ETH zürich

Exercise Session 5

Data Structures and Algorithms, D-MATH, ETH Zurich

Program of today

Feedback of last exercise

Repetition theory

Programming Task

Exercise Review: "Comparing Sorting Algorithms"

Bubblesort	min	max
Comparisons	$\mathcal{O}(n^2)$	$\mathcal{O}(n^2)$
Sequence	any	any
Swaps	0	$\mathcal{O}(n^2)$
Sequence	$1, 2, \ldots, n$	$n,n-1,\ldots,1$

Exercise Review: "Comparing Sorting Algorithms"

InsertionSort	min	max
Comparisons	$\mathcal{O}(n)$	$\mathcal{O}(n^2)$
Sequence	$1,2,\ldots,n$	$n, n-1, \ldots, 1$
Swaps	0	$\mathcal{O}(n^2)$
Sequence	$1,2,\ldots,n$	$n, n-1, \ldots, 1$
SelectionSort	min	max
Comparisons	$\mathcal{O}(n^2)$	$\mathcal{O}(n^2)$
Sequence	any	any
Swaps	0	$\mathcal{O}(n)$
Sequence	$1, 2, \ldots, n$	$n, n-1, \ldots, 1$

Exercise Review: "Comparing Sorting Algorithms"

QuickSort	min	max
Comparisons	$\mathcal{O}(n \log n)$	$\mathcal{O}(n^2)$
Sequence	complex	$1,2,\ldots,n$
Swaps	$\mathcal{O}(n)$	$\mathcal{O}(n \log n)$
Sequence	$1, 2, \ldots, n$	complex

complex: Sequence must be made such that the pivot halves the sorting range. For example (n=7): 4,5,7,6,2,1,3

Strategy: double if array is full.

Strategy: double if array is full.

Let $i \in \mathbb{N}$ be the number of elements appended and let $n_i \in \mathbb{N}$ be the array size allocated after appending i.

It holds that

$$n_i = \begin{cases} 1 & \text{if } i = 1 \text{ [Start]} \\ 2 \cdot n_{i-1} & \text{if } i - 1 \in \{2^k : k \in \mathbb{N}\} \text{ [Array full]} \\ n_{i-1} & \text{otherwise} \end{cases}$$

$$n_i = 2^{\lceil \log_2 i \rceil}$$

i n1 12 2

4 4

5 8

6 8

. ..

Strategy: double if array is full.

¹According to the task description: 2n initialisations, n copies, 1 new element

Strategy: double if array is full. Real costs

$$t_i = \begin{cases} 1 & \text{if } i = 1 \text{ [Start]} \\ 3n_{i-1} + 1 & \text{if } i - 1 \in \{2^k : k \in \mathbb{N}\} \text{ [Array full]}^1 \\ 1 & \text{otherwise} \end{cases}$$

¹According to the task description: 2n initialisations, n copies, 1 new element

Strategy: double if array is full.

Real costs

$$t_i = \begin{cases} 1 & \text{if } i = 1 \text{ [Start]} \\ 3n_{i-1} + 1 & \text{if } i - 1 \in \{2^k : k \in \mathbb{N}\} \text{ [Array full]}^1 \\ 1 & \text{otherwise} \end{cases}$$

Find potential function such that the amortized costs are constant:

$$a_i = t_i + \Phi_i - \Phi_{i-1}$$

¹According to the task description: 2n initialisations, n copies, 1 new element

Strategy: double if array is full.

Find potential function such that the amortized costs are constant:

$$a_i = t_i + \Phi_i - \Phi_{i-1}$$

Strategy: double if array is full.

Find potential function such that the amortized costs are constant:

$$a_i = t_i + \Phi_i - \Phi_{i-1}$$

 $\Phi_i=6$ · number of elements in the upper half of the array $=6\cdot(i-\frac{n_i}{2})=6i-3n_i$

Strategy: double if array is full.

Find potential function such that the amortized costs are constant:

$$a_i = t_i + \Phi_i - \Phi_{i-1}$$

$$\Phi_i=6$$
 · number of elements in the upper half of the array
$$=6\cdot(i-\frac{n_i}{2})=6i-3n_i$$

$$\Phi_i - \Phi_{i-1} = \begin{cases} 6 + 3n_{i-1} - 3 & \text{if } i - 1 \in \{2^k : k \in \mathbb{N}\} \text{ [Array full]} \\ 6 & \text{otherwise} \end{cases}$$

$$\Rightarrow 7 \geq a_i$$
 (in both cases)

Strategy: double if array is full.

Find potential function such that the amortized costs are constant:

$$\begin{split} a_i &= t_i + \Phi_i - \Phi_{i-1} \\ &= \begin{cases} 3n_{i-1} + 1 + 6 - 3n_{i-1} & \text{if } i-1 \in \{2^k: k \in \mathbb{N}\} \text{ [Array full]} \\ 1 + 6 & \text{otherwise} \end{cases} \\ &\leq 7 \quad \text{for all } i \end{split}$$

8

Strategy: halve if array is three quarters empty.

Strategy: halve if array is three quarters empty.

$$t_i = \begin{cases} 1 & \text{if array is more than quarter full} \\ \frac{n_{i-1}}{2} + \frac{n_{i-1}}{4} = \frac{3}{4}n_{i-1} & \text{otherwise, then } n_i = \frac{n_{i-1}}{2} \end{cases}$$

Strategy: halve if array is three quarters empty.

$$t_i = \begin{cases} 1 & \text{if array is more than quarter full} \\ \frac{n_{i-1}}{2} + \frac{n_{i-1}}{4} = \frac{3}{4}n_{i-1} & \text{otherwise, then } n_i = \frac{n_{i-1}}{2} \end{cases}$$

Find potential function such that the amortized costs are constant:

$$a_i = t_i + \Phi_i - \Phi_{i-1}$$

Strategy: halve if array is three quarters empty.

$$t_i = \begin{cases} 1 & \text{if array is more than quarter full} \\ \frac{n_{i-1}}{2} + \frac{n_{i-1}}{4} = \frac{3}{4}n_{i-1} & \text{otherwise, then } n_i = \frac{n_{i-1}}{2} \end{cases}$$

Find potential function such that the amortized costs are constant:

$$a_i = t_i + \Phi_i - \Phi_{i-1}$$

Let k_i be the number of elements in the array in step i

$$\Phi_i=3$$
 · number of empty elements in the lower half of array $(1,\dots,\frac{n}{2})$
$$=3\cdot(\frac{n_i}{2}-k_i)$$

9

Strategy: halve if array is three quarters empty.

$$t_i = \begin{cases} 1 & \text{if array is more than quarter full} \\ \frac{n_{i-1}}{2} + \frac{n_{i-1}}{4} = \frac{3}{4}n_{i-1} & \text{otherwise, then } n_i = \frac{n_{i-1}}{2} \end{cases}$$

Find potential function such that the amortized costs are constant:

$$a_i = t_i + \Phi_i - \Phi_{i-1}$$

Let k_i be the number of elements in the array in step i

$$\Phi_i=3$$
 · number of empty elements in the lower half of array $(1,\dots,\frac{n}{2})$
$$=3\cdot(\frac{n_i}{2}-k_i)$$

$$\Rightarrow 4 \geq a_i$$
 (in both cases)

9

Strategy: halve if array is three quarters empty. Find potential function such that the amortized costs are constant:

$$a_i = t_i + \Phi_i - \Phi_{i-1}$$

$$\Phi_i = 3 \cdot (\frac{n_i}{2} - k_i)$$

$$\Phi_i - \Phi_{i-1} = \begin{cases} 3 & \text{if array is more than quarter full} \\ 3 \cdot \left(1 + \frac{n_{i-1}}{4} - \frac{n_{i-1}}{2}\right) \end{cases}$$
 otherwise

Strategy: halve if array is three quarters empty. Find potential function such that the amortized costs are constant:

$$a_i = t_i + \Phi_i - \Phi_{i-1}$$

$$\begin{split} \Phi_i &= 3 \cdot (\frac{n_i}{2} - k_i) \\ \Phi_i - \Phi_{i-1} &= \begin{cases} 3 & \text{if array is more than quarter full} \\ 3 \cdot \left(1 + \frac{n_{i-1}}{4} - \frac{n_{i-1}}{2}\right) \right) & \text{otherwise} \\ \\ \Rightarrow 4 \geq a_i \text{ (in both cases)} \end{split}$$

Amortized analysis: pop and push

 $\Phi_i = 6 \cdot \text{number elements in the upper half} \\ + 3 \cdot \text{number empty slots in the lower half}$

2. Repetition theory

Hashing well-done

Useful Hashing...

- distributes the keys as uniformly as possible in the hash table.
- avoids probing over long areas of used entries (e.g. primary clustering).
- avoids using the same probing sequence for keys with the same hash value (e.g. secondary clustering).

- linear probing, s(j, k) = j.
- quadratic probing, $s(j,k) = (-1)^{j+1} \lceil j/2 \rceil^2$.
- Double Hashing, $s(j,k) = j \cdot (1 + (k \mod 5)).$

- linear probing, s(j, k) = j.
- quadratic probing, $s(j,k) = (-1)^{j+1} \lceil j/2 \rceil^2$.
- Double Hashing, $s(j,k) = j \cdot (1 + (k \mod 5)).$

- linear probing, s(j,k) = j.
- quadratic probing, $s(j,k) = (-1)^{j+1} \lceil j/2 \rceil^2$.
- Double Hashing, $s(j, k) = j \cdot (1 + (k \mod 5)).$

- linear probing, s(j, k) = j.
- quadratic probing, $s(j,k) = (-1)^{j+1} \lceil j/2 \rceil^2$.
- Double Hashing, $s(j, k) = j \cdot (1 + (k \mod 5)).$

- linear probing, s(j, k) = j.
- quadratic probing, $s(j,k) = (-1)^{j+1} \lceil j/2 \rceil^2$.
- Double Hashing, $s(j, k) = j \cdot (1 + (k \mod 5)).$

- linear probing, s(j,k) = j.
- quadratic probing, $s(j,k) = (-1)^{j+1} \lceil j/2 \rceil^2$.
- Double Hashing, $s(j,k) = j \cdot (1 + (k \mod 5)).$

- linear probing, s(j,k) = j.
- quadratic probing, $s(j,k) = (-1)^{j+1} \lceil j/2 \rceil^2$.
- Double Hashing, $s(j, k) = j \cdot (1 + (k \mod 5)).$

- linear probing, s(j, k) = j.
- quadratic probing, $s(j,k) = (-1)^{j+1} \lceil j/2 \rceil^2$.
- Double Hashing, $s(j,k) = j \cdot (1 + (k \mod 5)).$

- linear probing, s(j,k) = j.
- quadratic probing, $s(j,k) = (-1)^{j+1} \lceil j/2 \rceil^2$.
- Double Hashing, $s(j, k) = j \cdot (1 + (k \mod 5)).$

- linear probing, s(j,k) = j.
- quadratic probing, $s(j,k) = (-1)^{j+1} \lceil j/2 \rceil^2$.
- Double Hashing, $s(j, k) = j \cdot (1 + (k \mod 5)).$

- linear probing, s(j,k) = j.
- quadratic probing, $s(j,k) = (-1)^{j+1} \lceil j/2 \rceil^2$.
- Double Hashing, $s(j, k) = j \cdot (1 + (k \mod 5)).$

- linear probing, s(j, k) = j.
- quadratic probing, $s(j,k) = (-1)^{j+1} \lceil j/2 \rceil^2$.
- Double Hashing, $s(j, k) = j \cdot (1 + (k \mod 5)).$

Hashing Examples

Insert the keys 25, 4, 17, 45 into the hash table, using the function $h(k) = k \mod 7$ and probing to the right, h(k) + s(j, k):

- linear probing, s(j,k) = j.
- quadratic probing, $s(j,k) = (-1)^{j+1} \lceil j/2 \rceil^2$.
- Double Hashing, $s(j, k) = j \cdot (1 + (k \mod 5)).$

Simple Uniform Hashing

Statement about the uniform distribution and independence of the **keys**. Property of closed addressing: simple uniform hashing \Rightarrow expected length of the chains as good as possible $\leq \alpha = \frac{n}{m}$.

Uniform Hashing

Statement about the uniform distribution and independence of **key probing sequences**.

Property of open addressing: Uniform Hashing \Rightarrow expected runtime costs $\leq \frac{1}{1-\alpha}$.

Universal Hashing

Property about the available, randomly chosen hash-functions

$$|\{h \in \mathcal{H} \text{ with } h(k_1) = h(k_2)\}| \leq \frac{|\mathcal{H}|}{m}$$

Property independent of chose sequence of keys: for hashing with chaining the expected chain length is $\leq \alpha = \frac{n}{m}$ Prerequisite for Perfect Hashing

3. Programming Task

- Given: two integer arrays $A = (a_0, \ldots, a_{n-1})$ and $B = (b_0, \ldots, b_{k-1})$
- Task: Find position of B in A.

- Given: two integer arrays $A = (a_0, \ldots, a_{n-1})$ and $B = (b_0, \ldots, b_{k-1})$
- \blacksquare Task: Find position of B in A.
- \blacksquare Naive: Loop through A, check whether the following k entries match B.

- \blacksquare Given: two integer arrays $A=(a_0,\ldots,a_{n-1})$ and $B=(b_0,\ldots,b_{k-1})$
- Task: Find position of B in A.
- lacktriangle Naive: Loop through A, check whether the following k entries match B.
 - lacksquare O(nk) comparison operations

- \blacksquare Given: two integer arrays $A=(a_0,\ldots,a_{n-1})$ and $B=(b_0,\ldots,b_{k-1})$
- \blacksquare Task: Find position of B in A.
- lacktriangle Naive: Loop through A, check whether the following k entries match B.
 - lacksquare O(nk) comparison operations
- Solution using hashing: Calculate hash h(B) and compare it to $h((a_i, a_{i+1}, \dots, a_{i+k-1}))$.
- Avoid re-computing $h((a_i, a_{i+1}, ..., ai + k 1)$ for each $i \implies O(n)$ expected

- Possible hash function: sum of all elements:
 - \blacksquare Can be updated easily: subtract a_i and add a_{i+k} .
 - However: bad hash function

- Possible hash function: sum of all elements:
 - \blacksquare Can be updated easily: subtract a_i and add a_{i+k} .
 - However: bad hash function
- Better:

$$H_{c,m}((a_i, \cdots, a_{i+k-1})) = \left(\sum_{j=0}^{k-1} a_{i+j} \cdot c^{k-j-1}\right) \mod m$$

- c = 1021 prime number
- $lacktriangledown m = 2^{15}$ int, no overflows at calculations

Computing with Modulo

$$(a+b) \bmod m = ((a \bmod m) + (b \bmod m)) \bmod m$$
$$(a-b) \bmod m = ((a \bmod m) - (b \bmod m) + m) \bmod m$$
$$(a \cdot b) \bmod m = ((a \bmod m) \cdot (b \bmod m)) \bmod m$$

Exercise: Compute

 $12746357 \mod 11$

Exercise: Compute

 $12746357 \mod 11$

Exercise: Compute

$$12746357 \mod 11$$

=
$$(7 + 5 \cdot 10 + 3 \cdot 10^2 + 6 \cdot 10^3 + 4 \cdot 10^4 + 7 \cdot 10^5 + 2 \cdot 10^6 + 1 \cdot 10^7) \mod 11$$

Exercise: Compute

 $12746357 \mod 11$

$$= (7 + 5 \cdot 10 + 3 \cdot 10^{2} + 6 \cdot 10^{3} + 4 \cdot 10^{4} + 7 \cdot 10^{5} + 2 \cdot 10^{6} + 1 \cdot 10^{7}) \mod 11$$

= $(7 + 50 + 3 + 60 + 4 + 70 + 2 + 10) \mod 11$

For the second equality we used the fact that $10^2 \mod 11 = 1$.

Exercise: Compute

 $12746357 \mod 11$

$$= (7 + 5 \cdot 10 + 3 \cdot 10^{2} + 6 \cdot 10^{3} + 4 \cdot 10^{4} + 7 \cdot 10^{5} + 2 \cdot 10^{6} + 1 \cdot 10^{7}) \mod 11$$

$$= (7 + 50 + 3 + 60 + 4 + 70 + 2 + 10) \mod 11$$

$$= (7 + 6 + 3 + 5 + 4 + 4 + 2 + 10) \mod 11$$

For the second equality we used the fact that $10^2 \mod 11 = 1$.

Exercise: Compute

 $12746357 \mod 11$

=
$$(7 + 5 \cdot 10 + 3 \cdot 10^2 + 6 \cdot 10^3 + 4 \cdot 10^4 + 7 \cdot 10^5 + 2 \cdot 10^6 + 1 \cdot 10^7) \mod 11$$

$$= (7 + 50 + 3 + 60 + 4 + 70 + 2 + 10) \mod 11$$

$$= (7+6+3+5+4+4+2+10) \mod 11$$

 $= 8 \mod 11.$

For the second equality we used the fact that $10^2 \mod 11 = 1$.

```
template<typename It1, typename It2>
It1 findOccurrence(const It1 from, const It1 to,
                   const It2 begin, const It2 end)
 const unsigned k = end - begin;
 const unsigned M = 32768;
 const unsigned C = 1021;
 // your code here
 // ...
```

```
// elements can be compared using std::equal:
if(std::equal(window_left, window_right, begin, end))
   return current;

// if no occurrence is found return end of array
   return to;
}
```

Make sure that

- lacktriangle the algorithm computes c^k only once,
- lacktriangleright all computations are modulo m for all values in order not to get an overflow (recall the rules of modular arithmetic), and
- \blacksquare the values are always positive (e.g., by adding multiples of m).

Questions?