v)$, then $T_{\text {right }}(v)$.
■ postorder: $T_{\text {left }}(v)$, then $T_{\text {right }}(v)$, then v.
■ inorder: $T_{\text {left }}(v)$, then v, then $T_{\text {right }}(v)$.

Traversal possibilities

■ preorder: v, then $T_{\text {left }}(v)$, then $T_{\text {right }}(v)$. $8,3,5,4,13,10,9,19$
■ postorder: $T_{\text {left }}(v)$, then $T_{\text {right }}(v)$, then v.
■ inorder: $T_{\text {left }}(v)$, then v, then $T_{\text {right }}(v)$.

Traversal possibilities

■ preorder: v, then $T_{\text {left }}(v)$, then $T_{\text {right }}(v)$. $8,3,5,4,13,10,9,19$

- postorder: $T_{\text {left }}(v)$, then $T_{\text {right }}(v)$, then v. 4, 5, 3, 9, 10, 19, 13, 8
- inorder: $T_{\text {left }}(v)$, then v, then $T_{\text {right }}(v)$.

Traversal possibilities

■ preorder: v, then $T_{\text {left }}(v)$, then $T_{\text {right }}(v)$. $8,3,5,4,13,10,9,19$

- postorder: $T_{\text {left }}(v)$, then $T_{\text {right }}(v)$, then v. 4, 5, 3, 9, 10, 19, 13, 8
- inorder: $T_{\text {left }}(v)$, then v, then $T_{\text {right }}(v)$. $3,4,5,8,9,10,13,19$

Quiz

Draw a binary search tree each that represents the following traversals. Is the tree unique?

inorder	12345678
preorder	43128657
postorder	13256874

Provide for each order a sequence of numbers from $\{1, \ldots, 4\}$ such that it cannot result from a valid binary search tree

Answers

inorder: any binary search tree with numbers $\{1, \ldots, 8\}$ is valid.
The tree is not unique
There is no search tree for any non-sorted sequence. Counterexample 124 3

Answers

preorder 43128657

Tree is unique

 It must hold recursively that first there is a group of numbers with lower and then with higher number than the first value. Counterexample: 3142
Answers

postorder 13256874

Tree is unique
Construction here: https://www.techiedelight.com/
build-binary-search-tree-from-postorder-sequence/, similar argument as before, but backwards. Counterexample 4213

Heap

On the following Min-Heap, perform an extract-min operation, including re-establishing the heap-condition, as shown in class. What does the heap look like after the operation?

Solution

Quiz: Number of MaxHeaps on n keys

Let $N(n)$ denote the number of distinct Max-Heaps which can be built from all the keys $1,2, \ldots, n$. For example we have $N(1)=1, N(2)=1, N(3)=2, N(4)=3$ und $N(5)=8$.
Find the values $N(6)$ and $N(7)$.

Number of MaxHeaps on n distinct keys

A MaxHeap containing the elements $1,2,3,4,5,6$ has the structure:

Number of combinations to choose elements for the left subtree: $\binom{5}{3}$.

$$
\begin{aligned}
& \quad \Rightarrow N(6)=\binom{5}{3} \cdot N(3) \cdot N(2)=10 \cdot 2 \cdot 1=20 \\
& \text { and } N(7)=\binom{6}{3} \cdot N(3) \cdot N(3)=20 \cdot 2 \cdot 2=80
\end{aligned}
$$

AVL Condition

Balance at Insertion Point

Finished in both cases because the subtree height did not change

Balance at Insertion Point

case 3.1: $\operatorname{bal}(p)=0$ right

case 3.2: $\operatorname{bal}(p)=0$, left

Not finished in both case. Call of upin(p)

upin(p) - invariant

When $\operatorname{upin}(p)$ is called it holds that
\square the subtree from p is grown and
■ $\operatorname{bal}(p) \in\{-1,+1\}$

$\operatorname{upin}(p)$

Assumption: p is left son of $p p^{1}$

In both cases the AVL-Condition holds for the subtree from $p p$
${ }^{1}$ If p is a right son: symmetric cases with exchange of +1 and -1

upin(p)

Assumption: p is left son of $p p$

$$
\operatorname{case} 3: \operatorname{bal}(p p)=-1,
$$

This case is problematic: adding n to the subtree from $p p$ has violated the AVL-condition. Re-balance!
Two cases $\operatorname{bal}(p)=-1, \operatorname{bal}(p)=+1$

Rotations

case $1.1 \operatorname{bal}(p)=-1 .{ }^{2}$

${ }^{2} p$ right son: $\Rightarrow \operatorname{bal}(p p)=\operatorname{bal}(p)=+1$, left rotation

Rotations

case $1.1 \operatorname{bal}(p)=-1 .{ }^{3}$

${ }^{3} p$ right son $\stackrel{h-2}{\Rightarrow} \operatorname{bal}(p p)=+1, \operatorname{bal}(p)=-1$, double rotation right left

Quiz

In the following AVL tree, insert key 12 and rebalance (as shown in class). What does the AVL tree look like after performing the operation that has been shown in class?

Solution

Code-Example

Exercise class 06: Binary Trees on Code-Expert
■ Binary Tree: Simple Tasks
■ Augmenting a Binary Search Tree: Preparation for AVL- trees

Questions?

