ETH zürich

Exercise Session 6

Data Structures and Algorithms, D-MATH, ETH Zurich

Program of today

Feedback of last exercise

Repetition theory Binary Trees

Repetition Theory
AVL Condition
AVL Insert

Code-Example

Open hashing:

$$h'(k) = \lceil \ln(k+1) \rceil \bmod q$$

Open hashing:

■
$$h'(k) = \lceil \ln(k+1) \rceil \mod q \to \text{not suitable: } (k=0) \mapsto 0$$

Open hashing:

- $h'(k) = \lceil \ln(k+1) \rceil \mod q \to \text{not suitable: } (k=0) \mapsto 0$

Open hashing:

- $h'(k) = \lceil \ln(k+1) \rceil \mod q \to \text{not suitable: } (k=0) \mapsto 0$
- \bullet $s(j,k)=k^j \bmod p o ext{not suitable: } (k=0) \mapsto 0, (k=1) \mapsto 1$

Open hashing:

- $h'(k) = \lceil \ln(k+1) \rceil \mod q \to \text{not suitable: } (k=0) \mapsto 0$
- \bullet $s(j,k)=k^j \bmod p \to \mathsf{not} \ \mathsf{suitable} \colon (k=0) \mapsto 0, (k=1) \mapsto 1$
- $s(j,k) = ((k \cdot j) \bmod q) + 1$

Open hashing:

- $h'(k) = \lceil \ln(k+1) \rceil \mod q \to \text{not suitable: } (k=0) \mapsto 0$
- \bullet $s(j,k)=k^j \bmod p \to \mathsf{not} \ \mathsf{suitable} \colon (k=0) \mapsto 0, (k=1) \mapsto 1$
- $s(j,k) = ((k \cdot j) \bmod q) + 1 \to \text{not suitable: 1 if } k \text{ is multiple of } q, \text{ and range } p-q \text{ is not covered}$

Coocoo hashing

- $\blacksquare h_1(k) = k \mod 5, h_2(k) = \lfloor k/5 \rfloor \mod 5$
- **add** 27, 2, 32

```
T_1: __, __, 27, __, __ T_2: __, __, __, __, __

T_1: __, __, 2, __, __ T_2: 27, __, __, __, __

T_1: __, __, 27, __, __ T_2: 2, 32, __, __, __
```

Coocoo hashing

- $\blacksquare h_1(k) = k \bmod 5, h_2(k) = \lfloor k/5 \rfloor \bmod 5$
- add 7: infinite loop

```
T_1: __, __, 27, __, __ T_2: 2, 32, __, __, __

7: T_1: __, __, 7, __, __ T_2: 27, 32, __, __, __

2: T_1: __, __, 2, __, __ T_2: 27, 7, __, __, __

32: T_1: __, __, 32, __, __ T_2: 2, 7, __, __, __

27: T_1: __, __, 27, __, __ T_2: 2, 32, __, __, __

7: ...
```

```
Finding a Sub-Array
// calculating hash a, hash b, c to k
It1 window end = from:
for(It2 current = begin; current != end;
   ++current, ++window end) {
 if(window end == to) return to;
 hash b = (C * hash b % M + *current) % M;
 hash a = (C * hash a % M + *window end) % M;
 c to k = c to k * C % M:
```

```
Finding a Sub-Array
// looking for b and updating hash a
for(It1 window begin = from; ;
   ++window begin, ++window end) {
 if(hash a == hash b)
   if(std::equal(window_begin, window_end, begin, end))
     return window begin;
 if(window end == to) return to;
 hash a = (C * hash a % M + *window end
          + (M - c_to_k) * *window_begin % M) % M;
```

2. Repetition theory

Comparison of binary Trees

	Search trees	Heaps Min- / Max- Heap	Balanced trees AVL, red-black tree
in C++:		std::make_heap	std::map
	3 5 7 16	5 7 3 2 9 1	3 9 16
Insertion	$\Theta(h(T))$	$\Theta(\log n)$	$\Theta(\log n)$
Search	$\Theta(h(T))$	$\Theta(n)$ (!!)	$\Theta(\log n)$
Deletion	$\Theta(h(T))$	Search + $\Theta(\log n)$	$\Theta(\log n)$

Comparison of binary Trees

	Search trees	Heaps Min- / Max- Heap	Balanced trees AVL, red-black tree
in C++:		std::make_heap	std::map
	3 5 7 16 1 4 2	16 9 4	3 9 16
Insertion	$\Theta(h(T))$	$\Theta(\log n)$	$\Theta(\log n)$
Search	$\Theta(h(T))$	$\Theta(n)$ (!!)	$\Theta(\log n)$
Deletion	$\Theta(h(T))$	Search + $\Theta(\log n)$	$\Theta(\log n)$

Remark: $\Theta(\log n) \le \Theta(h(T)) \le \Theta(n)$

Binary Search Trees

- Search for Key.
- Insert at the reached empty leaf (null).

- Insert at the very back of the Array.
- Restore Heap-Condition: siftUp (climb successively).

Binary Search Trees

- Search for Key.
- Insert at the reached empty leaf (null).

MinHeap

- Insert at the very back of the Array.
- Restore Heap-Condition: siftUp (climb successively).

Exercise: Insert 4, 8, 16, 1, 6, 7 into empty Tree/Heap.

Binary Search Trees

- Search for Key.
- Insert at the reached empty leaf (null).

- Insert at the very back of the Array.
- Restore Heap-Condition: siftUp (climb successively).

Binary Search Trees

- Search for Key.
- Insert at the reached empty leaf (null).

- Insert at the very back of the Array.
- Restore Heap-Condition: siftUp (climb successively).

Binary Search Trees

- Replace key k by symmetric successor n.
- Careful: What about right child of *n*?

- Replace key by last element of the array.
- Restore Heap-Condition: siftDown or siftUp.

Binary Search Trees

- Replace key k by symmetric successor n.
- Careful: What about right child of *n*?

MinHeap

- Replace key by last element of the array.
- Restore Heap-Condition: siftDown or siftUp.

Exercise: Delete 4 from Example Tree/Heap.

Binary Search Trees

- Replace key *k* by symmetric successor *n*.
- Careful: What about right child of *n*?

- Replace key by last element of the array.
- Restore Heap-Condition: siftDown or siftUp.

- lacksquare preorder: v, then $T_{\text{left}}(v)$, then $T_{\text{right}}(v)$.
- lacksquare postorder: $T_{\mathrm{left}}(v)$, then $T_{\mathrm{right}}(v)$, then v.
- lacksquare inorder: $T_{\mathrm{left}}(v)$, then v, then $T_{\mathrm{right}}(v)$.

- preorder: v, then $T_{\text{left}}(v)$, then $T_{\text{right}}(v)$. 8, 3, 5, 4, 13, 10, 9, 19
- lacksquare postorder: $T_{\mathrm{left}}(v)$, then $T_{\mathrm{right}}(v)$, then v.
- lacksquare inorder: $T_{\mathrm{left}}(v)$, then v, then $T_{\mathrm{right}}(v)$.

- preorder: v, then $T_{\text{left}}(v)$, then $T_{\text{right}}(v)$. 8, 3, 5, 4, 13, 10, 9, 19
- postorder: $T_{\rm left}(v)$, then $T_{\rm right}(v)$, then v. 4, 5, 3, 9, 10, 19, 13, 8
- \blacksquare inorder: $T_{\text{left}}(v)$, then v, then $T_{\text{right}}(v)$.

- preorder: v, then $T_{\text{left}}(v)$, then $T_{\text{right}}(v)$. 8, 3, 5, 4, 13, 10, 9, 19
- postorder: $T_{\rm left}(v)$, then $T_{\rm right}(v)$, then v. 4, 5, 3, 9, 10, 19, 13, 8
- inorder: $T_{\text{left}}(v)$, then v, then $T_{\text{right}}(v)$. 3, 4, 5, 8, 9, 10, 13, 19

Quiz

Draw a binary search tree each that represents the following traversals. Is the tree unique?

inorder	12345678
preorder	43128657
postorder	13256874

Provide for each order a sequence of numbers from $\{1,\ldots,4\}$ such that it cannot result from a valid binary search tree

Answers

inorder: any binary search tree with numbers $\{1,\ldots,8\}$ is valid. The tree is not unique There is no search tree for any non-sorted sequence. Counterexample 1 2 4 3

Answers

preorder 4 3 1 2 8 6 5 7

Tree is unique

It must hold recursively that first there is a group of numbers with lower and then with higher number than the first value. Counterexample: 3 1 4 2

Answers

postorder 1 3 2 5 6 8 7 4

Tree is unique

Construction here: https://www.techiedelight.com/

build-binary-search-tree-from-postorder-sequence/, similar argument as

before, but backwards. Counterexample 4 2 1 3

Heap

On the following Min-Heap, perform an extract-min operation, including re-establishing the heap-condition, as shown in class. What does the heap look like after the operation?

Solution

Quiz: Number of MaxHeaps on n keys

Let N(n) denote the number of distinct Max-Heaps which can be built from all the keys $1,2,\ldots,n$. For example we have $N(1)=1,\ N(2)=1,\ N(3)=2,\ N(4)=3$ und N(5)=8. Find the values N(6) and N(7).

Number of MaxHeaps on n distinct keys

A MaxHeap containing the elements 1, 2, 3, 4, 5, 6 has the structure:

Number of combinations to choose elements for the left subtree: $\binom{5}{3}$.

$$\Rightarrow N(6) = {5 \choose 3} \cdot N(3) \cdot N(2) = 10 \cdot 2 \cdot 1 = 20.$$

and
$$N(7) = \binom{6}{3} \cdot N(3) \cdot N(3) = 20 \cdot 2 \cdot 2 = 80.$$

AVL Condition

AVL Condition: for eacn node v of a tree $\mathrm{bal}(v) \in \{-1,0,1\}$

Balance at Insertion Point

Finished in both cases because the subtree height did not change

Balance at Insertion Point

Not finished in both case. Call of upin(p)

upin(p) - invariant

When upin(p) is called it holds that

- \blacksquare the subtree from p is grown and
- $bal(p) \in \{-1, +1\}$

upin(p)

Assumption: p is left son of pp^1

In both cases the AVL-Condition holds for the subtree from pp

 $^{^{1}\}mathrm{lf}\,p$ is a right son: symmetric cases with exchange of +1 and -1

upin(p)

Assumption: p is left son of pp

This case is problematic: adding n to the subtree from pp has violated the AVL-condition. Re-balance!

Two cases bal(p) = -1, bal(p) = +1

Rotations

case 1.1 bal(p) = -1. ²

 $^{^2}p$ right son: \Rightarrow bal(pp) =bal(p) = +1, left rotation

Rotations

case 1.1 bal(p) = -1. ³

 3p right son \Rightarrow bal(pp) = +1, bal(p) = -1, double rotation right left

Quiz

In the following AVL tree, insert key 12 and rebalance (as shown in class). What does the AVL tree look like after performing the operation that has been shown in class?

Solution

Code-Example

Exercise class 06: Binary Trees on Code-Expert

- Binary Tree: Simple Tasks
- Augmenting a Binary Search Tree: Preparation for AVL- trees

Questions?