Exercise Session 5
Data Structures and Algorithms, D-MATH, ETH Zurich

Program of today

Feedback of last exercise
Repetition theory

Programming Task

Exercise Review: "Comparing Sorting Algorithms"

Bubblesort min max
Comparisons O(n?) O(n?)
Sequence any any
Swaps 0 O(n?)

Sequence 1,2,....n n,n—1,...,1

Exercise Review: "Comparing Sorting Algorithms"

InsertionSort min max
Comparisons O(n) O(n?)
Sequence 1.2,....n nn—1,...,1
Swaps 0 O(n?)
Sequence 1.2,....n nn—1,...,1
SelectionSort min max
Comparisons O(n?) O(n?)
Sequence any any

Swaps 0 O(n)
Sequence 1,2,....n n,n—1,...,1

Exercise Review: "Comparing Sorting Algorithms"

QuickSort min max
Comparisons O(nlogn) O(n?)
Sequence complex 1,2,...,n
Swaps O(n) O(nlogn)
Sequence 1,2,...,n complex

complex: Sequence must be made such that the pivot halves the sorting
range. For example (n = 7): 4,5,7,6,2,1,3

Amortized analysis: push_back

Strategy: double if array is full.

Amortized analysis: push_back

Strategy: double if array is full.

Let i € N be the number of elements appended and let n; € N be the
array size allocated after appending i.

It holds that
)
) 1
1 if i = 1 [Start])
ni=1<2-n;_; ifi—1¢€{2": ke N} [Array full] 3
Ni_1 otherwise 4
5
6

S

0 oo~ BN

7

Amortized analysis: push_back

Strategy: double if array is full.

TAccording to the task description: 2n initialisations, n copies, 1 new element

Amortized analysis: push_back

Strategy: double if array is full.

Real costs
1 if i = 1 [Start]
ti=<3n;1+1 ifi—1€{2F: ke N} [Array fulll
1 otherwise

TAccording to the task description: 2n initialisations, n copies, 1 new element

Amortized analysis: push_back

Strategy: double if array is full.

Real costs
1 if i = 1 [Start]
ti=<3n;1+1 ifi—1€{2F: ke N} [Array fulll
1 otherwise

Find potential function such that the amortized costs are constant:

a; :ti +(I)l — (I)ifl

TAccording to the task description: 2n initialisations, n copies, 1 new element

Amortized analysis: push_back

Strategy: double if array is full.
Find potential function such that the amortized costs are constant:

a; :tz’ —I-q)i — (I)i—l

Amortized analysis: push_back

Strategy: double if array is full.
Find potential function such that the amortized costs are constant:

a; :tz‘ —I-q)i — (I)i—l

®, = 6 - number of elements in the upper half of the array

:6~(i—%):6@'—3ni

Amortized analysis: push_back

Strategy: double if array is full.
Find potential function such that the amortized costs are constant:

a; :tz‘ —I-q)i — (I)i—l

®, = 6 - number of elements in the upper half of the array

:6~(i—%):6@'—3ni

21
B, — P, , — J6+3n1—3 7 ifi—1e{2": ke N} [Array full]
6 otherwise

= 7 > q; (in both cases)

Amortized analysis: push_back

Strategy: double if array is full.
Find potential function such that the amortized costs are constant:

a;=1;+ P — ;y
B {3ni_1 +14+6—3n_y ifi—1€{2¢: ke N}[Array full]
1+6 otherwise
<7 foralli

Amortized analysis: pop_back

Strategy: halve if array is three quarters empty.

Amortized analysis: pop_back

Strategy: halve if array is three quarters empty.

o {1 if array is more than quarter full

Ml Ml — 3y, otherwise, then n; = "5t

4 4 2

Amortized analysis: pop_back

Strategy: halve if array is three quarters empty.

o {1 if array is more than quarter full

Mol oy Mol — 3., otherwise, then n, = "5t

2 4 4 2

Find potential function such that the amortized costs are constant:
a; = ti + (I)z — q)z'—l

Amortized analysis: pop_back

Strategy: halve if array is three quarters empty.

Ml Ml — 3y, otherwise, then n; = "5t
Find potential function such that the amortized costs are constant:
a; = ti + (I)z — q)z'—l

Let k; be the number of elements in the array in step i

o {1 if array is more than quarter full

®, = 3 - number of empty elements in the lower half of array (1,.. ., n)

2

Amortized analysis: pop_back

Strategy: halve if array is three quarters empty.

Ml Ml — 3y, otherwise, then n; = "5t
Find potential function such that the amortized costs are constant:
a; = ti + (I)z — q)z'—l

Let k; be the number of elements in the array in step i

o {1 if array is more than quarter full

®, = 3 - number of empty elements in the lower half of array (1,.. ., g)
n;
=3 (5 - kz)

= 4 > q, (in both cases)

Amortized analysis: pop_back

Strategy: halve if array is three quarters empty. Find potential function
such that the amortized costs are constant:

a; = tz—i‘q)z — q)z'—l

3 if array is more than quarter full
¢ — Py = nic1 M1 .
3- (1 + =t ==)) otherwise

Amortized analysis: pop_back

Strategy: halve if array is three quarters empty. Find potential function
such that the amortized costs are constant:

a; = tz—i‘q)z — q)z'—l

(I)z =9 \5F — kz
3+ (5 — k)
3 if array is more than quarter full
¢ — Py = nic1 M1 .
3- (1 + = = =5)) otherwise

= 4 > q; (in both cases)

Amortized analysis: pop and push

®, = 6 - number elements in the upper half
+ 3 - number empty slots in the lower half

2. Repetition theory

Hashing well-done

Useful Hashing...

m distributes the keys as uniformly as possible in the hash table.

m avoids probing over long areas of used entries
(e.g. primary clustering).

m avoids using the same probing sequence for keys with the same hash
value (e.g. secondary clustering).

Hashing Examples

Insert the keys 25,4, 17,45 into the hash table, using the function
h(k) = k mod 7 and probing to the right, h(k) + s(j, k):

m linear probing,
S(j> k) =7
m quadratic probing,
s(4, k) = (=1)7T1[5/2]2
m Double Hashing,
s(j, k) =7 - (1 + (k mod 5)).

Hashing Examples

Insert the keys 25,4, 17,45 into the hash table, using the function
h(k) = k mod 7 and probing to the right, h(k) + s(j, k):

m linear probing,
S(j> k) =7
m quadratic probing,
s(4, k) = (=1)7T1[5/2]2
m Double Hashing,
s(j, k) =7 - (1 + (k mod 5)).

25

Hashing Examples

Insert the keys 25,4, 17,45 into the hash table, using the function
h(k) = k mod 7 and probing to the right, h(k) + s(j, k):

m linear probing,
S(j> k) =7
m quadratic probing,
s(4, k) = (=1)7T1[5/2]2
m Double Hashing,
s(j, k) =7 - (1 + (k mod 5)).

25 | 4

Hashing Examples

Insert the keys 25,4, 17,45 into the hash table, using the function
h(k) = k mod 7 and probing to the right, h(k) + s(j, k):

m linear probing,
S(j> k) =7
m quadratic probing,
s(4, k) = (=1)7T1[5/2]2
m Double Hashing,
s(j, k) =7 - (1 + (k mod 5)).

7 1 25 | 4

Hashing Examples

Insert the keys 25,4, 17,45 into the hash table, using the function
h(k) = k mod 7 and probing to the right, h(k) + s(j, k):

m linear probing,
S(j> k) =7
m quadratic probing,
s(4, k) = (=1)7T1[5/2]2
m Double Hashing,
s(j, k) =7 - (1 + (k mod 5)).

17 0 25 | 4 | 45

Hashing Examples

Insert the keys 25,4, 17,45 into the hash table, using the function
h(k) = k mod 7 and probing to the right, h(k) + s(j, k):

m linear probing, 171 251 4 | 45

(4, k) = J.
m quadratic probing,
s(j, k) = (=171 /2], 2

m Double Hashing,
s(j, k) =7 - (1 + (k mod 5)).

Hashing Examples

Insert the keys 25,4, 17,45 into the hash table, using the function
h(k) = k mod 7 and probing to the right, h(k) + s(j, k):

m linear probing, 171 251 4 | 45

(4, k) = J.
m quadratic probing,
s(j, k) = (=171 /2], I

m Double Hashing,
s(j, k) =7 - (1 + (k mod 5)).

Hashing Examples

Insert the keys 25,4, 17,45 into the hash table, using the function
h(k) = k mod 7 and probing to the right, h(k) + s(j, k):

m linear probing, 171 251 4 | 45

(4, k) = J.
m quadratic probing,
s(j, k) = (=1)7*1[j/2]*)22 8

m Double Hashing,
s(j, k) =7 - (1 + (k mod 5)).

Hashing Examples

Insert the keys 25,4, 17,45 into the hash table, using the function
h(k) = k mod 7 and probing to the right, h(k) + s(j, k):

m linear probing, 171 251 4 | 45

(4, k) = J.
m quadratic probing,
507, k) = (=171 j/2] 5117 | 25| 4

m Double Hashing,
s(j, k) =7 - (1 + (k mod 5)).

Hashing Examples

Insert the keys 25,4, 17,45 into the hash table, using the function
h(k) = k mod 7 and probing to the right, h(k) + s(j, k):

m lm.ear prqug, 17 | 25 | 4 | 45
S(J>k) =7

m quadratic probing,
s(j, k) = (—1)j+1U/2W2- 45 1 17 | 25 4

m Double Hashing,
s(,k) = j - (14 (k mod 5)). =

Hashing Examples

Insert the keys 25,4, 17,45 into the hash table, using the function
h(k) = k mod 7 and probing to the right, h(k) + s(j, k):

m lm.ear prqug, 17 | 25 | 4 | 45
S(J>k) =7

m quadratic probing,
s(j, k) = (—1)j+1U/2W2- 45 1 17 | 25 4

m Double Hashing,
s(,k) = j - (14 (k mod 5)). 4 =

Hashing Examples

Insert the keys 25,4, 17,45 into the hash table, using the function
h(k) = k mod 7 and probing to the right, h(k) + s(j, k):

m lm.ear prqug, 17 | 25 | 4 | 45
S(J>k) =7

m quadratic probing,
s(j, k) = (—1)]‘“(‘7/2}2- 45 1 17 | 25 4

m Double Hashing,
s(j, k) =7 - (14 (kmod5)). 4 | 17 | 25

Hashing Examples

Insert the keys 25,4, 17,45 into the hash table, using the function
h(k) = k mod 7 and probing to the right, h(k) + s(j, k):

m lm.ear prqug, 17 | 25 | 4 | 45
S(J>k) =7

m quadratic probing,
s(j, k) = (—1)]‘“(‘7/2}2- 45 1 17 | 25 4

m Double Hashing,
s(j, k) =7 - (14 (kmod5)). 4 | 17 | 25 | 45

Simple Uniform Hashing

Statement about the uniform distribution and independence of the keys.

Property of closed addressing: simple uniform hashing = expected length
of the chains as good as possible < a = .

Uniform Hashing

Statement about the uniform distribution and independence of key
probing sequences.

Property of open addressing: Uniform Hashing = expected runtime costs
1

— l—a”

16

Universal Hashing

Property about the available, randomly chosen hash-functions

{h € H with h(ky) = h(ks)}] < |Hm|

Property independent of chose sequence of keys: for hashing with
chaining the expected chain lengthis < a =2

Prerequisite for Perfect Hashing

3. Programming Task

Finding a Sub-Array

m Given: two integer arrays A = (aq, ...,a,-1) and B = (by, ..., bx_1)
m Task: Find position of B in A.

Finding a Sub-Array

m Given: two integer arrays A = (aq, ...,a,-1) and B = (by, ..., bx_1)
m Task: Find position of B in A.
m Naive: Loop through A, check whether the following k entries match B.

Finding a Sub-Array

m Given: two integer arrays A = (aq, ...,a,-1) and B = (by, ..., bx_1)
m Task: Find position of B in A.
m Naive: Loop through A, check whether the following k entries match B.

m O(nk) comparison operations

Finding a Sub-Array

m Given: two integer arrays A = (aq, ...,a,-1) and B = (by, ..., bx_1)
m Task: Find position of B in A.
m Naive: Loop through A, check whether the following k entries match B.

m O(nk) comparison operations

m Solution using hashing: Calculate hash h(B) and compare it to
h((ai, Gix1y -y QGitg—1))-

m Avoid re-computing h((a;, a;1,...,ai + k — 1) foreachi = O(n)
expected

Sliding Window Hash

m Possible hash function: sum of all elements:

m Can be updated easily: subtract a; and add a; .
m However: bad hash function

20

Sliding Window Hash

m Possible hash function: sum of all elements:

m Can be updated easily: subtract a; and add a; .
m However: bad hash function

m Better:
k—1 ‘
Hem((aiy - s ipg1)) = Z Qiyj - =71 mod m
j=0

®m ¢ = 1021 prime number
® m = 215 int, no overflows at calculations

20

Computing with Modulo

(a4) mod m = ((a mod m) + (b mod m)) mod m
(a —b) mod m = ((a mod m) — (b mod m) +m) mod m

(a-b) mod m = ((a mod m) - (b mod m)) mod m

Exercise: Compute

12746357 mod 11

21

Computing Modulo

Exercise: Compute

12746357 mod 11

22

Computing Modulo

Exercise: Compute

12746357 mod 11
= (74+5-10+3-10°4+6-103 +4-10* +7-10° +2-10% +1-107) mod 11

22

Computing Modulo

Exercise: Compute

12746357 mod 11
= (74+5-10+3-10°4+6-103 +4-10* +7-10° +2-10% +1-107) mod 11
= (745043460444 70 + 2 4 10) mod 11

For the second equality we used the fact that 10? mod 11 = 1.

22

Computing Modulo

Exercise: Compute

12746357 mod 11

= (74+5-10+3-10°4+6-103 +4-10* +7-10° +2-10% +1-107) mod 11
= (745043460444 70 + 2 4 10) mod 11
=(7T+6+3+5+4+4+2+10) mod 11

For the second equality we used the fact that 10? mod 11 = 1.

22

Computing Modulo

Exercise: Compute

12746357 mod 11

= (74+5-10+3-10°4+6-103 +4-10* +7-10° +2-10% +1-107) mod 11
= (745043460444 70 + 2 4 10) mod 11
=(7T+6+3+5+4+4+2+10) mod 11

= 8 mod 11.

For the second equality we used the fact that 10?2 mod 11 = 1.

22

Sliding Window Hash

template<typename Itl, typename It2>
Itl findOccurrence(const Itl from, const Itl to,
const It2 begin, const It2 end)

{
const unsigned k = end - begin;
const unsigned M = 32768;
const unsigned C = 1021;

// your code here

//

23

Sliding Window Hash

// elements can be compared using std::equal:
if(std::equal(window_left, window_right, begin, end))
return current;

// if no occurrence is found return end of array
return to;

}

24

Sliding Window Hash

Make sure that

m the algorithm computes ¢* only once,

m all computations are modulo m for all values in order not to get an
overflow (recall the rules of modular arithmetic), and

m the values are always positive (e.g., by adding multiples of m).

25

Questions?

	Feedback of last exercise
	Repetition theory
	Programming Task

